1
|
Zhang G, Fan K, Zong L, Lu F, Wang Z, Wang L. Harnessing geometric distortion to stimulate oxygen reduction activity of atomically dispersed Fe catalysts in quasi-solid-state zinc-air batteries. J Colloid Interface Sci 2025; 686:1157-1167. [PMID: 39938283 DOI: 10.1016/j.jcis.2025.01.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
To achieve precise optimization of the geometric structure and control over spatial distribution of single atom active sites, we introduce an in situ polymer layer modification strategy. Through co-deposition of tannic acid (TA) and polyethyleneimine (PEI) on carbon nanotubes (CNTs), the polymer improves the dispersion and prevents the agglomeration of Fe atoms. Consequently, after controlled calcination, the geometrically distorted Fe-N4 single atom active sites are constructed on the surface of the curved carbon support. The optimized distortion reduces the reaction energy barrier, optimizes the adsorption energy of oxygen intermediates, and leading to a remarkable improvement of oxygen reduction reaction (ORR) activity. As the result, the obtained single atom catalyst (SAC) Fe-NC@CNTs exhibits exceptional performance with a large onset potential (Eonset) of 1.03 V and a half-wave potential (E1/2) of 0.91 V in 0.1 M KOH solution, surpassing the previously reported ORR electrocatalysts. Benefitting from these features, Fe-NC@CNTs-based rechargeable aqueous Zn-air battery (A-ZAB) delivers a higher power density of 209.5 mW cm-2 and can sustain stable changing/discharging for over 2000 h and experiences negligible charge-discharge potential gap fluctuation, being the most booming competitor among the reported electrocatalysts. Furthermore, quasi-solid-state Zn-air battery (QSS-ZAB) with Fe-NC@CNTs air cathode exhibits an impressive peak power density of 130.8 mW cm-2, large round-trip efficiency of 82 %, and long cycling life of over 100 h. Our work reveals the relationship of strain-induced geometrical distortion and the structure activity relationship, offering a new way for the rational design of other highly efficient catalytic systems.
Collapse
Affiliation(s)
- Guitao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
| | - Kaicai Fan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
| | - Lingbo Zong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China.
| | - Fenghong Lu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
| | - Zumin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 PR China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China.
| |
Collapse
|
2
|
Liu J, Tian S, Ren J, Huang J, Luo L, Du B, Zhang T. Improved Interlaminar Properties of Glass Fiber/Epoxy Laminates by the Synergic Modification of Soft and Rigid Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6611. [PMID: 37834749 PMCID: PMC10574751 DOI: 10.3390/ma16196611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Poor interlaminar fracture toughness has been a major issue in glass fiber-reinforced epoxy resin (GF/EP) laminate composites. In this paper, soft carboxy-terminated nitrile (CTBN) rubber particles and rigid nano-SiO2 are used to toughen the epoxy resin (EP) matrix to improve the interlayer properties of GF/EP laminate composites. The effects of adding two toughening agents on the mechanical and interlayer properties of GF/EP laminates were studied. The results showed that adding the two kinds of particles improved the mechanical properties of the epoxy matrix. When the additional amount of flexible CTBN rubber particles was 8 wt%, and the rigid nano-SiO2 was 0.5 wt%, the fracture toughness of the matrix resin was increased by 215.8%, and the tensile strength was only decreased by 2.3% compared with the pure epoxy resin. On this basis, the effects of two kinds of particles on the interlayer properties of GF/EP composites were studied. Compared with the unmodified GF/EP laminates, the interlayer shear strength and mode I interlayer fracture toughness is significantly improved by a toughening agent, and the energy release rate GIC of interlayer shear strength and interlayer fracture toughness is increased by 109.2%, and 86.8%, respectively. The flexible CTBN rubber particles and rigid nano-SiO2 improve the interfacial adhesion between GF and EP. The cavitation of the two particles and the plastic deformation of the matrix is the toughening mechanism of the interlayer properties of the composite. Such excellent interlaminar mechanical properties make it possible for GF/EP laminates to be widely used as engineering materials in various industries (e.g., aerospace, hydrogen energy, marine).
Collapse
Affiliation(s)
- Jingwei Liu
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Department of Fine Chemicals and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| | - Shenghui Tian
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiaqi Ren
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft Matter Materials Chemistry and Functional Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lin Luo
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bing Du
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tianyong Zhang
- Department of Fine Chemicals and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
3
|
Rao W, Tao J, Yang F, Wu T, Yu C, Zhao HB. Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins. CHEMOSPHERE 2023; 311:137047. [PMID: 36336017 DOI: 10.1016/j.chemosphere.2022.137047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
With the high integration of electronic products in our daily life, high-performance epoxy resins (EP) with excellent flame retardancy, smoke suppression, and mechanical strength are highly desired for applications. In this study, copper organophosphate nanosheets were evenly grown on the surface of graphene oxide (GO) via a self-assembly process based on coordination bonding and electrostatic interactions. The resultant nanohybrid endowed EP with satisfactory flame retardant effect and improved mechanical properties. Incorporating functionalized nanosheets of merely 1 wt% loading, the impact strength of the EP nanocomposites improved by 147% when compared to 1% EP-GO. Additionally, the nanosheets inhibited the smoke and heat release of EP, and the limiting oxygen value of EP-EGOPC reached ∼29%. The mechanism analysis verified that the existence of organophosphate and copper-containing components associated with the physical barrier of GO promoted the hybrid aromatization of the char layer, thereby improving the fire safety of epoxy matrix. This research offers a new interfacial method for designing functional nanosheets with good interface compatibility and high flame-retardant efficiency in polymers.
Collapse
Affiliation(s)
- Wenhui Rao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Jie Tao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Feihao Yang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Tao Wu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China
| | - Chuanbai Yu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin, 541004, China.
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Nguyen HK, Shundo A, Liang X, Yamamoto S, Tanaka K, Nakajima K. Unraveling Nanoscale Elastic and Adhesive Properties at the Nanoparticle/Epoxy Interface Using Bimodal Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42713-42722. [PMID: 36070235 DOI: 10.1021/acsami.2c12335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The addition of a small fraction of solid nanoparticles to thermosetting polymers can substantially improve their fracture toughness, while maintaining various intrinsic thermomechanical properties. The underlying mechanism is largely related to the debonding process and subsequent formation of nanovoids at a nanoscale nanoparticle/epoxy interface, which is thought to be associated with a change in the structural and mechanical properties of the formed epoxy network at the interface compared with the matrix region. However, a direct characterization of the local physical properties at this nanoscale interface remains significantly challenging. Here, we employ a recently developed bimodal atomic force microscopy technique for the direct mapping of nanoscale elastic and adhesive responses of an amine-cured epoxy resin filled with ∼50 nm diameter silica nanoparticles. The obtained elastic modulus and dissipated energy maps with high spatial resolution evidence the existence of a ∼20-nm-thick interfacial epoxy layer surrounding the nanoparticles, which exhibits a reduced modulus and weaker adhesive response in comparison with the matrix properties. While the presence of such a soft and weak-adhesive interfacial layer is found not to affect the architecture of structural heterogeneities in the epoxy matrix, it conceivably supports the toughening mechanism related to the debonding and plastic nanovoid growth at the silica/epoxy interface. The incorporation of this soft interfacial layer into the Halpin-Tsai model also provides a good explanation for the effect of the silica fraction on the tensile modulus of cured epoxy nanocomposites.
Collapse
Affiliation(s)
- Hung K Nguyen
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Atsuomi Shundo
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
5
|
Xiao Y, Yang Y, Luo Q, Tang B, Guan J, Tian Q. Construction of carbon-based flame retardant composite with reinforced and toughened property and its application in polylactic acid. RSC Adv 2022; 12:22236-22243. [PMID: 36043090 PMCID: PMC9364221 DOI: 10.1039/d2ra04130h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
To simultaneously improve the flame retardancy, strength and toughness of polylactic acid (PLA) fibers, a composite flame retardant CNTs-H-C was prepared with carbon nanotubes (CNTs) as the core, hexachlorocyclotriphosphazene as linker, and chitosan grafted on the surface. The prepared CNTs-H-C was introduced into a PLA matrix to obtain CNTs-H-C/PLA composites and fibers via a melt-blending method. The morphology, structure, flame retardant properties and mechanical properties were thoroughly characterized, and the flame retardant mechanism was studied. Results showed that the prepared CNTs-H-C displayed a nanotube-like morphology with good compatibility and dispersion in the PLA matrix. After blending with PLA, CNTs-H-C/PLA composites exhibited outstanding flame retardancy with limiting oxygen index (LOI) increasing from 20.0% to 27.3%, UL94 rating reaching V-0. More importantly, the introduction of CNTs-H-C did not affect the spinnability of PLA. Compared with pure PLA fibers, the LOI of CNTs-H-C/PLA fibers with a CNTs-H-C content of 1.0 wt% increased by 32.5%, and meanwhile the breaking strength and elongation increased by 28.2% and 30.4%, respectively. Mechanism study revealed that CNTs-H-C/PLA possessed a typical condensed phase flame retardancy mechanism. In short, we have developed a CNT-based composite flame retardant with reinforced and toughened properties for the PLA matrix. The prepared CNTs-H-C showed great potential in polymer flame retardancy and mechanical enhancement. A CNT-based flame retardant was synthesized and introduced into PLA to simultaneously improve the flame retardancy, strength and toughness of PLA.![]()
Collapse
Affiliation(s)
- Yunchao Xiao
- College of Materials and Textile Engineering, Jiaxing University Jiaxing 314001 Zhejiang China.,Nanotechnology Research Institute, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Qiulan Luo
- College of Fashion Design, Jiaxing Nanhu University Jiaxing 314001 Zhejiang China
| | - Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University Jiaxing 314001 Zhejiang China.,Nanotechnology Research Institute, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Jipeng Guan
- College of Materials and Textile Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Qiang Tian
- Zibo Dayang Flame Retardant Products Co., Ltd. Zibo 255300 Shandong China
| |
Collapse
|
6
|
Yang L, Guo J, Zhang L, Li C. Significant Improvement in the Flame Retardancy and Thermal Conductivity of the Epoxy Resin via Constructing a Branched Flame Retardant Based on SI-ATRP Initiated by Dopamine-Modified Boron Nitride. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liu Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jiachen Guo
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Lian Q, Chen H, Luo Y, Li Y, Cheng J, Liu Y. Toughening mechanism based on the physical entanglement of branched epoxy resin in the non-phase-separated inhomogeneous crosslinking network: An experimental and molecular dynamics simulation study. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Zhang C, Li L, Xin Y, You J, Zhang J, Fu W, Wang N. Development of Trans-1,4-Polyisoprene Shape-Memory Polymer Composites Reinforced with Carbon Nanotubes Modified by Polydopamine. Polymers (Basel) 2021; 14:110. [PMID: 35012132 PMCID: PMC8747353 DOI: 10.3390/polym14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, which was inspired by mussel-biomimetic bonding research, carbon nanotubes (CNTs) were interfacially modified with polydopamine (PDA) to prepare a novel nano-filler (CNTs@PDA). The structure and properties of the CNTs@PDA were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The CNTs and the CNTs@PDA were used as nanofillers and melt-blended into trans-1,4 polyisoprene (TPI) to create shape-memory polymer composites. The thermal stability, mechanical properties, and shape-memory properties of the TPI/CNTs and TPI/CNTs@PDA composites were systematically studied. The results demonstrate that these modifications enhanced the interfacial interaction, thermal stability, and mechanical properties of TPI/CNTs@PDA composites while maintaining shape-memory performance.
Collapse
Affiliation(s)
- Chuang Zhang
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Long Li
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China;
| | - Yuanhang Xin
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Jiaqi You
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Jing Zhang
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Wanlu Fu
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China;
| | - Na Wang
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China;
| |
Collapse
|
9
|
Zhang Y, Lu K, He M, Zuo X, Li G, Yang X. Constructing a Rigid-and-Flexible Twin-Stage Gradient Interphase through Starlike Copolymer Coating on Carbon Fibers: A Route for Enhancing Interfacial Properties of Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55633-55647. [PMID: 34780158 DOI: 10.1021/acsami.1c14535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A rigid-and-flexible interphase was established by a starlike copolymer (Pc-PGMA/Pc) consisting of one tetraaminophthalocyanine (TAPc) core with four TAPc-difunctionalized poly(glycidyl methacrylate) (PGMA) arms through the surface modification of carbon fibers (CFs) and compared with various interphases constructed by TAPc and TAPc-connected PGMA (Pc-PGMA). The increase in the content of N-C═O showed that PGMA/Pc branches were successfully attached onto the CF-(Pc-PGMA/Pc) surface, exhibiting concavo-convex microstructures with the highest roughness. Through adhesive force spectroscopy by atomic force microscopy (AFM) with peak force quantitative nanomechanical mapping (PF-QNM) mode and visualization of the relative distribution of TAPc/PGMA via a Raman spectrometer, a rigid interphase with highly cross-linked TAPc and a flexible layer from PGMA arms as the soft segment were separately detected in CF-TAPc/EP and CF-(Pc-PGMA)/EP composites. The rigid-and-flexible interphase in the CF-(Pc-PGMA/Pc)/EP composite provided excellent stress-transfer capability by the rigid inner modulus intermediate layer and energy absorption efficiency from the flexible outer layer, which contributed to 64.6 and 61.8% increment of transverse fiber bundle test (TFBT) strength, and 33.8 and 40.6% enhancement in interfacial shear strength (IFSS) in comparison with those of CF-TAPc/EP and CF-(Pc-PGMA)/EP composites. Accordingly, schematic models of the interphase reinforcing mechanism were proposed. The interfacial failures in CF-TAPc/EP and CF-(Pc-PGMA)/EP composites were derived from the rigid interphase without effective relaxation of interfacial stress and soft interphase with excessive fiber-matrix interface slippage, respectively. The cohesive failure in the CF-(Pc-PGMA/Pc)/EP composite was attributed to the crack deflection through the balance of the modulus and deformability from the twin-stage gradient intermediate layer.
Collapse
Affiliation(s)
- Yanjia Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kangyi Lu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mei He
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaobiao Zuo
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Gang Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
10
|
Ma T, Ma J, Yang C, Zhang J, Cheng J. Robust, Multiresponsive, Superhydrophobic, and Oleophobic Nanocomposites via a Highly Efficient Multifluorination Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28949-28961. [PMID: 34102849 DOI: 10.1021/acsami.1c07048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial superhydrophobic surfaces are garnering constant attention due to their wide applications. However, it is a great challenge for superhydrophobic materials to simultaneously achieve good oil repellency, mechanochemical robustness, adhesion, thermomechanical properties, and multiresponsive ability. Herein, we propose a highly efficient multifluorination strategy to prepare superhydrophobic nanocomposites with the above features, which can be used as monoliths or coatings on various substrates. In this strategy, long-chain perfluorinated epoxy (PFEP) provides outstanding water/oil repellency, tetrafluorophenyl-based epoxy (FEP) possesses good thermodynamic compatibility with PFEP and increases the mechanical performance of the matrix, and carbon nanotubes grafted with perfluorinated segments and flexible spacers (FCNTs) tailor the surface roughness as well as impart multiple functions and ensure good binding interfaces. Notedly, all of the applications of constrained long-chain perfluorinated compounds are achieved via thiol-ene click chemistry, following the ethos of atom economy. The resultant PFEP30/FCNTs40 exhibits superhydrophobicity and oleophobicity, thermal conductivity (1.33 W·m-1·K-1), electronic conductivity (232 S m-1), and electromagnetic interference shielding properties (∼30 dB at 8.2-12.4 GHz, 200 μm). Importantly, after different extreme physical/chemical tests, the PFEP30/FCNTs40 coating still shows outstanding water/oil repellency. In addition, the coating exhibits good photo/electrothermal conversion ability and shows the potential for sensor application. Moreover, the novel strategy provides an efficient guideline for large-scale preparation of robust, multiresponsive, superhydrophobic, and oleophobic materials.
Collapse
Affiliation(s)
- Tian Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiahao Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chao Yang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
11
|
Chen H, Lian Q, Xu W, Hou X, Li Y, Wang Z, An D, Liu Y. Insights into the synergistic mechanism of reactive aliphatic soft chains and nano‐silica on toughening epoxy resins with improved mechanical properties and low viscosity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongfeng Chen
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Qingsong Lian
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
- The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Weijie Xu
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Xuqi Hou
- The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Yan Li
- Department of Materials Application Research AVIC Manufacturing Technology Institute Beijing China
| | - Zhi Wang
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Dong An
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Yaqing Liu
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| |
Collapse
|
12
|
Wang B, Zhang X, Zhang L, Feng Y, Liu C, Shen C. Simultaneously reinforcing and toughening poly(lactic acid) by incorporating reactive melt‐functionalized silica nanoparticles. J Appl Polym Sci 2020. [DOI: 10.1002/app.48834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Wang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou University Zhengzhou 450001 China
| | - Xin Zhang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou University Zhengzhou 450001 China
| | - Lutong Zhang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou University Zhengzhou 450001 China
| | - Yuezhan Feng
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou University Zhengzhou 450001 China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou University Zhengzhou 450001 China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
13
|
Li Y, Zheng L, Peng S, Miao JT, Zhong J, Wu L, Weng Z. Structure-Property Relationship of Stereolithography Resins Containing Polysiloxane Core-Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4917-4926. [PMID: 31904929 DOI: 10.1021/acsami.9b20417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stereolithography (SL) is an additive manufacturing technique for fabricating bulk and delicate objects layer by layer using UV-curable resin. However, epoxy-based photocurable resins used in SL printers are commonly brittle due to the high cross-linking density, thus restricting the widespread adoption of SL. In an effort to overcome this drawback, this paper details an approach of toughening the resulting workpieces by incorporating polysiloxane core-shell nanoparticles (SCSP) into an epoxy-based, photocurable formulation. This approach attempted to attain both thermal stabilities and transparency qualities comparable to that of resin without SCSP. This work systematically analyzed how the shell thickness of the SCSP impacted the final properties of the printed product. Introducing 5% w/w SCSP with a diameter of approximately 132 nm into the resin improved strain at break measured by tensile and flexural tests by 745.5 and 248.6%, respectively, and increased the fracture toughness by 166.3%. Owing to the advantages of toughness, thermal stabilities, transparency, and high accuracy of epoxy-based photocurable resin with SCSP, the 3D printing nanocomposite developed here is capable of preparing a poly(methyl methacrylate) (PMMA)-like workpiece with a commercial SL 3D printer. These results may expand the scope of the application of 3D printing in a wide variety of industries.
Collapse
Affiliation(s)
- Yuewei Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Longhui Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Shuqiang Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jia-Tao Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Jie Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Zixiang Weng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| |
Collapse
|
14
|
Zhang J, Chen S, Qin B, Zhang D, Guo P, He Q. Preparation of hyperbranched polymeric ionic liquids for epoxy resin with simultaneous improvement of strength and toughness. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Dai Y, Tang Q, Zhang Z, Yu C, Li H, Xu L, Zhang S, Zou Z. Enhanced mechanical, thermal, and UV-shielding properties of poly(vinyl alcohol)/metal–organic framework nanocomposites. RSC Adv 2018; 8:38681-38688. [PMID: 35559108 PMCID: PMC9090642 DOI: 10.1039/c8ra07143h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Metal–organic framework (HKUST-1) nanoparticles were successfully synthesized, and poly(vinyl alcohol) (PVA)/HKUST-1 nanocomposite films were fabricated by a simple solution casting method. Our results showed that the addition of HKUST-1 caused a remarkable enhancement in both thermal stability and mechanical properties of the PVA nanocomposites, due to the homogeneous distribution of HKUST-1 and the strong interfacial interactions between PVA and HKUST-1. With incorporation of 2 wt% HKUST-1, the degradation temperature of the nanocomposites was about 33 °C higher than that of pure PVA. At the same time, the Young's modulus and tensile strength of the nanocomposites was approximately 137% and 32% higher than those of pure PVA, respectively. Moreover, the PVA/HKUST-1 nanocomposites also showed strikingly enhanced UV-shielding ability as well as satisfactory visible light transmittance, which revealed that HKUST-1 nanoparticles could act as a good UV absorber in nanocomposites. This work provides a novel and simple method for producing UV-shielding materials with simultaneously enhanced thermal and mechanical properties, which have potential applications in UV protection areas. PVA/HKUST-1 nanocomposites prepared by a simple solution casting method displayed significantly enhanced thermal stability, mechanical and UV-shielding properties.![]()
Collapse
Affiliation(s)
- Yibo Dai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Ziang Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Caili Yu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Lin Xu
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- China
| | - Shufen Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| |
Collapse
|