1
|
Wang M, Zhang Y, Wang A, Gan Z, Zhang L, Kang X. Soft neural interface with color adjusted PDMS encapsulation layer for spinal cord stimulation. J Neurosci Methods 2025; 417:110402. [PMID: 39983772 DOI: 10.1016/j.jneumeth.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Spinal cord stimulation (SCS) plays a crucial role in treating various neurological diseases. Utilizing soft spinal cord electrodes in SCS allows for a better fit with the physiological structure of the spinal cord and reduces tissue damage. Polydimethylsiloxane (PDMS) has emerged as an ideal material for soft bioelectronics. However, micromachining soft PDMS bioelectronics devices with low thermal effects and high uniformity remains challenging. NEW METHOD Here, we demonstrated a fully laser-micromachined soft neural interface for SCS. The native and color adjusted PDMS with variable absorbance characteristics were investigated in laser processing. In addition, we systematically evaluated the impact of electrode sizes on the electrochemical performance of neural interface. By fitting the equivalent circuit model, the electrochemical process of neural interface was revealed and the performance of the electrode was evaluated. The biocompatibility of color adjusted PDMS was confirmed by cytotoxicity assays. Finally, we validated the neural interface in mice. RESULTS Color adjusted PDMS has good biocompatibility and can significantly reduce the damage caused by thermal effects, enhancing the electrochemical performance of bioelectronic devices. The soft neural interface with color adjusted PDMS encapsulation layer can activate the motor function safely. COMPARISON WITH EXISTING METHODS The fully laser-micromachined soft neural interface was proposed for the first time. Compared with existing methods, this method showed low thermal effects, high uniformity, and could be easily scaled up. CONCLUSIONS The fully laser-micromachined soft neural interface device with color adjusted PDMS encapsulation layer shows great promise for applications in SCS.
Collapse
Affiliation(s)
- Minjie Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Institute of Meta-Medical, Academy for Engineering & Technology, Fudan University, Shanghai, PR China
| | - Yuan Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Institute of Meta-Medical, Academy for Engineering & Technology, Fudan University, Shanghai, PR China
| | - Aiping Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Institute of Meta-Medical, Academy for Engineering & Technology, Fudan University, Shanghai, PR China
| | - Zhongxue Gan
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Institute of Meta-Medical, Academy for Engineering & Technology, Fudan University, Shanghai, PR China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Institute of Meta-Medical, Academy for Engineering & Technology, Fudan University, Shanghai, PR China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Institute of Meta-Medical, Academy for Engineering & Technology, Fudan University, Shanghai, PR China; Yiwu Research Institute of Fudan University, Yiwu, PR China.
| |
Collapse
|
2
|
Zhu J, Xiao Y, Zhang X, Tong Y, Li J, Meng K, Zhang Y, Li J, Xing C, Zhang S, Bao B, Yang H, Gao M, Pan T, Liu S, Lorestani F, Cheng H, Lin Y. Direct Laser Processing and Functionalizing PI/PDMS Composites for an On-Demand, Programmable, Recyclable Device Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400236. [PMID: 38563243 PMCID: PMC11361840 DOI: 10.1002/adma.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronics Science and Technology of China, Quzhou 324000, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingying Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Jiuqiang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Chenghao Xing
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Benkun Bao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shangbin Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Farnaz Lorestani
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Tran HQ, Ur Rehman A, Fioux P, Airoudj A, Vandamme T, Luchnikov V. Formation of a Controllable Diffusion Barrier Layer on the Surface of Polydimethylsiloxane Films by Infrared Laser Irradiation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7983-7995. [PMID: 38290481 DOI: 10.1021/acsami.3c15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Developing a diffusion barrier layer on material interfaces has potential applications in various fields such as in packaging materials, pharmaceuticals, chemical filtration, microelectronics, and medical devices. Although numerous physical and chemical methods have been proposed to generate the diffusion barrier layer, the complexity of fabrication techniques and the high manufacturing costs limit their practical utility. Here, we propose an innovative approach to fabricate the diffusion barrier layer by irradiating poly(dimethylsiloxane) (PDMS) with a mid-infrared (λ = 10.6 μm) CO2 laser. This process directly creates a diffusion barrier layer on the PDMS surface by forming a heavily cross-linked network in the polymer matrix. The optimal irradiation conditions were investigated by modulating the defocusing distance, laser power, and number of scanning passes. The barrier thickness can reach up to 70 μm as observed by the scanning electron microscope (SEM). The attenuated total reflectance (ATR), electron dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses collectively confirmed the formation of the SiOx structure on the modified surface based on the decreased methyl group signal and the increased oxygen/silicon ratio. The diffusion test with the model drugs (rhodamine B and donepezil) demonstrated that the modified surface exhibits effective diffusion barrier properties and the rate of drug diffusion through the modified barrier layer can be controlled by the optimization of the irradiation parameters. This novel approach provides the possibility to develop a controllable diffusion barrier layer in a biocompatible polymer with prospective applications in the fields of pharmaceuticals, packing materials, and medical devices.
Collapse
Affiliation(s)
- Hung Quoc Tran
- Institut de Science des Matériaux de Mulhouse, CNRS LRC 7361, 68057 Mulhouse, France
| | - Asad Ur Rehman
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Philippe Fioux
- Institut de Science des Matériaux de Mulhouse, CNRS LRC 7361, 68057 Mulhouse, France
| | - Aissam Airoudj
- Institut de Science des Matériaux de Mulhouse, CNRS LRC 7361, 68057 Mulhouse, France
| | - Thierry Vandamme
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Valeriy Luchnikov
- Institut de Science des Matériaux de Mulhouse, CNRS LRC 7361, 68057 Mulhouse, France
| |
Collapse
|
4
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
5
|
Tian Y, Zhang Y, Yu Y, Zhao K, Hou X, Zhang Y. Multifunctional Cotton Fabric with Directional Water Transport, UV Protection and Antibacterial Properties Based on Tannin and Laser Treatment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Lu Y, Lin C, Guo M, Rong Y, Huang Y, Wu C. Effects of Ambient Temperature on Nanosecond Laser Micro-Drilling of Polydimethylsiloxane (PDMS). MICROMACHINES 2022; 14:90. [PMID: 36677150 PMCID: PMC9864420 DOI: 10.3390/mi14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In this research, effects of ambient temperature (-100 °C-200 °C) on nanosecond laser micro-drilling of polydimethylsiloxane (PDMS) was investigated by simulation and experiment. A thermo-mechanical coupled model was established, and it was indicated that the top and bottom diameter of the micro-hole decreased with the decrease of the ambient temperature, and the micro-hole taper increased with the decrease of the ambient temperature. The simulation results showed a good agreement with the experiment results in micro-hole geometry; the maximum prediction errors of the top micro-hole diameter, the bottom micro-hole diameter and micro-hole taper were 2.785%, 6.306% and 9.688%, respectively. The diameter of the heat-affected zone decreased with the decrease of the ambient temperature. The circumferential wrinkles were controlled by radial compressive stress. As the ambient temperature increased from 25 °C to 200 °C, the radial compressive stress gradually decreased, which led to the circumferential wrinkles gradually evolving in the radial direction. This work provides a new idea and method based on ambient temperature control for nanosecond laser processing of PDMS, which provides exciting possibilities for a wider range of engineering applications of PDMS.
Collapse
Affiliation(s)
- Ya Lu
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China
| | - Chaoran Lin
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghui Guo
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youmin Rong
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Huang
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Congyi Wu
- State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China
| |
Collapse
|
7
|
Wang M, Zhang Y, Bin J, Niu L, Zhang J, Liu L, Wang A, Tao J, Liang J, Zhang L, Kang X. Cold Laser Micro-Machining of PDMS as an Encapsulation Layer for Soft Implantable Neural Interface. MICROMACHINES 2022; 13:1484. [PMID: 36144107 PMCID: PMC9504264 DOI: 10.3390/mi13091484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
PDMS (polydimethylsiloxane) is an important soft biocompatible material, which has various applications such as an implantable neural interface, a microfluidic chip, a wearable brain-computer interface, etc. However, the selective removal of the PDMS encapsulation layer is still a big challenge due to its chemical inertness and soft mechanical properties. Here, we use an excimer laser as a cold micro-machining tool for the precise removal of the PDMS encapsulation layer which can expose the electrode sites in an implantable neural interface. This study investigated and optimized the effect of excimer laser cutting parameters on the electrochemical impedance of a neural electrode by using orthogonal experiment design. Electrochemical impedance at the representative frequencies is discussed, which helps to construct the equivalent circuit model. Furthermore, the parameters of the equivalent circuit model are fitted, which reveals details about the electrochemical property of neural electrode using PDMS as an encapsulation layer. Our experimental findings suggest the promising application of excimer lasers in the micro-machining of implantable neural interface.
Collapse
Affiliation(s)
- Minjie Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Yuan Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | | | - Lan Niu
- Ji Hua Laboratory, Foshan 528200, China
| | - Jing Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Lusheng Liu
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Aiping Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Jin Tao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jingqiu Liang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Ji Hua Laboratory, Foshan 528200, China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Ji Hua Laboratory, Foshan 528200, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu 322000, China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
8
|
Kaczorowski W, Batory D, Szymański W, Lauk K, Stolarczyk J. Barrier Diamond-like Carbon Coatings on Polydimethylsiloxane Substrate. MATERIALS 2022; 15:ma15113883. [PMID: 35683181 PMCID: PMC9181918 DOI: 10.3390/ma15113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The plasma modification of polydimethylsiloxane (PDMS) substrates is one way to change their surface geometry, which enables the formation of wrinkles. However, these changes are very often accompanied by the process of restoring the hydrophobic properties of the modified material. In this work, the RF PACVD device (radio frequency plasma-assisted chemical vapor deposition) was used, with which the plasma treatment of PDMS substrates was carried out in argon, nitrogen, oxygen, and methane atmospheres at variable negative biases ranging from 100 V to 500 V. The obtained results show the stability of contact angles for deionized water only in the case of surfaces modified by diamond-like carbon (DLC) coatings. The influence of the applied production conditions on the thickness (between 10 and 30 nm) and chemical structure (ID/IG between 0.41 and 0.8) of DLC coatings is discussed. In the case of plasma treatments with other gases introduced into the working chamber, the phenomenon of changing from hydrophilic to hydrophobic properties after the modification processes was observed. The presented results confirm the barrier nature of the DLC coatings produced on the PDMS substrate.
Collapse
Affiliation(s)
- Witold Kaczorowski
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (W.S.); (K.L.); (J.S.)
- Correspondence:
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland;
| | - Witold Szymański
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (W.S.); (K.L.); (J.S.)
| | - Klaudia Lauk
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (W.S.); (K.L.); (J.S.)
| | - Jakub Stolarczyk
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland; (W.S.); (K.L.); (J.S.)
| |
Collapse
|
9
|
Mechanically Switchable Wetting Petal Effect in Self-Patterned Nanocolumnar Films on Poly(dimethylsiloxane). NANOMATERIALS 2021; 11:nano11102566. [PMID: 34685004 PMCID: PMC8538580 DOI: 10.3390/nano11102566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Switchable mechanically induced changes in the wetting behavior of surfaces are of paramount importance for advanced microfluidic, self-cleaning and biomedical applications. In this work we show that the well-known polydimethylsiloxane (PDMS) elastomer develops self-patterning when it is coated with nanostructured TiO2 films prepared by physical vapor deposition at glancing angles and subsequently subjected to a mechanical deformation. Thus, unlike the disordered wrinkled surfaces typically created by deformation of the bare elastomer, well-ordered and aligned micro-scaled grooves form on TiO2/PDMS after the first post-deposition bending or stretching event. These regularly patterned surfaces can be reversibly modified by mechanical deformation, thereby inducing a switchable and reversible wetting petal effect and the sliding of liquid droplets. When performed in a dynamic way, this mechanical actuation produces a unique capacity of liquid droplets (water and diiodomethane) transport and tweezing, this latter through their selective capture and release depending on their volume and chemical characteristics. Scanning electron and atomic force microscopy studies of the strained samples showed that a dual-scale roughness, a parallel alignment of patterned grooves and their reversible widening upon deformation, are critical factors controlling this singular sliding behavior and the possibility to tailor their response by the appropriate manufacturing of surface structures.
Collapse
|
10
|
Li W, Liu Y, Leng J. Harnessing Wrinkling Patterns Using Shape Memory Polymer Microparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23074-23080. [PMID: 33949849 DOI: 10.1021/acsami.1c00623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape memory polymers (SMPs) are the simplest and most attractive alternatives for soft substrates of typical bilayer wrinkle systems because of shape fixity and recovery capabilities. Herein, we have successfully programmed large compressive strains in chemical cross-linking shape memory polystyrene (PS) microparticles via nanoimprint lithography, which acted as the substrate of a wrinkle system using a gold nanoparticle (Au NP) film as the top layer. When triggered by two different stimuli (direct heating and toluene vapors), the thin Au NP film could transform into various wrinkle structures atop the recovered PS particles. In addition, we also investigated the evolution mechanisms of wrinkling by heating and toluene vapors and tuned the wrinkled surfaces through altering the Au NP thickness and stimulation methods (direct heating and toluene vapors), which utilized the structural adjustability of Au NPs to program the amplitude, wavelength, and morphology of the wrinkles. The concept presented here provides a cost-effective approach to realize the surface wrinkling and can be extended to other available SMPs.
Collapse
Affiliation(s)
- Wenbing Li
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 YiKuang Street, P.O. Box 3011, Harbin 150080, PR China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150001, PR China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 YiKuang Street, P.O. Box 3011, Harbin 150080, PR China
| |
Collapse
|
11
|
Soft imprint lithography for liquid crystal alignment using a wrinkled UVO-treated PDMS transferring method. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Su Y, Zhang E, Wang Y, Li Q, Chen M, Dong M. Tunable hierarchical wrinkling surface via microscale patterned vertical deformation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Zhang XA, Jiang Y, Venkatesh RB, Raney JR, Stebe KJ, Yang S, Lee D. Scalable Manufacturing of Bending-Induced Surface Wrinkles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7658-7664. [PMID: 31990515 DOI: 10.1021/acsami.9b23093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The wide range of textures that can be generated via wrinkling can imbue surfaces with functionalities useful for a variety of applications including tunable optics, stretchable electronics, and coatings with controlled wettability and adhesion. Conventional methods of wrinkle fabrication rely on batch processes in piece-by-piece fashion, not amenable for scale-up to enable commercialization of surface wrinkle-related technologies. In this work, a scalable manufacturing method for surface wrinkles is demonstrated on a cylindrical support using bending-induced strains. A bending strain is introduced to a thin layer of ultraviolet-curable poly(dimethylsiloxane) (UV-PDMS) coated on top of a soft PDMS substrate by wrapping the bilayer around a cylindrical roller. After curing the UV-PDMS and subsequently releasing the bending strain, one-dimensional or checkerboard surface wrinkles are produced. Based on experimental and computational analyses, we show that these patterns form as a result of the interplay between swelling and bending strains. The feasibility of continuous manufacturing of surface wrinkles is demonstrated by using a two-roller roll-to-roll prototype, which paves the way for scalable roll-to-roll processing. To demonstrate the utility of these textures, we show that surface wrinkles produced in this manner enhance the light harvesting and thus efficiency of a solar cell at oblique angles of illumination due to their strong light scattering properties.
Collapse
Affiliation(s)
- Xu A Zhang
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Yijie Jiang
- Department of Mechanical Engineering and Applied Mechanics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - R Bharath Venkatesh
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Shu Yang
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Department of Materials Science and Engineering , University of Pennsylvania , 3231 Walnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
14
|
Wang Y, Kim BJ, Peng B, Li W, Wang Y, Li M, Omenetto FG. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc Natl Acad Sci U S A 2019; 116:21361-21368. [PMID: 31591247 PMCID: PMC6815133 DOI: 10.1073/pnas.1911563116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein micro/nanopatterning has long provided sophisticated strategies for a wide range of applications including biointerfaces, tissue engineering, optics/photonics, and bioelectronics. We present here the use of regenerated silk fibroin to explore wrinkle formation by exploiting the structure-function relation of silk. This yields a biopolymer-based reversible, multiresponsive, dynamic wrinkling system based on the protein's responsiveness to external stimuli that allows on-demand tuning of surface morphologies and properties. The polymorphic transitions of silk fibroin enable modulation of the wrinkle patterns and, consequently, the material's physical properties. The interplay between silk protein chains and external stimuli enables control over the protein film's wrinkling dynamics. Thanks to the versatility of regenerated silk fibroin as a technological substrate, a number of demonstrator devices of varying utility are shown ranging from information encoding to modulation of optical transparency and thermal regulation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Silklab, Tufts University, Medford, MA 02155
| | - Beom Joon Kim
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Silklab, Tufts University, Medford, MA 02155
| | - Berney Peng
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Wenyi Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Silklab, Tufts University, Medford, MA 02155
| | - Yuqi Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Meng Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Silklab, Tufts University, Medford, MA 02155
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
- Silklab, Tufts University, Medford, MA 02155
- Department of Physics, Tufts University, Medford, MA 02155
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155
| |
Collapse
|
15
|
Yu Y, Ng C, König TAF, Fery A. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8629-8645. [PMID: 30883131 DOI: 10.1021/acs.langmuir.8b04279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electromagnetic radiation of a certain frequency can excite the collective oscillation of the free electrons in metallic nanostructures using localized surface plasmon resonances (LSPRs), and this phenomenon can be used for a variety of optical and electronic functionalities. However, nanostructure design over a large area using controlled LSPR features is challenging and requires high accuracy. In this article, we offer an overview of the efforts made by our group to implement a wrinkle-assisted colloidal particle assembly method to approach this challenge from a different angle. First, we introduce the controlled wrinkling process and discuss the underlying theoretical framework. We then set out how the wrinkled surfaces are utilized to guide the self-assembly of colloidal nanoparticles of various surface chemistry, size, and shape. Subsequently, template-assisted colloidal self-assembly mechanisms and a general guide for particle assembly beyond plasmonics will be presented. In addition, we also discuss the collective plasmonic behavior in depth, including strong plasmonic coupling due to nanoscale gap size as well as magnetic mode excitation and demonstrate the potential applications of wrinkle-assisted colloidal particle assembly method in the field of mechanoresponsive metasurfaces and surface-enhanced spectroscopy. Lastly, a general perspective in the field of template-assisted colloidal assembly with regard to potential applications in plasmonic photocatalysis, solar cells, optoelectronics, and sensing devices is provided.
Collapse
Affiliation(s)
- Ye Yu
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Charlene Ng
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Institute of Physical Chemistry and Polymer Physics , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
- Technische Universität Dresden , Department of Physical Chemistry of Polymer Materials , 01062 Dresden , Germany
| |
Collapse
|
16
|
Ashraf KM, Wang C, Nair SS, Wynne KJ. "Big Dipper" Dynamic Contact Angle Curves for Pt-Cured Poly(dimethylsiloxane) on a Thermal Gradient: Inter-relationships of Hydrosilylation, Si-H Autoxidation, and Si-OH Condensation to a Secondary Network. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2747-2759. [PMID: 30681864 DOI: 10.1021/acs.langmuir.8b04126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Platinum cure for poly(dimethylsiloxane) (PDMS) coatings on a thermal gradient (45-140 °C) was carried out to study the effect of temperature on surface chemistry and wetting behavior. The motivation is the interest in surfaces with continuous gradients in wettability for applications such as protein adsorption, controlling bacterial adhesion, directional movement of cells, and biosensors. The Wilhelmy plate method and the advancing/receding drop method were employed for determining the positional dependence of θA and θR. A strong dependence of receding contact angles (θR) on cure temperature was found for Sylgard 184 (S-PDMS) and a Pt-cured laboratory-prepared analogue (Pt-PDMS) of known composition. Cure on the thermal gradient gave rise to striking "Big Dipper" Wilhelmy plate dynamic contact angle curves. High contact angle hysteresis (60-80°) was found for 45 °C cure (CAH = θΔ = θA - θR) but low CAH for 140 °C cure (10-20°). Drop addition/withdrawal using goniometry identified a similar trend. Attenuated total reflectance infrared spectroscopy showed absorptions for Si-OH (3500 cm-1) and Si-H (1250 cm-1) that were correlated with wetting behavior and near-surface chemistry. These studies revealed a complex relationship among hydrosilylation, Si-H autoxidation, and condensation of Si-OH. A model for advancing from a single network due to hydrosilylation to a double network for hydrosilylation plus Si-O-Si from condensation of Si-OH best explains evidence from spectroscopic and contact angle studies. These results are relevant to interactions of Pt-cured silicones at bio-interfaces, as receding contact angles determine work of adhesion, as well as applications that benefit from maximum hydrophobicity and minimizing water roll-off angles.
Collapse
Affiliation(s)
- Kayesh M Ashraf
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Room 422, Biotech 8, 737 N 5th Street , Richmond , Virginia 23219 , United States
| | - Chenyu Wang
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Room 422, Biotech 8, 737 N 5th Street , Richmond , Virginia 23219 , United States
| | - Sithara S Nair
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Room 422, Biotech 8, 737 N 5th Street , Richmond , Virginia 23219 , United States
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Room 422, Biotech 8, 737 N 5th Street , Richmond , Virginia 23219 , United States
| |
Collapse
|
17
|
Qi L, Niu Y, Ruck C, Zhao Y. Mechanical-activated digital microfluidics with gradient surface wettability. LAB ON A CHIP 2019; 19:223-232. [PMID: 30539191 DOI: 10.1039/c8lc00976g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This paper reports a simple yet effective droplet manipulation approach that can displace aqueous droplets over a long distance within the working plane. Repeated patterns with surface gradient wettability were created on a super-hydrophobic surface by laser irradiation. Aqueous droplets as small as 2 μL are moved on the patterns over a long distance under in-plane symmetric cyclic vibration. Typical droplet manipulation actions including droplet movement along a pre-determined trajectory, droplet mixing, and selective movement of multiple droplets were successfully demonstrated. Biochemical detection using this approach was demonstrated via a bicinchoninic acid (BCA) assay. This approach allows for long-distance droplet movement and simultaneous manipulation of multiple droplets without sacrificing the manipulation efficiency or increasing the cross-contamination risk. The device can be fabricated outside cleanrooms and operated without special equipment. It provides a solid technical basis for developing the next generation of affordable open channel microfluidic devices for various applications.
Collapse
Affiliation(s)
- Lin Qi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
18
|
Prakash V, Rodriguez RD, Al-Hamry A, Lipovka A, Dorozhko E, Selyshchev O, Ma B, Sharma S, Mehta SK, Dzhagan V, Mukherjee A, Zahn DRT, Kanoun O, Sheremet E. Flexible plasmonic graphene oxide/heterostructures for dual-channel detection. Analyst 2019; 144:3297-3306. [DOI: 10.1039/c8an02495b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schematic representation of the flexible plasmonic graphene oxide (GO)/heterostructure-based device with dual functionality for electrochemical and SERS detection.
Collapse
Affiliation(s)
| | | | - Ammar Al-Hamry
- Chemnitz University of Technology
- D-09107 Chemnitz
- Germany
| | | | | | | | - Bing Ma
- Tomsk Polytechnic University
- 634050 Tomsk
- Russia
| | | | | | - Volodymyr Dzhagan
- Chemnitz University of Technology
- D-09107 Chemnitz
- Germany
- Institute of Semiconductors Physics
- National Academy of Sciences of Ukraine
| | | | | | - Olfa Kanoun
- Chemnitz University of Technology
- D-09107 Chemnitz
- Germany
| | | |
Collapse
|