1
|
Kruse HV, Chakraborty S, Chen R, Kumar N, Yasir M, Lewin WT, Suchowerska N, Willcox MDP, McKenzie DR. Protecting Orthopaedic Implants from Infection: Antimicrobial Peptide Mel4 Is Non-Toxic to Bone Cells and Reduces Bacterial Colonisation When Bound to Plasma Ion-Implanted 3D-Printed PAEK Polymers. Cells 2024; 13:656. [PMID: 38667271 PMCID: PMC11049013 DOI: 10.3390/cells13080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Even with the best infection control protocols in place, the risk of a hospital-acquired infection of the surface of an implanted device remains significant. A bacterial biofilm can form and has the potential to escape the host immune system and develop resistance to conventional antibiotics, ultimately causing the implant to fail, seriously impacting patient well-being. Here, we demonstrate a 4 log reduction in the infection rate by the common pathogen S. aureus of 3D-printed polyaryl ether ketone (PAEK) polymeric surfaces by covalently binding the antimicrobial peptide Mel4 to the surface using plasma immersion ion implantation (PIII) treatment. The surfaces with added texture created by 3D-printed processes such as fused deposition-modelled polyether ether ketone (PEEK) and selective laser-sintered polyether ketone (PEK) can be equally well protected as conventionally manufactured materials. Unbound Mel4 in solution at relevant concentrations is non-cytotoxic to osteoblastic cell line Saos-2. Mel4 in combination with PIII aids Saos-2 cells to attach to the surface, increasing the adhesion by 88% compared to untreated materials without Mel4. A reduction in mineralisation on the Mel4-containing surfaces relative to surfaces without peptide was found, attributed to the acellular portion of mineral deposition.
Collapse
Affiliation(s)
- Hedi Verena Kruse
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Missenden Road, Camperdown, Sydney, NSW 2050, Australia;
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia;
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | - Sudip Chakraborty
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia (R.C.); (N.K.)
| | - Renxun Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia (R.C.); (N.K.)
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia (R.C.); (N.K.)
| | - Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (M.Y.); (M.D.P.W.)
| | - William T. Lewin
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Missenden Road, Camperdown, Sydney, NSW 2050, Australia;
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Missenden Road, Camperdown, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (M.Y.); (M.D.P.W.)
| | - David R. McKenzie
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Missenden Road, Camperdown, Sydney, NSW 2050, Australia;
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia;
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| |
Collapse
|
2
|
Coffi Dit Gleize K, Tran CTH, Waterhouse A, Bilek MMM, Wickham SFJ. Plasma Activation of Microplates Optimized for One-Step Reagent-Free Immobilization of DNA and Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:343-356. [PMID: 36550613 DOI: 10.1021/acs.langmuir.2c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Activated microplates are widely used in biological assays and cell culture to immobilize biomolecules, either through passive physical adsorption or covalent cross-linking. Covalent attachment gives greater stability in complex biological mixtures. However, current multistep chemical activation methods add complexity and cost, require specific functional groups, and can introduce cytotoxic chemicals that affect downstream cellular applications. Here, we show a method for one-step linker-free activation of microplates by energetic ions from plasma for covalent immobilization of DNA and protein. Two types of energetic ion plasma treatment were shown to be effective: plasma immersion ion implantation (PIII) and plasma-activated coating (PAC). This is the first time that PIII and PAC have been reported in microwell plates with nonflat geometry. We confirm that the plasma treatment generates radical-activated surfaces at the bottom of wells despite potential shadowing from the walls. Comprehensive surface characterization studies were used to compare the PIII and PAC microplate surface composition, wettability, radical density, optical properties, stability, and biomolecule immobilization density. PAC plates were found to have more nitrogen and lower radical density and were more hydrophobic and more stable over 3 months than PIII plates. Optimal conditions were obtained for high-density DNA (PAC, 0 or 21% nitrogen, pH 3-4) and streptavidin (PAC, 21% nitrogen, pH 5-7) binding while retaining optical properties required for typical high-throughput biochemical microplate assays, such as low autofluorescence and high transparency. DNA hybridization and protein activity of immobilized molecules were confirmed. We show that PAC activation allows for high-density covalent immobilization of functional DNA and protein in a single step on both 96- and 384-well plates without specific linker chemistry. These microplates could be used in the future to bind other user-selected ligands in a wide range of applications, for example, for solid phase polymerase chain reaction and stem cell culture and differentiation.
Collapse
Affiliation(s)
| | - Clara T H Tran
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- The Heart Research Institute, The University of Sydney, Newtown 2042, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcela M M Bilek
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shelley F J Wickham
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Zhao H, Chen T, Wu T, Xie L, Ma Y, Sha J. Strategy based on multiplexed brush architectures for regulating the spatiotemporal immobilization of biomolecules. BIOMATERIALS ADVANCES 2022; 141:213092. [PMID: 36191539 DOI: 10.1016/j.bioadv.2022.213092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Functional surfaces that enable both spatial and temporal control of biomolecules immobilization have attracted enormous attention for various fields including smart biointerface materials, high-throughput bioarrays, and fundamental research in the biosciences. Here, a flexible and promising method was presented for regulating the spatiotemporal arrangement of multiple biomolecules by constructing the topographically and chemically diverse polymer brushes patterned surfaces. A series of polymer brushes patterned surfaces, including antifouling brushes patterned surface, epoxy-presenting brushes patterned surface without and with antifouling background layer, were fabricated to control the spatial distribution of protein and cell adhesion through specific and nonspecific means. The fluorescence measurements demonstrated the effectiveness of spatially regulating the density of surface-immobilized protein through controlling the areal thickness of the poly (glycidyl methacrylate) (PGMA) brush patterns, leading to various complex patterns featuring well-defined biomolecule concentration gradients. Furthermore, a multiplexed surface bearing epoxy groups and azido groups with various areal densities was fabricated for regulating the spatiotemporal arrangement of different proteins, enabling binary biomolecules patterns with higher degrees of functionality and complexity. The presented strategy for the spatiotemporal control of biomolecules immobilization would boost the development of dynamic and multifunctional biosystems.
Collapse
Affiliation(s)
- Haili Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tao Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Jevon D, Deng K, Hallahan N, Kumar K, Tong J, Gan WJ, Tran C, Bilek MM, Thorn P. Local activation of focal adhesion kinase orchestrates the positioning of presynaptic scaffold proteins and Ca 2+ signalling to control glucose dependent insulin secretion. eLife 2022; 11:76262. [PMID: 35559734 PMCID: PMC9126582 DOI: 10.7554/elife.76262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
A developing understanding suggests that spatial compartmentalisation in pancreatic β cells is critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the mouse organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.
Collapse
Affiliation(s)
- Dillon Jevon
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Kylie Deng
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Nicole Hallahan
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Krish Kumar
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jason Tong
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Wan Jun Gan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Clara Tran
- School of Physics, University of Sydney, Sydney, Australia
| | | | - Peter Thorn
- School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Tan RP, Hallahan N, Kosobrodova E, Michael PL, Wei F, Santos M, Lam YT, Chan AHP, Xiao Y, Bilek MMM, Thorn P, Wise SG. Bioactivation of Encapsulation Membranes Reduces Fibrosis and Enhances Cell Survival. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56908-56923. [PMID: 33314916 DOI: 10.1021/acsami.0c20096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulation devices are an emerging barrier technology designed to prevent the immunorejection of replacement cells in regenerative therapies for intractable diseases. However, traditional polymers used in current devices are poor substrates for cell attachment and induce fibrosis upon implantation, impacting long-term therapeutic cell viability. Bioactivation of polymer surfaces improves local host responses to materials, and here we make the first step toward demonstrating the utility of this approach to improve cell survival within encapsulation implants. Using therapeutic islet cells as an exemplar cell therapy, we show that internal surface coatings improve islet cell attachment and viability, while distinct external coatings modulate local foreign body responses. Using plasma surface functionalization (plasma immersion ion implantation (PIII)), we employ hollow fiber semiporous poly(ether sulfone) (PES) encapsulation membranes and coat the internal surfaces with the extracellular matrix protein fibronectin (FN) to enhance islet cell attachment. Separately, the external fiber surface is coated with the anti-inflammatory cytokine interleukin-4 (IL-4) to polarize local macrophages to an M2 (anti-inflammatory) phenotype, muting the fibrotic response. To demonstrate the power of our approach, bioluminescent murine islet cells were loaded into dual FN/IL-4-coated fibers and evaluated in a mouse back model for 14 days. Dual FN/IL-4 fibers showed striking reductions in immune cell accumulation and elevated levels of the M2 macrophage phenotype, consistent with the suppression of fibrotic encapsulation and enhanced angiogenesis. These changes led to markedly enhanced islet cell survival and importantly to functional integration of the implant with the host vasculature. Dual FN/IL-4 surface coatings drive multifaceted improvements in islet cell survival and function, with significant implications for improving clinical translation of therapeutic cell-containing macroencapsulation implants.
Collapse
Affiliation(s)
- Richard P Tan
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Nicole Hallahan
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- Applied Plasma and Physics, A28, School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
| | - Praveesuda L Michael
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4000, Australia
| | - Miguel Santos
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Yuen Ting Lam
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, United States
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4000, Australia
| | - Marcela M M Bilek
- Applied Plasma and Physics, A28, School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Steven G Wise
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| |
Collapse
|
7
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
8
|
Sheng W, Li W, Tan D, Zhang P, Zhang E, Sheremet E, Schmidt BV, Feng X, Rodriguez RD, Jordan R, Amin I. Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9797-9805. [PMID: 31999093 PMCID: PMC7050013 DOI: 10.1021/acsami.9b21984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 05/27/2023]
Abstract
Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation.
Collapse
Affiliation(s)
- Wenbo Sheng
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Wei Li
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Deming Tan
- Department of Inorganic
Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Panpan Zhang
- Chair of Molecular
Functional Materials, Faculty of Chemistry and Food Chemistry, School
of Science, Technische Universität
Dresden, Mommsenstr.
4, 01069 Dresden, Germany
| | - En Zhang
- Department of Inorganic
Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | | | - Xinliang Feng
- Chair of Molecular
Functional Materials, Faculty of Chemistry and Food Chemistry, School
of Science, Technische Universität
Dresden, Mommsenstr.
4, 01069 Dresden, Germany
| | - Raul D. Rodriguez
- Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Rainer Jordan
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Ihsan Amin
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
- Van’t Hoff Institute of Molecular Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
Gan WJ, Do OH, Cottle L, Ma W, Kosobrodova E, Cooper-White J, Bilek M, Thorn P. Local Integrin Activation in Pancreatic β Cells Targets Insulin Secretion to the Vasculature. Cell Rep 2019; 24:2819-2826.e3. [PMID: 30208309 DOI: 10.1016/j.celrep.2018.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) critically affects β cell functions via integrin activation. But whether these ECM actions drive the spatial organization of β cells, as they do in epithelial cells, is unknown. Here, we show that within islets of Langerhans, focal adhesion activation in β cells occurs exclusively where they contact the capillary ECM (vascular face). In cultured β cells, 3D mapping shows enriched insulin granule fusion where the cells contact ECM-coated coverslips, which depends on β1 integrin receptor activation. Culture on micro-contact printed stripes of E-cadherin and fibronectin shows that β cell contact at the fibronectin stripe selectively activates focal adhesions and enriches exocytic machinery and insulin granule fusion. Culture of cells in high glucose, as a model of glucotoxicity, abolishes granule targeting. We conclude that local integrin activation targets insulin secretion to the islet capillaries. This mechanism might be important for islet function and may change in disease.
Collapse
Affiliation(s)
- Wan Jun Gan
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Oanh Hoang Do
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Louise Cottle
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei Ma
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nanoscience Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
10
|
Enhanced biocompatibility of polyurethane-type shape memory polymers modified by plasma immersion ion implantation treatment and collagen coating: An in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:863-874. [PMID: 30889761 DOI: 10.1016/j.msec.2019.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
As one of the promising smart materials, polyurethane-type shape memory polymers (SMPU) have been extensively investigated as potential biomedical implant materials. However, the hydrophobicity and bio-inertness of SMPU are major problems for biomedical applications. We applied plasma immersion ion implantation (PIII) to increase surface wettability and enable one-step covalent, functionalisation of SMPU with biological molecules to create a tuneable, biocompatible surface. The changes of surface properties due to PIII treatment in nitrogen plasma were determined by measurements of morphology, contact angle, surface energy, and nanoindentation. Collagen attachment on SMPU with and without PIII treatment was measured by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR). To investigate in vivo biocompatibility, SMPU with/without PIII and with/without collagen were subcutaneously implanted in mice. SMPU implants with surrounding tissue were collected at days 1, 3, 7, 14 and 28 to study acute/subacute inflammatory responses at histopathological and immunohistochemical levels. The results show that PIII treatment improves wettability and releases residual stress in the SMPU surfaces substantially. Covalent attachment of collagen on PIII treated SMPU in a single step incubation was demonstrated by its resistance to removal by rigorous Sodium Dodecyl Sulfonate (SDS) washing. The in-vivo results showed significantly lower acute/subacute inflammation in response to SMPU with PIII treatment + collagen coating compared to untreated SMPU, collagen coated untreated SMPU, and PIII treated SMPU, characterised by lower total cell numbers, macrophages, neovascularisation, cellular proliferation, cytokine production, and matrix metalloproteinase production. This comprehensive in vivo study of PIII treatment with protein coating demonstrates that the combination of PIII treatment and collagen coating is a promising approach to enhance the biocompatibility of SMPU, facilitating its application as an implantable biomaterial.
Collapse
|
11
|
Wakelin EA, Yeo GC, McKenzie DR, Bilek MMM, Weiss AS. Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity. APL Bioeng 2018; 2:026109. [PMID: 31069306 PMCID: PMC6481719 DOI: 10.1063/1.5010346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Slow appositional growth of bone in vivo is a major problem associated with polyether ether ketone (PEEK) based orthopaedic implants. Early stage promotion of osteoblast activity, particularly bone nodule formation, would help to improve contact between PEEK implantable materials and the surrounding bone tissue. To improve interactions with bone cells, we explored here the use of plasma immersion ion implantation (PIII) treatment of PEEK to covalently immobilize biomolecules to the surface. In this study, a single step process was used to covalently immobilize tropoelastin on the surface of PIII modified PEEK through reactions with radicals generated by the treatment. Improved bioactivity was observed using the human osteoblast-like cell line, SAOS-2. Cells on surfaces that were PIII-treated or tropoelastin-coated exhibited improved attachment, spreading, proliferation, and bone nodule formation compared to cells on untreated samples. Surfaces that were both PIII-treated and tropoelastin-coated triggered the most favorable osteoblast-like responses. Surface treatment or tropoelastin coating did not alter alkaline phosphatase gene expression and activity of bound cells but did influence the expression of other bone markers including osteocalcin, osteonectin, and collagen I. We conclude that the surface modification of PEEK improves osteoblast interactions, particularly with respect to bone apposition, and enhances the orthopedic utility of PEEK.
Collapse
Affiliation(s)
- Edgar A. Wakelin
- Applied and Plasma Physics, School of Physics, The University of Sydney, NSW 2006, Australia
| | | | - David R. McKenzie
- Applied and Plasma Physics, School of Physics, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|