1
|
Li Y, Li Q, Peng S. Formamide-assisted synthesis of phosphate-intercalated Ni(OH) 2/NiOOH electrode for boosting oxygen evolution reaction. J Colloid Interface Sci 2025; 689:137209. [PMID: 40056672 DOI: 10.1016/j.jcis.2025.02.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Electrochemical water splitting (EWS) represents a promising method for green hydrogen production. However, the commercial viability of this approach is significantly hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Layered Ni(OH)2/NiOOH serves as a low-cost and effective OER electrocatalyst, yet the activity and stability do not meet the requirements for commercial EWS, particularly in terms of operational stability under high current densities. Herein, we report a phosphate-intercalated (Pi) Ni(OH)2/NiOOH synthesized with the assistance of formamide (FA), termed NiOH-Pi-FA, which demonstrates significantly-enhanced OER performance. Systematic investigations reveal that FA facilitates phosphate intercalation, which improves OER via lattice oxygen oxidation, interlayer proton transport, electrode conductivity, electrode surface wetting and O2 bubbles release. More importantly, FA alters the catalyst's morphology, creating a porous structure and reducing catalyst particle size, which decreases the interlayer proton transport distance. FA also increases the surface roughness, promoting the release of O2 bubbles. Consequently, the OER performance of NiOH-Pi-FA is much better than that of Ni(OH)2/NiOOH prepared without FA (NiOH-Pi). It achieves overpotentials of 106 and 223 mV at current densities of 10 and 100 mA cm-2, respectively, and maintains exceptional stability at 350-330 mA cm-2 for over 400 h. Overall, the OER performance of NiOH-Pi-FA surpasses that of RuO2 and other Ni-based hydroxide electrocatalysts, offering valuable insights for designing efficient and stable OER catalysts.
Collapse
Affiliation(s)
- Yuexiang Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| | - Qing Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Shaoqin Peng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
2
|
Elhassan MM, Mahmoud AM, Hegazy MA, Mowaka S, Bell JG. New trends in potentiometric sensors: From design to clinical and biomedical applications. Talanta 2025; 287:127623. [PMID: 39893726 DOI: 10.1016/j.talanta.2025.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Potentiometry, a well-established electrochemical technique, provides a powerful and versatile method for the sensitive and selective measurement of a variety of analytes by measuring the potential difference between two electrodes, allowing for a direct and rapid readout of ion concentrations. This makes it a valuable tool in a variety of applications including industry, agriculture, forensics, medical, environmental assessment, and pharmaceutical drug analysis, therefore it has received significant attention from the scientific community. Their broad implementation in sensing applications arises through their many benefits, including ease of design, fabrication, and modification; rapid response time; high selectivity; suitability for use with colored and/or turbid solutions; and potential for integration into embedded systems interfaces. Owing to these advantages and diverse applicability, sustained research and development in the field has resulted in the emergence of several notable trends in the field. 3D printing is the most recent technique used in potentiometry which offers many benefits such as improved flexibility and precision in the manufacturing of ion-selective electrodes and rapid prototyping decreases the time needed during optimization of important electrochemical parameters. Additionally, paper-based sensors are cost-effective and versatile platforms for in-field (point-of-care, POC) analysis, permitting rapid determination of a variety of analytes. One of the most interesting applications of potentiometry are wearable sensors which allow for the continuous monitoring of biomarkers, electrolytes and even pharmaceuticals, especially those with a narrow therapeutic index. Herein this review, we discuss several recent trends in potentiometric sensors since 2010, including 3D printing, paper-based devices, and other emerging techniques and the translation of potentiometric systems to wearable devices for the determination of ionic species or pharmaceuticals in biological fluids paving the way to various clinical and biomedical uses.
Collapse
Affiliation(s)
- Manar M Elhassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Shereen Mowaka
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
3
|
Ghanem LG, Taha MM, Shaheen BS, Allam NK. Unleashing the Full Potential of Electrochromic Heterostructured Nickel-Cobalt Phosphate for Optically Active High-Performance Asymmetric Quasi-Solid-State Supercapacitor Devices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17657-17671. [PMID: 37773759 DOI: 10.1021/acsami.3c11494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The rational design of hybrid systems that combine capacitor and battery merits is crucial to enable the fabrication of high energy and power density devices. However, the development of such systems remains a significant barrier to overcome. Herein, we report the design of a Ni-Co phosphate (Ni3-xCox(PO4)2·8H2O) nanoplatelet-based system via a facile coprecipitation method at ambient conditions. The nanoplatelets exhibit multicomponent synergy, exceptional charge storage capabilities, rich redox active sites (ameliorating the redox reaction activity), and high ionic diffusion rate/electron transfer kinetics. The designed Ni3-xCox(PO4)2·8H2O offered a respectable gravimetric specific capacity and marvelous capability rate (966 and 595 C g-1 at 1 and 15 A g-1) over the Ni3(PO4)2·8H2O (327.3 C g-1) and Co3(PO4)2·8H2O (68 C g-1) counterparts. Additionally, the nanoplatelets showed enhanced photoactive storage performance with a 9.7% increase in the recorded photocurrent density. Upon integration of Ni3-xCox(PO4)2·8H2O as a positive pole and commercial activated carbon as a negative pole, the constructed hybrid supercapacitor device with PVA@KOH quasi-gel electrolyte exhibits great energy and power densities of 77.7 Wh kg-1 and 15998.54 W kg-1 with remarkable cycling stability of 6000 charging/discharging cycles and prominent Coulombic efficiency of 100%. Interestingly, two assembled devices are capable of glowing a red LED bulb for nearly 180 s. This research paves the way to design and fabricate electroactive species via a facile approach for boosting the design of a plethora of supercapattery devices.
Collapse
Affiliation(s)
- Loujain G Ghanem
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Manar M Taha
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basamat S Shaheen
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
4
|
McCann C, Gilpin V, Scott C, Pourshahidi LK, Gill CIR, Davis J. Moving towards in pouch diagnostics for ostomy patients: exploiting the versatility of laser induced graphene sensors. JOURNAL OF MATERIALS SCIENCE 2023; 58:14207-14219. [PMID: 37745186 PMCID: PMC10511578 DOI: 10.1007/s10853-023-08881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
The development of a 3D printed sensor for direct incorporation within stoma pouches is described. Laser induced graphene scribed on either side of polyimide film served as the basis of a 2 electrode configuration that could be integrated within a disposable pouch sensor for the periodic monitoring of ileostomy fluid pH. The graphene sensors were characterised using electron microscopy, Raman spectroscopy, DekTak profilometry with the electrochemical properties investigated using both cyclic and square wave voltammetry. Adsorbed riboflavin was employed as a biocompatible redox probe for the voltammetric measurement of pH. The variation in peak position with pH was found to be linear over pH 3-8 with a sub Nernstian response (43 mV/pH). The adsorbed probe was found to be reversible and exhibited minimal leaching through repeated scanning. The performance of the system was assessed in a heterogeneous bacterial fermentation mixture simulating ileostomy fluid with the pH recorded before and after 96 h incubation. The peak profile in the bacterial medium provided an unambiguous signal free from interference with the calculated pH before and after incubation (pH 5.3 to 3.66) in good agreement with that obtained with commercial pH probes. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10853-023-08881-x.
Collapse
Affiliation(s)
- Conor McCann
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | - Victoria Gilpin
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | - Cameron Scott
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | | | - Chris. I. R. Gill
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - James Davis
- School of Engineering, Ulster University, Belfast, Northern Ireland
| |
Collapse
|
5
|
Patil SS, Patil PS. 3D Bode analysis of nickel pyrophosphate electrode: A key to understanding the charge storage dynamics. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Jiang Q, Wang J, Liu T, Ying S, Kong Y, Chai N, Yi FY. UiO-66-Derived PBA Composite as Multifunctional Electrochemical Non-Enzymatic Sensor Realizing High-Performance Detection of Hydrogen Peroxide and Glucose. Inorg Chem 2023; 62:7014-7023. [PMID: 37126666 DOI: 10.1021/acs.inorgchem.3c00285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a highly efficient multifunctional non-enzymatic electrochemical sensor is successfully fabricated based on a facile two-step synthetic strategy. It resolves two important challenges of poor stability and low reproducibility compared to conventional electrochemical enzyme-based sensors. Herein, a metal-organic framework (UiO-66) is selected as a sacrificial template to construct the corresponding Prussian blue analogue (PBA) target to improve its stability and conductivity, namely, PBA/UiO-66/NF. Target PBA/UiO-66/NF exhibits excellent electrochemical sensing performance as hydrogen peroxide (H2O2) and glucose sensors with ultrahigh sensitivity of up to 1903 μA mM-1 cm-2 for H2O2 and 22,800 μA mM-1 cm-2 for glucose, as well as a very low detection limit of 0.02 μM (S/N = 3) for H2O2 and 0.28 μM for glucose. Especially, extremely high stability can be observed, which will be beneficial for practical application.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
7
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhao Z, Liu Y, Yi W, Wang H, Liu Z, Yang JH, Zhang M. Sheeted NiCo Double Phosphate In Situ Grown on Nickel Foam Toward Bifunctional Water and Urea Oxidation. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Mugo SM, Lu W, Robertson S. A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat. BIOSENSORS 2022; 12:bios12100854. [PMID: 36290991 PMCID: PMC9599184 DOI: 10.3390/bios12100854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
A wearable, textile-based molecularly imprinted polymer (MIP) electrochemical sensor for cortisol detection in human sweat has been demonstrated. The wearable cortisol sensor was fabricated via layer-by-layer assembly (LbL) on a flexible cotton textile substrate coated with a conductive nanoporous carbon nanotube/cellulose nanocrystal (CNT/CNC) composite suspension, conductive polyaniline (PANI), and a selective cortisol-imprinted poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) decorated with gold nanoparticles (AuNPs), or plated with gold. The cortisol sensor rapidly (<2 min) responded to 9.8−49.5 ng/mL of cortisol, with an average relative standard deviation (%RSD) of 6.4% across the dynamic range, indicating excellent precision. The cortisol sensor yielded an excellent limit of detection (LOD) of 8.00 ng/mL, which is within the typical physiological levels in human sweat. A single cortisol sensor patch could be reused 15 times over a 30-day period with no loss in performance, attesting to excellent reusability. The cortisol sensor patch was successfully verified for use in quantification of cortisol levels in human sweat.
Collapse
|
10
|
Xiao L, Yang K, Duan J, Zheng S, Jiang J. The nickel phosphate rods derived from Ni-MOF with enhanced electrochemical activity for non-enzymatic glucose sensing. Talanta 2022; 247:123587. [DOI: 10.1016/j.talanta.2022.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
11
|
Nanoarchitectured nickel phosphate integrated with graphene oxide for the toxicant diphenylamine detection in food samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Tiwari N, Chatterjee S, Kaswan K, Chung JH, Fan KP, Lin ZH. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Zhang GC, Feng M, Li Q, Wang Z, Fang Z, Niu Z, Qu N, Fan X, Li S, Gu J, Wang J, Wang D. High Energy Density in Combination with High Cycling Stability in Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2674-2682. [PMID: 35001612 DOI: 10.1021/acsami.1c17285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hybrid supercapacitors are considered the next-generation energy storage equipment due to their superior performance. In hybrid supercapacitors, battery electrodes need to have large absolute capacities while displaying high cycling stability. However, enhancing areal capacity via decreasing the size of electrode materials results in reductions in cycling stability. To balance the capacity-stability trade-off, rationally designed proper electrode structures are in urgent need and still of great challenge. Here we report a high-capacity and high cycling stability electrode material by developing a nickel phosphate lamination structure with ultrathin nanosheets as building blocks. The nickel phosphate lamination electrode material exhibits a large specific capacity of 473.9 C g-1 (131.6 mAh g-1, 1053 F g-1) at 2.0 A g-1 and only about 21% capacity loss at 15 A g-1 (375 C g-1, 104.2 mAh g-1, 833.3 F g-1) in 6.0 M KOH. Furthermore, hybrid supercapacitors are constructed with nickel phosphate lamination and activated carbon (AC), possessing high energy density (42.1 Wh kg-1 at 160 W kg-1) as well as long cycle life (almost 100% capacity retention after 1000 cycles and 94% retention after 8000 cycles). The electrochemical performance of the nickel phosphate lamination structure not only is commensurate with the nanostructure or ultrathin materials carefully designed in supercapacitors but also has a longer cycling lifespan than them. The encouraging results show the great potential of this material for energy storage device applications.
Collapse
Affiliation(s)
- Guang Cong Zhang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Man Feng
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Qing Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhuang Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Zixun Fang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Zhimin Niu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Nianrui Qu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Xiaoyong Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Siheng Li
- Shenzhen Jini New Energy Technology Co., Ltd. 3A19, Duchuang Cloud Valley, Luozu Community, Shiyan, Baoan District, Shenzhen, Guangdong 518115, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Jidong Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P.R. China
| |
Collapse
|
14
|
Thakur N, Kumar M, Mandal D, Nagaiah TC. Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52487-52497. [PMID: 34709029 DOI: 10.1021/acsami.1c12053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The evolution of an effective oxygen electrocatalyst is of great importance for the widespread application of Zn-air batteries but remains an immense challenge. Thus, an efficient catalyst toward the oxygen evolution reaction and oxygen reduction reaction (OER and ORR) is highly essential for high-performance Zn-air batteries. Here, we have reported bifunctional nickel iron phosphide/phosphate (NiFeP/Pi) catalysts with various Ni/Fe ratios toward oxygen electrocatalysis in alkaline media. These catalysts are highly active toward OER and ORR, wherein NiFe(1:2)P/Pi exhibits a low OER overpotential of 0.21 V at 10 mA cm-2 and a high ORR onset potential (0.98 V vs RHE) with the lowest potential difference (ΔE = E10 - E1/2) of 0.62 V, which surpasses that of the benchmark Pt/C and RuO2 catalyst as well as those of most previously reported bifunctional catalysts. Furthermore, the NiFe(1:2)P/Pi-based Zn-air battery demonstrates a very high power density of 395 mW cm-2 and outstanding discharge capacity of 900 mAh g-1@10 mA cm-2 along with steady cyclability, maintaining 98% of the round trip efficiency over 300 cycles. These results are helpful for a good understanding of the composition-activity relation with a certain band gap toward high-performance Zn-air batteries.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Mukesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| |
Collapse
|
15
|
Li J, Wang L, Yang Y, Wang B, Duan C, Zheng L, Li R, Wei Y, Xu J, Yin Z. Rationally designed NiMn LDH@NiCo 2O 4core-shell structures for high energy density supercapacitor and enzyme-free glucose sensor. NANOTECHNOLOGY 2021; 32:505710. [PMID: 34530406 DOI: 10.1088/1361-6528/ac2764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Exploring high-efficiency and low-cost bifunctional electrodes for supercapacitors and sensors is significant but challenging. Most of the existing electrodes are mostly single-functional materials with simple structure. Herein, NiCo2O4nanowires as the core and NiMn layered double hydroxide (LDH) as the shell is directly grownin situon carbon cloth (CC) to form a heterostructure (NiMn LDH@NiCo2O4/CC). The performance in supercapacitors and enzyme-free glucose sensing has been systematically studied. Compared with a single NiCo2O4nanowire or NiMn LDH nanosheet, the heterogeneous interface produced by the unique core-shell structure has stronger electronic interaction and abundant active surface area, which shows excellent electrochemical performance. Electrochemical tests demonstrate that the NiMn LDH@NiCo2O4/CC core-shell electrode possesses an area specific capacitance of 2.40 F cm-2and a rate capability of 76.22% at 20 mA cm-2. Simultaneously, asymmetric supercapacitor is assembled with it as the positive electrode and NiFe LDH@NiCo2O4/CC as the negative electrode. The supercapacitor possesses an energy density of 47.74 Wh kg-1when the power density is 175 W kg-1, revealing excellent performance and maintains cycle stability of 93.48% after 6000 cycles at 10 mA cm-2. Additionally, the electrode applied as enzyme-free glucose sensor electrode also displays outstanding sensitivity of 2139μA mM-1cm-2, wide detection range (2μM-3mM and 4-8 mM) and low detection limit of 210 nM, representing good anti-interference performance. This work reveals the multi-metal synergy and rationally designed core-shell structure is critical to the electrochemical performance of bifunctional electrodes.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Lili Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yuying Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Bing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Cunpeng Duan
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Linlin Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Rulin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yujia Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
| | - Junqing Xu
- China Tianchen Engineering Corporation, Tianjin 300400, People's Republic of China
| | - Zhen Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
16
|
Raihana M, Padmanathan N, Eswaramoorthi V, McNulty D, Sahadevan J, Mohanapriya P, Muthu SE. Reduced graphene oxide/VSB-5 composite micro/nanorod electrode for high energy density supercapattery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Thakur N, Mandal D, Nagaiah TC. Highly sensitive non-enzymatic electrochemical glucose sensor surpassing water oxidation interference. J Mater Chem B 2021; 9:8399-8405. [PMID: 34319345 DOI: 10.1039/d1tb01332g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An electrochemical non-enzymatic sensor based on a NiVP/Pi material was developed for the selective and sensitive determination of glucose. The novel sensor showed a high sensitivity of 6.04 mA μM-1 cm-2 with a lowest detection limit of 3.7 nM in a wide detection range of 100 nM-10 mM. The proposed sensor exhibited a superior selectivity without any interference from the oxygen evolution reaction during glucose sensing. We also found that this glucose sensor showed negligible interference from various interferents, such as ascorbic acid, uric acid, dopamine and sodium chloride. Additionally, a novel flexible sensor was developed by coating the NiVP/Pi over Whatman filter paper, which exhibited two linear ranges of 100 nM to 1 μM and 100 μM to 10 mM with an ultra-sensitivity of 1.130 mA μM-1 cm-2 and 0.746 mA μM-1 cm-2, respectively, in 0.1 M NaOH. The proposed sensor was tested with human blood serum samples demonstrating its practical application. Our findings provide a new route by fine tuning the composition of nickel and vanadium that sheds new light on better understanding the processes. This NiVP/Pi-based sensor offers a new approach towards the electrochemical detection of glucose, enabling glucose monitoring in a convenient way.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
18
|
Islam J, Shao H, Badal MMR, Razeeb KM, Jamal M. Pencil graphite as electrode platform for free chlorine sensors and energy storage devices. PLoS One 2021; 16:e0248142. [PMID: 33705449 PMCID: PMC7951880 DOI: 10.1371/journal.pone.0248142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/21/2021] [Indexed: 11/19/2022] Open
Abstract
Multifunctional and low-cost electrode materials are desirable for the next-generation sensors and energy storage applications. This paper reports the use of pencil graphite as an electrode for dual applications that include the detection of free residual chlorine using electro-oxidation process and as an electrochemical energy storage cathode. The pencil graphite is transferred to cellulose paper by drawing ten times and applied for the detection of free residual chlorine, which shows a sensitivity of 27 μA mM-1 cm-2 with a limit of detection of 88.9 μM and linearity up to 7 mM. The sample matrix effect study for the commonly interfering ions such as NO3-, SO42-, CO32-, Cl-, HCO3- shows minimal impact on free residual chlorine detection. Pencil graphite then used after cyclic voltammogram treatment as a cathode in the aqueous Zn/Al-ion battery, showing an average discharge potential plateau of ~1.1 V, with a specific cathode capacity of ~54.1 mAh g-1 at a current of 55 mA g-1. It maintains ~95.8% of its initial efficiency after 100 cycles. Results obtained from the density functional theory calculation is consistent with the electro-oxidation process involved in the detection of free residual chlorine, as well as intercalation and de-intercalation behavior of Al3+ into the graphite layers of Zn/Al-ion battery. Therefore, pencil graphite due to its excellent electro-oxidation and conducting properties, can be successfully implemented as low cost, disposable and green material for both sensor and energy-storage applications.
Collapse
Affiliation(s)
- Jahidul Islam
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Han Shao
- Micro-Nano Systems Centre, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Md. Mizanur Rahman Badal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Kafil M. Razeeb
- Micro-Nano Systems Centre, Tyndall National Institute, University College Cork, Cork, Ireland
- * E-mail: (MJ); (KMR)
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
- * E-mail: (MJ); (KMR)
| |
Collapse
|
19
|
Xuan X, Qian M, Pan L, Lu T, Han L, Yu H, Wan L, Niu Y, Gong S. A longitudinally expanded Ni-based metal-organic framework with enhanced double nickel cation catalysis reaction channels for a non-enzymatic sweat glucose biosensor. J Mater Chem B 2020; 8:9094-9109. [PMID: 32929421 DOI: 10.1039/d0tb01657h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nickel-based metal-organic frameworks (Ni-MOFs) have attracted increasing attention in non-enzymatic glucose sensing. However, the insufficient active Ni cation sites from a stacked MOF layer, the unclear Ni catalysis mechanism, and the severe liquid alkaline electrolyte remain challenging for practical applications. In this work, the sonication-induced longitudinal-expansion of Ni-MOFs increases the active nickel ion sites, which not only enhances the current response to glucose detection, but also shows the oxidation peak evolution of nickel ions with different sonication times, revealing the mechanism of different glucose detection channels. The Ni-MOF sonicated for 60 min (60 min Ni-MOF) displays enhanced Ni(iii)/Ni(ii) and more significant Ni(iv)/Ni(iii) double nickel cation channels for catalyzing glucose into glucolactone compared to the 0 min Ni-MOF (without sonication), showing optimized glucose detection ability with a high sensitivity of 3297.10 μA mM-1 cm-2, a low detection limit of ∼8.97 μM (signal-to-noise = 3) and a wide linear response range from 10 to 400 μM from the cyclic voltammetry test as well as a high sensitivity of 3.03 μA mM-1 cm-2, a low detection limit of ∼1.16 μM (signal-to-noise = 3) and a wide linear response range from 10 to 2000 μM from the chronoamperometry test. More importantly, an all-solid-state glucose biosensor using a PVA/NaOH solid-state electrolyte and a disposable 60 min Ni-MOF working electrode is assembled for non-enzymatic sweat glucose detection.
Collapse
Affiliation(s)
- Xiaoyang Xuan
- Department of Physics, School of Science, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. and Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Min Qian
- Department of Physics, School of Science, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Lu Han
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Huangze Yu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Lijia Wan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Yueping Niu
- Department of Physics, School of Science, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. and Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shangqing Gong
- Department of Physics, School of Science, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. and Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
20
|
Xu Q, Liu H, Zhong X, Jiang B, Ma Z. Permeable Weldable Elastic Fiber Conductors for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36609-36619. [PMID: 32693569 DOI: 10.1021/acsami.0c08939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elastic fiber conductors are advantageous for applications in wearable electronics due to their small size, light weight, and excellent integration ability. Here, we report the fabrication of elastic fiber conductors with a three-dimensional (3D) porous structure using electrospun thermoplastic elastomer (TPE) microfibers and silver nanoparticles (AgNPs) as the building blocks. With the 3D porous structure, such a fiber is highly permeable to gases and liquids. As such, the performance of the fiber in many applications of wearable electronics (especially wearable sensors and detectors) can be improved significantly. Benefitting from the excellent processability of TPE and dispersibility of AgNPs, the fiber is highly compatible with thermal and solvent welding. In addition, the fiber also possesses super stretchability, high conductivity, and robust endurance to deformation. As a proof-of-concept application, we demonstrate that a rope-shaped capacitor made by plying one pair of such fibers can detect the volume change of artificial sweat with 17-times higher sensitivity than the capacitor using nonporous fibers as electrodes. We further demonstrate that, by integrating two groups of perpendicularly arranged fibers into a monolithic porous mat, sensitive matrix-addressed monitoring of artificial sweat can be realized.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Haojun Liu
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Xinrong Zhong
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Bofan Jiang
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Zhijun Ma
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
21
|
Yan T, Feng H, Ma X, Han L, Zhang L, Cao S. Regulating the electrochemical behaviours of a hierarchically structured Co 3(PO 4) 2/Ni-Co-O for a high-performance all-solid-state supercapacitor. Dalton Trans 2020; 49:10621-10630. [PMID: 32697203 DOI: 10.1039/d0dt01818j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Battery-type materials (e.g., transition metal phosphates) have been intensely explored in supercapacitors due to their rich electroactive sites and high theoretical capacity. Yet poor rate performance, resulting in a low energy density at high current density, limits their further applications. Herein, an improvement in rate performance resulting from enhanced surface capacitive behaviour contribution has been observed in a hierarchically structured Co3(PO4)2/Ni-Co-O@Ni foam (CPNO-12). The optimized CPNO-12 synthesized through a facile hydrothermal treatment also exhibits a striking gravimetric and areal capacity of 1410C g-1 (14 100 mC cm-2) at 5 mA cm-2 and superb cyclability (91% of retention at 50 mA cm-2 after 12 000 cycles), which can be attributed to its unique hierarchical porous structure and high mass loading per area. More importantly, a high-performance all-solid-state asymmetric supercapacitor with CPNO-12 and Fe2P/graphene hydrogel@Ni foam as positive and negative electrodes respectively has been assembled; the device delivering a maximum energy density of 95 W h kg-1 (32 mW h cm-3) and maximum power density of 4000 W kg-1 (800 mW cm-3) has the potential to power sophisticated systems. These attractive performances confirm that an enhancement of capacitive behaviour in battery-type materials holds the promise for fabricating high-performance supercapacitors.
Collapse
Affiliation(s)
- Tianxiang Yan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Hanfang Feng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Xueying Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Lifeng Han
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. and College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. and Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. and Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
22
|
Well-dispersed poly(cysteine)-Ni(OH)2 nanocomposites on graphene-modified electrode surface for highly sensitive non-enzymatic glucose detection. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Kannan P, Maiyalagan T, Lin B, Lei W, Jie C, Guo L, Jiang Z, Mao S, Subramanian P. Nickel-phosphate pompon flowers nanostructured network enables the sensitive detection of microRNA. Talanta 2020; 209:120511. [DOI: 10.1016/j.talanta.2019.120511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022]
|
24
|
Mugo SM, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 2020; 412:1825-1833. [PMID: 32002581 DOI: 10.1007/s00216-020-02430-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10-66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, β-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat. Graphical abstract.
Collapse
Affiliation(s)
- Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Jonathan Alberkant
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
25
|
Boosting water oxidation performance of CuWO4 photoanode by surface modification of nickel phosphate. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Cui Z, Hao J, Chen X, Duan H, Xue Y, Zhang R. Size- and Morphology-Dependent Kinetics and Thermodynamics of Adsorptions of Basic Fuchsin on Nano-TiO 2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zixiang Cui
- Department of Chemistry, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. China
| | - Jie Hao
- Department of Chemistry, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. China
| | - Xinghui Chen
- Department of Chemistry, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. China
| | - Huijuan Duan
- Department of Chemistry, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. China
| | - Yongqiang Xue
- Department of Chemistry, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. China
| | - Rong Zhang
- Department of Chemistry, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. China
| |
Collapse
|
27
|
Hou L, Bi S, Lan B, Zhao H, Zhu L, Xu Y, Lu Y. A novel and ultrasensitive nonenzymatic glucose sensor based on pulsed laser scribed carbon paper decorated with nanoporous nickel network. Anal Chim Acta 2019; 1082:165-175. [DOI: 10.1016/j.aca.2019.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
|
28
|
Punde NS, Rajpurohit AS, Srivastava AK. Sensitive electrochemical platform based on nano-cylindrical strontium titanate/N-doped graphene hybrid composite for simultaneous detection of diphenhydramine and bromhexine. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Liu X, Zhao L, Miao B, Gu Z, Wang J, Peng H, Li J, Sun W, Li J. Wearable Multiparameter Platform Based on AlGaN/GaN High‐electron‐mobility Transistors for Real‐time Monitoring of pH and Potassium Ions in Sweat. ELECTROANAL 2019. [DOI: 10.1002/elan.201900405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinsheng Liu
- The College of Nuclear Technology and Automation EngineeringChengdu University of Technology Chengdu 610059 P.R China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
| | - Lei Zhao
- The College of Nuclear Technology and Automation EngineeringChengdu University of Technology Chengdu 610059 P.R China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
| | - Bin Miao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
- University of Science and Technology of ChinaSchool of Nano Technology and Nano Bionics Hefei 230022 P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
- The College of Materials Sciences and EngineeringShanghai University Shanghai 200072 P. R. China
| | - Huoxiang Peng
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
- The College of Materials Sciences and EngineeringShanghai University Shanghai 200072 P. R. China
| | - Jiande Li
- National center of quality supervision and inspection on deep processing silcon products, Donghai County Lianyungang 222300 P.R China
| | - Wei Sun
- The College of Nuclear Technology and Automation EngineeringChengdu University of Technology Chengdu 610059 P.R China
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215125 P. R. China
| |
Collapse
|
30
|
Yu X, Jiang J. Phosphate microbial mineralization removes nickel ions from electroplating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:447-453. [PMID: 31170633 DOI: 10.1016/j.jenvman.2019.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Nickel ions in electroplating wastewater can be removed by the bio-mineralization method. Bacillus subtilis can produce alkaline phosphatase, which hydrolyzes organophosphate monoesters and produces phosphate ions. Fourier-transform infrared spectroscopy (FTIR) showed that the precipitated material contains phosphate ions. X-ray diffraction (XRD) showed that nickel ions in electroplating wastewater react with Bacillus subtilis and organophosphate monoesters to obtain nickel phosphate octahydrate (Ni3(PO4)2·8H2O). The removal efficiency of nickel ions could reach 76.41% with the optimum content of the organophosphate monoester (0.02 mol), Bacillus subtilis powder (2 g), pH (6), standing time (36 h), and reaction temperature (25 °C) in the medium solution (100 mL). The average particle size of Ni3(PO4)2·8H2O was 80.51 nm, which was calculated by the Scherrer formula. The Lorentz-Transmission Electron Microscope (L-TEM) further showed that Ni3(PO4)2·8H2O was composed of clusters of irregular nanoparticles, and the individual particle size was in the range of 40-90 nm. The TGA curve shows that the mass loss of crystal water was 25.45%, which was close to the theoretical total mass loss of 28.24% in bio-Ni3(PO4)2·8H2O.
Collapse
Affiliation(s)
- Xiaoniu Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Beijing, 100084, China.
| |
Collapse
|
31
|
Urea assistant growth of ammonium nickel phosphate (NH4NiPO4·H2O) nanorods for high-performance nonenzymatic glucose sensors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Significantly enhanced activity of ZIF-67-supported nickel phosphate for electrocatalytic glucose oxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Fa D, Yu B, Miao Y. Synthesis of ultra-long nanowires of nickel phosphate by a template-free hydrothermal method for electrocatalytic oxidation of glucose. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Porous Ni3(PO4)2 thin film as a binder-free and low-cost anode of a high-capacity lithium-ion battery. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Peng H, Dai X, Sun K, Xie X, Wang F, Ma G, Lei Z. A high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheets. NEW J CHEM 2019. [DOI: 10.1039/c9nj02509j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel asymmetric supercapacitor was assembled based on a three-dimensional (3D) interconnected porous carbon framework as the negative electrode and 3D sphere-like nickel nitride nanosheets as the positive electrode in aqueous electrolyte.
Collapse
Affiliation(s)
- Hui Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Xiuwen Dai
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Kanjun Sun
- College of Chemistry and Environmental Science
- Lanzhou City University
- Lanzhou 730070
- China
| | - Xuan Xie
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Fei Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Guofu Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| |
Collapse
|
36
|
Ramachandran R, Chen TW, Chen SM, Baskar T, Kannan R, Elumalai P, Raja P, Jeyapragasam T, Dinakaran K, Gnana kumar GP. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00602h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent developments made regarding the novel, cost-effective, and environmentally friendly nanocatalysts for the electrochemical sensing of biomolecules, pesticides, nitro compounds and heavy metal ions are discussed in this review article.
Collapse
Affiliation(s)
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Thangaraj Baskar
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang – 212013
- P.R. China
| | - Ramanjam Kannan
- Department of Chemistry
- Sri Kumaragurupara Swamigal Arts College
- Thoothukudi
- India
| | - Perumal Elumalai
- Centre for Green Energy Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Puducherry – 605 014
- India
| | - Paulsamy Raja
- Department of Chemistry
- Vivekananda College of Arts and Science
- Kanyakumari – 629 004
- India
| | | | | | - George peter Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| |
Collapse
|
37
|
Tomanin PP, Cherepanov PV, Besford QA, Christofferson AJ, Amodio A, McConville CF, Yarovsky I, Caruso F, Cavalieri F. Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42786-42795. [PMID: 30422616 DOI: 10.1021/acsami.8b12966] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanostructured materials have potential as platforms for analytical assays and catalytic reactions. Herein, we report the synthesis of electrocatalytically active cobalt phosphate nanostructures (CPNs) using a simple, low-cost, and scalable preparation method. The electrocatalytic properties of CPNs toward the electrooxidation of glucose (Glu) were studied by cyclic voltammetry and chronoamperometry in relevant biological electrolytes, such as phosphate-buffered saline (PBS), at physiological pH (7.4). Using CPNs, Glu detection could be achieved over a wide range of biologically relevant concentrations, from 1 to 30 mM Glu in PBS, with a sensitivity of 7.90 nA/mM cm2 and a limit of detection of 0.3 mM, thus fulfilling the necessary requirements for human blood Glu detection. In addition, CPNs showed a high structural and functional stability over time at physiological pH. The CPN-coated electrodes could also be used for Glu detection in the presence of interfering agents (e.g., ascorbic acid and dopamine) and in human serum. Density functional theory calculations were performed to evaluate the interaction of Glu with different faceted cobalt phosphate surfaces; the results revealed that specific surface presentations of under-coordinated cobalt led to the strongest interaction with Glu, suggesting that enhanced detection of Glu by CPNs can be achieved by lowering the surface coordination of cobalt. Our results highlight the potential use of phosphate-based nanostructures as catalysts for electrochemical sensing of biochemical analytes.
Collapse
Affiliation(s)
- Pietro Pacchin Tomanin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Pavel V Cherepanov
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | | | - Alessia Amodio
- Department of Chemical Science and Technologies , University of Rome Tor Vergata , via della ricerca scientifica 1 , 00133 Rome , Italy
| | | | | | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Department of Chemical Science and Technologies , University of Rome Tor Vergata , via della ricerca scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
38
|
Huang M, He D, Wang M, Jiang P. NiMoO4 nanosheet arrays anchored on carbon cloth as 3D open electrode for enzyme-free glucose sensing with improved electrocatalytic activity. Anal Bioanal Chem 2018; 410:7921-7929. [DOI: 10.1007/s00216-018-1413-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/25/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
39
|
Casimero C, McConville A, Fearon JJ, Lawrence CL, Taylor CM, Smith RB, Davis J. Sensor systems for bacterial reactors: A new flavin-phenol composite film for the in situ voltammetric measurement of pH. Anal Chim Acta 2018; 1027:1-8. [PMID: 29866258 DOI: 10.1016/j.aca.2018.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/15/2022]
Abstract
Monitoring pH within microbial reactors has become an important requirement across a host of applications ranging from the production of functional foods (probiotics) to biofuel cell systems. An inexpensive and scalable composite sensor capable of monitoring the pH within the demanding environments posed by microbial reactors has been developed. A custom designed flavin derivative bearing an electropolymerisable phenol monomer was used to create a redox film sensitive to pH but free from the interferences that can impede conventional pH systems. The film was integrated within a composite carbon-fibre-polymer laminate and was shown to exhibit Nernstian behaviour (55 mV/pH) with minimal drift and robust enough to operate within batch reactors.
Collapse
Affiliation(s)
- Charnete Casimero
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - Aaron McConville
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - John-Joe Fearon
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - Clare L Lawrence
- Centre for Materials Science, Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Charlotte M Taylor
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Robert B Smith
- Centre for Materials Science, Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - James Davis
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK.
| |
Collapse
|