1
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Galperin L, Eylon B, Mizrahi B. Liquid
PEG
4
‐PLLA
copolymers: Effect of chirality and molecular weight on mechanical properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leonid Galperin
- Faculty of Biotechnology and Food Engineering Technion Haifa Israel
| | - Bat‐hen Eylon
- Faculty of Biotechnology and Food Engineering Technion Haifa Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering Technion Haifa Israel
| |
Collapse
|
3
|
Zhao Z, Zhang H, Chen H, Xu Y, Ma L, Wang Z. An efficient photothermal-chemotherapy platform based on polyacrylamide/phytic acid/polydopamine hydrogel. J Mater Chem B 2022; 10:4012-4019. [DOI: 10.1039/d2tb00677d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the polyacrylamide/phytic acid/polydopamine (termed as, PAAM/PA/PDA) hydrogel is used as drug loading matrix and photothermal conversion reagent, which is prepared by copolymerization of dopamine with acrylamide through...
Collapse
|
4
|
Lian H, Guan P, Tan H, Zhang X, Meng Z. Near-infrared light triggered multi-hit therapeutic nanosystem for tumor specific photothermal effect amplified signal pathway regulation and ferroptosis. Bioact Mater 2021; 9:63-76. [PMID: 34820556 PMCID: PMC8586267 DOI: 10.1016/j.bioactmat.2021.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
The high therapeutic resistance of tumor is the primary cause behind tumor recurrence and incurability. In recent years, scientists have devoted themselves to find a variety of treatments to solve this problem. Herein, we propose a multi-hit strategy that is based on the biodegradable hollow mesoporous Prussian blue (HMPB)-based nanosystem for tumor-specific therapy that encapsulated the critical heat shock protein 90 (HSP90) inhibitor 17-dimethylamino-ethylamino-17-demethoxydeldanamycin (17-DMAG). The nanosystem was further modified using thermotropic phase transition material star-PEG-PCL (sPP) and hyaluronic acid (HA), which offers near infrared light (NIR) responsive release characteristic, as well as enhanced tumor cell endocytosis. Upon cell internalization of 17-DMAG-HMPB@sPP@HA and under 808 nm laser irradiation, photothermal-conversion effect of HMPB directly kills cells using hyperthermia, which further causes phase transition of sPP to trigger release of 17-DMAG, inhibits HSP90 activity and blocks multiple signaling pathways, including cell cycle, Akt and HIF pathways. Additionally, the down-regulation of GPX4 protein expression by 17-DMAG and the release of ferric and ferrous ions from gradual degradation of HMPB in the endogenous mild acidic microenvironment in tumors promoted the occurrence of ferroptosis. Importantly, the antitumor effect of 17-DMAG and ferroptosis damage were amplified using photothermal effect of HMPB by accelerating release of ferric and ferrous ions, and reducing HSP90 expression in cells, which induced powerful antitumor effect in vitro and in vivo. This multi-hit therapeutic nanosystem helps provide a novel perspective for solving the predicament of cancer treatment, as well as a promising strategy for design of a novel cancer treatment nanoplatform. The tumor specific multi-hit therapeutic nanosystem was constructed. The nanosystem exerts anti-tumor effect includes photothermal effect, cell signaling pathway regulation and ferroptosis. The synergistic 17-DMAG-HMPB@sPP@HA nanosystem offers a promising strategy for effective tumor therapies.
Collapse
Affiliation(s)
- He Lian
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongyan Tan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
5
|
Ansari S, Sami N, Yasin D, Ahmad N, Fatma T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 2021; 183:549-563. [PMID: 33932421 DOI: 10.1016/j.ijbiomac.2021.04.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.
Collapse
Affiliation(s)
- Sabbir Ansari
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Neha Sami
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Nazia Ahmad
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
6
|
Djordjevic I, Pokholenko O, Shah AH, Wicaksono G, Blancafort L, Hanna JV, Page SJ, Nanda HS, Ong CB, Chung SR, Chin AYH, McGrouther D, Choudhury MM, Li F, Teo JS, Lee LS, Steele TWJ. CaproGlu: Multifunctional tissue adhesive platform. Biomaterials 2020; 260:120215. [PMID: 32891870 DOI: 10.1016/j.biomaterials.2020.120215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
Abstract
Driven by the clinical need for a strong tissue adhesive with elastomeric material properties, a departure from legacy crosslinking chemistries was sought as a multipurpose platform for tissue mending. A fresh approach to bonding wet substrates has yielded a synthetic biomaterial that overcomes the drawbacks of free-radical and nature-inspired bioadhesives. A food-grade liquid polycaprolactone grafted with carbene precursors yields CaproGlu. The first-of-its-kind low-viscosity prepolymer is VOC-free and requires no photoinitiators. Grafted diazirine end-groups form carbene diradicals upon low energy UVA (365 nm) activation that immediately crosslink tissue surfaces; no pre-heating or animal-derived components are required. The hydrophobic polymeric environment enables metastable functional groups not possible in formulations requiring solvents or water. Activated diazirine within CaproGlu is uniquely capable of crosslinking all amino acids, even on wet tissue substrates. CaproGlu undergoes rapid liquid-to-biorubber transition within seconds of UVA exposure-features not found in any other bioadhesive. The exceptional shelf stability of CaproGlu allows gamma sterilization with no change in material properties. CaproGlu wet adhesiveness is challenged against current unmet clinical needs: anastomosis of spliced blood vessels, anesthetic muscle patches, and human platelet-mediating coatings. The versatility of CaproGlu enables both organic and inorganic composites for future bioadhesive platforms.
Collapse
Affiliation(s)
- Ivan Djordjevic
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Ankur Harish Shah
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Gautama Wicaksono
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Lluis Blancafort
- Departamento de Química and Instituto de Química Computacional i Catálisis. Facultad de Ciències, Universidad de Girona, C/M.A. Capmany 69, 17003, Girona, Spain.
| | - John V Hanna
- Department of Physics, University of Warwick, Gibbet Hill Rd., Coventry, CV4 7AL, United Kingdom.
| | - Samuel J Page
- Department of Physics, University of Warwick, Gibbet Hill Rd., Coventry, CV4 7AL, United Kingdom.
| | - Himansu Sekhar Nanda
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore; Biomedical Engineering and Technology Laboratory, Department of Mechanical Engineering, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur, Dumna Airport Road, Jabalpur, 482005, MP, India.
| | - Chee Bing Ong
- Histopathology/Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, 61 Biopolis Drive, Level 6 Proteos Building, 138673, Singapore.
| | - Sze Ryn Chung
- Singapore General Hospital, Department of Hand Surgery, 169608, Singapore.
| | | | - Duncan McGrouther
- Singapore General Hospital, Department of Hand Surgery, 169608, Singapore.
| | | | - Fang Li
- Singapore General Hospital, Department of Hand Surgery, 169608, Singapore.
| | - Jonathan Shunming Teo
- Singapore General Hospital, Department of Hand Surgery, 169608, Singapore; Sengkang General Hospital, Department of Urology, 544886, Singapore.
| | - Lui Shiong Lee
- Singapore General Hospital, Department of Hand Surgery, 169608, Singapore; Sengkang General Hospital, Department of Urology, 544886, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
7
|
Yang XL, Wu WX, Li J, Hu ZE, Wang N, Yu XQ. A facile strategy to construct fluorescent pH-sensitive drug delivery vehicle. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
9
|
Penelas MJ, Contreras CB, Angelomé PC, Wolosiuk A, Azzaroni O, Soler-Illia GJAA. Light-Induced Polymer Response through Thermoplasmonics Transduction in Highly Monodisperse Core-Shell-Brush Nanosystems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1965-1974. [PMID: 32028769 DOI: 10.1021/acs.langmuir.9b03065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Smart nanosystems that transduce external stimuli to physical changes are an inspiring challenge in current materials chemistry. Hybrid organic-inorganic materials attract great attention due to the combination of building blocks responsive to specific external solicitations. In this work, we present a sequential method for obtaining an integrated core-shell-brush nanosystem that transduces light irradiation into a particle size change through a thermoplasmonic effect. We first synthesize hybrid monodisperse systems made up of functionalized silica colloids covered with controllable thermoresponsive poly(N-isopropylacrylamide), PNIPAm, brushes, produced through radical photopolymerization. This methodology was successfully transferred to Au@SiO2 nanoparticles, leading to a core-shell-brush architecture, in which the Au core acts as a nanosource of heat; the silica layer, in turn, adapts the metal and polymer interfacial chemistries and can also host a fluorescent dye for bioimaging. Upon green LED irradiation, a light-to-heat conversion process leads to the shrinkage of the external polymer layer, as proven by in situ DLS. Our results demonstrate that modular hybrid nanosystems can be designed and produced with photothermo-physical transduction. These remote-controlled nanosystems present prospective applications in smart carriers, responsive bioscaffolds, or soft robotics.
Collapse
Affiliation(s)
- María Jazmín Penelas
- Instituto de Nanosistemas, Universidad Nacional de San Martı́n-CONICET, Av. 25 de Mayo 1021, San Martín, Buenos Aires 1650, Argentina
- Gerencia Quı́mica & Instituto de Nanociencia y Nanotecnologı́a, Centro Atómico Constituyentes, Comisión Nacional de Energı́a, CONICET, Av. General Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - Cintia Belén Contreras
- Instituto de Nanosistemas, Universidad Nacional de San Martı́n-CONICET, Av. 25 de Mayo 1021, San Martín, Buenos Aires 1650, Argentina
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas, Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64 S/N La Plata, Buenos Aires B1900, Argentina
| | - Paula C Angelomé
- Gerencia Quı́mica & Instituto de Nanociencia y Nanotecnologı́a, Centro Atómico Constituyentes, Comisión Nacional de Energı́a, CONICET, Av. General Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Quı́mica & Instituto de Nanociencia y Nanotecnologı́a, Centro Atómico Constituyentes, Comisión Nacional de Energı́a, CONICET, Av. General Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas, Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64 S/N La Plata, Buenos Aires B1900, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de San Martı́n-CONICET, Av. 25 de Mayo 1021, San Martín, Buenos Aires 1650, Argentina
| |
Collapse
|
10
|
Kang TH, Lee S, Kwon JA, Song J, Choi I. Photothermally Enhanced Molecular Delivery and Cellular Positioning on Patterned Plasmonic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36420-36427. [PMID: 31509376 DOI: 10.1021/acsami.9b13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photothermal conversion effect of plasmonic nanostructures is considered as a promising technique for cellular and molecular manipulations owing to controllability of local temperature. Therefore, this technique has been extensively applied to biological studies such as controlling cellular behavior, delivery of biologics, and biomolecular detection. Herein, we propose a novel method for directed cell positioning and photothermally modulated molecular delivery to the cells using patterned plasmonic interfaces. Plasmonic substrates with gold nanorods (GNRs) and cell adhesion molecules fabricated by microcontact printing are optimized for cellular positioning on designated patterns. Through the photothermal conversion effect of GNRs on the pattern, we further demonstrate on-demand, light-induced delivery of drug molecules to the target cells. We expect that this approach will provide a new way to study single cellular behaviors and enhance molecular delivery to the target cells.
Collapse
Affiliation(s)
- Tae Ho Kang
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| | - Seungki Lee
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| | - Jung A Kwon
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| | - Jihwan Song
- Department of Mechanical Engineering , Hanbat National University , Daejeon 34158 , Republic of Korea
| | - Inhee Choi
- Department of Life Science , University of Seoul , Seoul 02504 , Republic of Korea
| |
Collapse
|
11
|
Ahmed KK, Tamer MA, Ghareeb MM, Salem AK. Recent Advances in Polymeric Implants. AAPS PharmSciTech 2019; 20:300. [PMID: 31482251 DOI: 10.1208/s12249-019-1510-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Implantable drug delivery systems, such as drug pumps and polymeric drug depots, have emerged as means of providing predetermined drug release profiles at the desired site of action. While initial implants aimed at providing an enduring drug supply, developments in polymer chemistry and pharmaceutical technology and the growing need for refined drug delivery patterns have prompted the design of sophisticated drug delivery implants such as on-demand drug-eluting implants and personalized 3D printed implants. The types of cargo loaded into these implants range from small drug molecules to hormones and even therapeutic cells. This review will shed light upon recent advances in materials and composites used for polymeric implant fabrication, highlight select approaches employed in polymeric implant fabrication, feature medical applications where polymeric implants have a significant impact, and report recent advances made in these areas.
Collapse
|
12
|
Croitoru-Sadger T, Yogev S, Shabtay-Orbach A, Mizrahi B. Two-component cross-linkable gels for fabrication of solid oral dosage forms. J Control Release 2019; 303:274-280. [DOI: 10.1016/j.jconrel.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023]
|
13
|
Davidson-Rozenfeld G, Stricker L, Simke J, Fadeev M, Vázquez-González M, Ravoo BJ, Willner I. Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials, self-healing matrices and controlled drug release systems. Polym Chem 2019. [DOI: 10.1039/c9py00559e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carboxymethyl cellulose functionalized with nucleic acids, β-cyclodextrin and arylazopyrazole photoisomerizable units self-assembles into stimuli-responsive hydrogels.
Collapse
Affiliation(s)
- Gilad Davidson-Rozenfeld
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- Germany
| | - Julian Simke
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- Germany
| | - Michael Fadeev
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Margarita Vázquez-González
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- Germany
| | - Itamar Willner
- Institute of Chemistry
- The Minerva Center for Biohybrid Complex Systems
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
14
|
Yogev S, Shabtay-Orbach A, Nyska A, Mizrahi B. Local Toxicity of Topically Administrated Thermoresponsive Systems: In Vitro Studies with In Vivo Correlation. Toxicol Pathol 2018; 47:426-432. [PMID: 30407122 DOI: 10.1177/0192623318810199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thermoresponsive materials have the ability to respond to a small change in temperature-a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.
Collapse
Affiliation(s)
- Sivan Yogev
- 1 Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | | | | | - Boaz Mizrahi
- 1 Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| |
Collapse
|