1
|
Zhang S, Zhang Y, Yuan M, Liang H, Zhang N, Zhou Z, Sun X, Guo Y, Tang F, You T, Zhang D. The rational design of europium complex based electrochemiluminescence sensor for highly efficient carbaryl detection. Talanta 2025; 287:127659. [PMID: 39889679 DOI: 10.1016/j.talanta.2025.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
To address the issue that most of the reported electrochemiluminescence (ECL) sensors are usually subjected to various complicated chemical modifications, we proposed a sensitive ECL sensor by using a neutral mononuclear lanthanide metal europium complex Eu(L)3 (L = 2-pyrazol-1-yl-6-(1H-tetrazol-5-yl)-pyridine) as luminophore with simple chemical composition for the accurate detection of carbaryl pesticide residues. The three conjugated tridentate pyrazo-pyridine- tetrazol ligands could put significant effect on the physical and chemical behavior of the central Eu3+ ion, leading to the excellent luminescent performance of the Eu(L)3 complex enhanced by "antenna effect" of the auxiliary anionic organic ligands. The naphthol obtained from the hydrolysis reaction of carbaryl in an alkaline working solution could effectively and quantitatively quench the luminescence intensity of the Eu(L)3 complex, which has been theoretically confirmed by the detailed density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, thus obviously strengthening the target detection capability on carbaryl. Based-on such the idea, the skillfully constructed ECL sensor showed superior carbaryl detection performance with good linearity in the range of 1 pg/mL to 1000 ng/mL, and a satisfied detection limit of 8.8 pg/mL (S/N = 3) under the optimized conditions. The current simple ECL carbaryl detection platform exhibited the conspicuous superiority to those existed commercial ones and thus, more importantly, provided a very promising practical value in the field of environmental detection (oil, soil, water, etc.) of organic phenol pollutants.
Collapse
Affiliation(s)
- Shan Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Yuexing Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Dezhou University, Dezhou 253023, China
| | - Meng Yuan
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Han Liang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Nuo Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Zhen Zhou
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Feng Tang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Tianyan You
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Daopeng Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China.
| |
Collapse
|
2
|
Huang Y, Zhao Z, Yi G, Zhang M. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays. J Mater Chem B 2024; 12:4063-4079. [PMID: 38572575 DOI: 10.1039/d3tb02947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| | - Zixin Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| |
Collapse
|
3
|
Zhang S, Shao H, Li KB, Shi W, Wang Y, Han DM, Mo J. Ultrasensitive fluorescence detection of multiple DNA methyltransferases based on DNA walkers and hyperbranched rolling circle amplification. Anal Chim Acta 2023; 1252:341057. [PMID: 36935155 DOI: 10.1016/j.aca.2023.341057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
The accurate and ultrasensitive detection of multiple methyltransferases was in great request for clinical diagnosis and epigenetic therapy. Here, a novel fluorescence assay was proposed for ultrasensitive CpG methyltransferase (M.SssI) and DNA adenine methyltransferase (Dam) activity detection based on hyperbranched rolling circle amplification (HRCA) and DNA walkers. The biosensor showed an extremely high sensitivity due to the dual-amplification strategy of HRCA and DNA walker. The LOD of the biosensor for M.SssI and Dam methyltransferase was estimated at 0.0004 U/mL and 0.001 U/mL, respectively. Without the presence of M.SssI methyltransferase, the corresponding recognition site of hairpin HM was cleaved by HpaII endonuclease, generating a DNA fragment (T-DNA) and inducing the DNA walker-HRCA reaction. Since the HRCA products contained numerous double-strand DNA (dsDNA), SYBR Green I could be embedded in the dsDNA, leading to a high fluorescent signal. In the presence of M.SssI methyltransferase, the corresponding recognition site of hairpin HM was methylated and the HpaII endonuclease-catalyzed stem of hairpin HM dissociation was hindered, leading to no DNA fragment (T-DNA) present. Hence, the DNA walker-HRCA reaction was not initiated and the fluorescent signal of SYBR Green I remained at a low level. Similarly, DNA adenine methyltransferase (Dam) and its inhibitors could also be detected by redesigning hairpin HD with the Dam recognition sequences. Furthermore, the sensing system was applied to analyze the endogenic Dam methyltransferase in the real samples such as E. coli cell lysate.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Hepatobiliary Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Jiaojiang, Zhejiang, 318000, China; School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Huahao Shao
- Zhijiang College of Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, China
| | - Kai-Bin Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Wei Shi
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Yichao Wang
- Department of Hepatobiliary Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Jiaojiang, Zhejiang, 318000, China.
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang, 318000, China.
| | - Jinggang Mo
- Department of Hepatobiliary Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Jiaojiang, Zhejiang, 318000, China.
| |
Collapse
|
4
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liu C, Cai L, Wang X, Guo Y, Fang G, Wang S. Construction of molecularly imprinted sensor based on covalent organic frameworks DAFB-DCTP-doped carbon nitride nanosheets with high electrochemiluminescence activity for sensitive detection of carbaryl. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Liu C, Wang H, Hu X, Cao Y, Fang G. Construction of an ECL Detection Platform for Sensitive Detection of Carbaryl Based on an Eu3+-Functionalized Metal–Organic Framework Encapsulated with Nanogold. Foods 2022; 11:foods11101487. [PMID: 35627057 PMCID: PMC9141832 DOI: 10.3390/foods11101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, an Eu3+-MOF-253@Au electrochemiluminescence sensor was successfully constructed for the first time by encapsulating nanogold in the metal–organic frameworks (MOFs) backbone and pore channels, and assembling Eu3+ on the MOF backbone. Firstly, the introduction of nanogold overcomes the weakness of MOFs, which was difficult to achieve, and enhances its catalytic performance, followed by the modification of Eu3+ to confer the electrochemiluminescence performance and the function of target detection on the sensor. Moreover, carbaryl was placed in an alkaline working solution to enhance the intensity of electrochemiluminescence signal, as well as to promote the hydrolysis of carbaryl into 1-naphthol, which caused the burst of Eu3+-MOF-253@Au electrochemiluminescence sensor, thereby achieving the sensitive detection of carbaryl. On this basis, the electrochemiluminescence detection conditions were optimized, the performance was analyzed, and finally it was successfully used for the detection of carbaryl with good linearity in the range of 0.2–200 μg L−1 and a low detection limit (0.14 μg L−1).
Collapse
|
7
|
Chen Z, Li Y, Qin H, Yang X, Cao W. A dual-mechanism-driven electrochemiluminescence aptasensor for sensitive detection of β-amyloid peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1739-1746. [PMID: 35468173 DOI: 10.1039/d2ay00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
β-Amyloid (Aβ) peptides can bind both Cu2+ and heme cofactors simultaneously to form heme-Cu2+-Aβ complexes, which are proposed to generate toxic partially reduced oxygen species (PROS, e.g., H2O2) and play a vital role in Alzheimer's disease (AD). In this paper, a competitive dual-mechanism-driven electrochemiluminescence (ECL) aptasensor integrating the synergistic enhancement and steric hindrance effect was described for Aβ detection. Specifically, graphite carbon nitride (g-C3N4) as an effective ECL luminescent substrate and Au nanoparticles were sequentially assembled on the Au electrode surface, and then a thiol-modified aptamer for capturing Aβ peptide was attached to the surface of the electrode through the Au-S bond. Aβ peptides were simultaneously incubated with heme and Cu2+, and the forming heme-Cu2+-Aβ complexes were subsequently anchored on the electrode through the specific recognition between the target Aβ and the aptamer. When the concentration of the target Aβ is low, the synergistic enhancement effect arising from K2S2O8 with in situ generated H2O2 is predominant, resulting in an increase in the ECL signal of g-C3N4. In contrast, when the concentration of Aβ is high, the steric hindrance effect generated from heme-Cu2+-Aβ complexes is dominant, leading to a decrease in the ECL signal. The present sensor exhibits a favorable linear response for the detection of Aβ with a relatively low detection limit of 0.24 pM, and provides a more sensitive and selective platform for bioanalysis.
Collapse
Affiliation(s)
- Zixuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yinan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Haixin Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Wei Cao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
8
|
Li F, Chen Y, Shang J, Wang Q, He S, Xing X, Wang F. An Isothermal Autocatalytic Hybridization Reaction Circuit for Sensitive Detection of DNA Methyltransferase and Inhibitors Assay. Anal Chem 2022; 94:4495-4503. [PMID: 35234458 DOI: 10.1021/acs.analchem.2c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abnormal DNA methylation contributes to the annoying tumorigenesis and the elevated expression of methylation-related methyltransferase (MTase) is associated with many diseases. Hence DNA MTase could serve as a promising biomarker for cancer-specific diagnosis as well as a potential therapeutic target. Herein, we developed an isothermal autocatalytic hybridization reaction (AHR) circuit for the sensitive detection of MTase and its inhibitors by integrating the catalytic hairpin assembly (CHA) converter with the hybridization chain reaction (HCR) amplifier. The initiator-mediated HCR amplifier could generate amplified fluorescent readout, as well as numerous newly activated triggers for motivating the CHA converter. The CHA converter is designed to expose the identical sequence of HCR initiators that reversely powered the HCR amplifier. Thus, the trace amount of target could produce exponentially amplified fluorescent readout by the autocatalytic feedback cycle between HCR and CHA systems. Then an auxiliary hairpin was introduced to mediate the assay of Dam MTase via the well-established AHR circuit. The Dam MTase-catalyzed methylation of auxiliary hairpin leads to its subsequent efficient cleavage by DpnI endonuclease, thus resulting in the release of HCR initiators to initiate the AHR circuit. The programmable nature of the auxiliary hairpin allows its easy adaption into other MTase assay by simply changing the recognition site. This proposed AHR circuit permits a sensitive, robust, and versatile analysis of MTase with the limit of detection (LOD) of 0.011 U/mL. Lastly, the AHR circuit could be utilized for MTase analysis in real complex samples and for evaluating the cell-cycle-dependent expression of MTase. This developed MTase-sensing strategy holds promising potential for biomedical analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiwen Xing
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
9
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
10
|
Self-enhanced luminol-based electrochemiluminescent hydrogels: An ultrasensitive biosensing platform for fusion gene analysis coupled with target-initiated DNAzyme motor. Biosens Bioelectron 2022; 197:113784. [PMID: 34801798 DOI: 10.1016/j.bios.2021.113784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
BCR/ABL fusion gene has been discovered as an important and reliable biomarker for early diagnosis of chronic myeloid leukemia (CML). Herein, a novel and switching electrochemiluminescence (ECL) biosensor was developed for ultrasensitive determination of the fusion gene based on the self-enhanced polyethyleneimine-luminol (PEI-Lum) hydrogels coupled with target-initiated DNAzyme motor. The facilely prepared PEI-Lum hydrogels could not only immobilize enormous luminol but shorten the distance of binary system, thus facilitating the mass and electron transfer efficiency of the sensing interface, so that the enhanced ECL signal was achieved. Moreover, the engineering DNA motor was powered by Mg2+-dependent DNAzyme for isothermal DNA signal amplification. As a result, the fabricated ECL biosensor enabled highly sensitive detection of BCR/ABL fusion gene with a broad linear range from 10.0 fM to 10.0 nM and a low detection limit of 3.75 fM (S/N = 3). Significantly, the developed biosensing method provides a potential tool for nucleic acid analysis in clinical diagnosis and a new avenue to design high-efficient ECL nanomaterials.
Collapse
|
11
|
Wen Q, Li D, Huang G, Xi H, Pan H, Zhang L, Li Z, Xiao X, Zhu W. Ultrasensitive detection of DNA methyltransferase activity: a novel dual-amplification fluorescence technique. Analyst 2022; 147:4980-4985. [DOI: 10.1039/d2an01302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A dual amplification fluorescence strategy was developed for the ultrasensitive detection of Dam MTase activity based on strand displacement amplification coupled with rolling circle amplification.
Collapse
Affiliation(s)
- Qilin Wen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Dandan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Guidan Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Huai Xi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Hongcheng Pan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Lianming Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Ziyuan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Xiaofen Xiao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Wenyuan Zhu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| |
Collapse
|
12
|
Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021; 94:349-365. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
13
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Li L, Zhang J, Zhang Q, Wang X, Dai WL. Superior sponge-like carbon self-doping graphitic carbon nitride nanosheets derived from supramolecular pre-assembly of a melamine-cyanuric acid complex for photocatalytic H 2 evolution. NANOTECHNOLOGY 2021; 32:155604. [PMID: 33361568 DOI: 10.1088/1361-6528/abd6d1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photocatalytic evolution of hydrogen (H2) from water splitting is considered a promising route to overcome the energy crisis, and the key lies in the preparation of efficient photocatalysts. Herein, superior ordered sponge-like carbon self-doped graphitic carbon nitride (g-C3N4) nanosheets (SCCNS) were prepared via a combined strategy of melamine-cyanuric acid complex supramolecular pre-assembly and solvothermal pre-treatment using ethylene glycol (EG) aqueous solutions (EG:water = 50:50 vol.%) as a solvent and carbon doping source. The following pyrolysis converts the naturally arranged melamine-EG-cyanuric acid supramolecular intermediates to highly crystalline SCCNS with large specific surface areas. The optimal SCCNS-180 exhibits superior photocatalytic H2 evolution activities (∼4393 and 11 320 μmol h-1 g-1) when irradiated with visible light and simulated sunlight; these values are up to ∼17- and ∼18-fold higher than that of bulk g-C3N4. The quantum efficiency of SCCNS-180 at λ = 420 nm can reach 6.0%. The excellent photocatalytic performance of SCCNS-180 derives from its distinct ordered sponge-like nanosheet structure with highly crystallinity and the carbon doping, leading to its improved optical absorption, accelerated photoinduced electron-hole pair transfer and separation rate and enlarged specific surface area (134.4 m2 g-1).
Collapse
Affiliation(s)
- Lingfeng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Juhua Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Quan Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaohao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei-Lin Dai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
15
|
Optimizing the Electrochemiluminescence of Readily Accessible Pyrido[1,2‐α]pyrimidines through “Green” Substituent Regulation. ChemElectroChem 2021. [DOI: 10.1002/celc.202001531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zou R, Lin Y, Lu C. Nitrogen Vacancy Engineering in Graphitic Carbon Nitride for Strong, Stable, and Wavelength Tunable Electrochemiluminescence Emissions. Anal Chem 2021; 93:2678-2686. [PMID: 33459017 DOI: 10.1021/acs.analchem.0c05027] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As an attractive electrochemiluminescence (ECL) emitter, graphitic carbon nitride (CN) still suffers from weak and unstable ECL signals for its poor conductivity and the occurrence of electrode passivation. In this study, a simple nitrogen vacancy (NV) engineering strategy has been developed for the improvement of ECL performances (intensity and stability) for the first time. In comparison to pristine CN (RSD = 51.98% for 10 continuous scan), ca. 60 times amplification in ECL intensity and 70 times enhancement in ECL efficiency for CN modified with NVs (CN-NVs) were obtained. In addition, more stable ECL emissions (RSD = 0.53%) were achieved for CN-NV-550 by thermal treatment of pristine CN in a N2 atmosphere for another 2 h at 550 °C. The mechanism study for the vital role of NVs on the ECL of CN-NVs revealed that NVs can not only facilitate electron transfer to amplify the ECL intensity but also serve as the electron trap to inhibit electrode passivation. More interestingly, a series of CN-NVs exhibited a tunable ECL wavelength range from 470 to 516 nm with different NV contents. Moreover, their ECL spectra showed an obvious red-shift of the wavelength with their corresponding fluorescence spectra. These findings confirmed that the ECL emissions of CN-NVs were susceptible to the relevant surface states of NVs. Our work may open up a promising pathway for improving ECL performances of CN and create new possibilities for multitarget simultaneous detection based on ECL and construction of color tunable light-emitting devices.
Collapse
Affiliation(s)
- Rui Zou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Liu PF, Zhao KR, Liu ZJ, Wang L, Ye SY, Liang GX. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosens Bioelectron 2021; 176:112954. [PMID: 33412428 DOI: 10.1016/j.bios.2020.112954] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas system have drawn increasing attention in accurate and sensitive nucleic acids detection. Herein, we reported a novel Cas12a-based electrochemiluminescence biosensor for target amplification-free human papilloma virus subtype (HPV-16) DNA detection. During this detection process, Cas12a employed its two-part recognition mechanism to improve the specificity and trans-cleavage capability to achieve signal amplification, while L-Methionine stabilized gold nanoclusters (Met-AuNCs) were served as high-efficiency ECL emitters to achieve ECL signal transition. Given the unique combination of Cas12a with ECL technique, the detection limit was determined as 0.48 pM and the whole detection could be completed within 70 min. We also validated the practical application of the proposed biosensor by using undiluted human blood samples, which gives impetus to the design of new generations of CRISPR/Cas detection system beyond the traditional ones with ultimate applications in sensing analysis and diagnostic technologies.
Collapse
Affiliation(s)
- Peng-Fei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Kai-Ren Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Zhi-Jun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Li Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Shu-Ying Ye
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guo-Xi Liang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Yan XL, Xue XX, Deng XM, Jian YT, Luo J, Jiang MM, Zheng XJ. Chemiluminescence strategy induced by HRP-sandwich structure based on strand displacement for sensitive detection of DNA methyltransferase. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Ma F, Zhang Q, Zhang CY. Nanomaterial-based biosensors for DNA methyltransferase assay. J Mater Chem B 2020; 8:3488-3501. [DOI: 10.1039/c9tb02458a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We review the recent advances in the development of nanomaterial-based biosensors for DNA methyltransferase assay.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qian Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
21
|
Zhang Y, Hao L, Zhao Z, Yang X, Wang L, Liu S. Immuno-DNA binding directed template-free DNA extension and enzyme catalysis for sensitive electrochemical DNA methyltransferase activity assay and inhibitor screening. Analyst 2020; 145:3064-3072. [DOI: 10.1039/d0an00008f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new electrochemical immuno-DNA sensing platform for DNA methyltransferase activity assay and inhibitor screening.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lijie Hao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhen Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Li Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Shufeng Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
22
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
23
|
Li Y, Wang L, Ding C, Luo X. Highly selective ratiometric electrogenerated chemiluminescence assay of DNA methyltransferase activity via polyaniline and anti-fouling peptide modified electrode. Biosens Bioelectron 2019; 142:111553. [DOI: 10.1016/j.bios.2019.111553] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
24
|
Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019; 214:119215. [DOI: 10.1016/j.biomaterials.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
25
|
Hou T, Xu N, Wang W, Ge L, Li F. Label-free and immobilization-free photoelectrochemical biosensing strategy using methylene blue in homogeneous solution as signal probe for facile DNA methyltransferase activity assay. Biosens Bioelectron 2019; 141:111395. [DOI: 10.1016/j.bios.2019.111395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
26
|
Peng H, Huang Z, Sheng Y, Zhang X, Deng H, Chen W, Liu J. Pre‐oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights. Angew Chem Int Ed Engl 2019; 58:11691-11694. [DOI: 10.1002/anie.201905007] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Yilun Sheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Xiangping Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
27
|
Peng H, Huang Z, Sheng Y, Zhang X, Deng H, Chen W, Liu J. Pre‐oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Yilun Sheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Xiangping Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province Department of Pharmaceutical Analysis Faculty of Pharmacy Fujian Medical University Fuzhou 350108 P. R. China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
28
|
Cui YX, Feng XN, Wang YX, Pan HY, Pan H, Kong DM. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity. Chem Sci 2019; 10:2290-2297. [PMID: 30881654 PMCID: PMC6385671 DOI: 10.1039/c8sc05102j] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| | - Xue-Nan Feng
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| | - Hui-Yu Pan
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Hua Pan
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| |
Collapse
|
29
|
Chen R, Shi H, Meng X, Su Y, Wang H, He Y. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum. Anal Chem 2019; 91:3597-3603. [PMID: 30724066 DOI: 10.1021/acs.analchem.8b05595] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we present a dual-amplification sensing strategy-based surface-enhanced Raman scattering (SERS) chip, which combines rolling circle amplification (RCA) and polyadenine (PolyA) assembly for sensitive and reproducible determination of the activity of M.SssI, a cytosine-guanine dinucleotide (CpG) methyltransferase (MTase). Typically, in the presence of M.SssI, RCA process is triggered, resulting in long, single-stranded DNA (ssDNA) fragments that are hybridized with thousands of Raman reporters of Cy3. Afterward, the resultant ssDNA fragments are conjugated to SERS-active substrates made of silver core-gold satellite nanocomposites-modified silicon wafer (Ag-Au NPs@Si), with the SERS enhancement factor of ∼5 × 106. The core-satellite nanostructures are assembled relied on the strong affinity of PolyA toward gold/silver surface. Of particular significance, the developed SERS chip displays an ultrahigh sensitivity with a low limit of detection (LOD) of 2.8 × 10-3 U/mL, which is around 2 orders of magnitude higher than most reported methods. In addition, the constructed chip features a broad detection range covering from 0.05 to 50 U/mL. Besides for the ultrahigh sensitivity and broad dynamic range, the chip also features good reproducibility (e.g., the relative standard deviation (RSD) is less than ∼12%). Taking advantages of these merits, the developed chip is feasible for accurate discrimination of M.SssI with various concentrations spiked in human serum samples with good recoveries ranging from 99.6% to 107%.
Collapse
Affiliation(s)
- Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Huayi Shi
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xinyu Meng
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
30
|
Ge J, Zhao Y, Li C, Jie G. Versatile Electrochemiluminescence and Electrochemical “On–Off” Assays of Methyltransferases and Aflatoxin B1 Based on a Novel Multifunctional DNA Nanotube. Anal Chem 2019; 91:3546-3554. [DOI: 10.1021/acs.analchem.8b05362] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junjun Ge
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Yu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Chunli Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| |
Collapse
|
31
|
Xue H, Chen K, Zhou Q, Pan D, Zhang Y, Shen Y. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity. J Mater Chem B 2019; 7:6789-6795. [DOI: 10.1039/c9tb01541h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An Sb2Se3/graphene oxide composite was applied as both the photoelectrochemical probe and substrate for biomolecule conjugation for the construction of a “signal-off” sandwich-type biosensor for DNA methyltransferase activity detection.
Collapse
Affiliation(s)
- Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| |
Collapse
|
32
|
Zhao H, Ma C, Yan Y, Chen M. A sensitive cyclic signal amplification fluorescence strategy for determination of methyltransferase activity based on graphene oxide and RNase H. J Mater Chem B 2019. [DOI: 10.1039/c9tb00743a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A sensitive fluorometric method for DNA methyltransferase activity detection based on graphene oxide and RNase H-assisted signal amplification.
Collapse
Affiliation(s)
- Han Zhao
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Changbei Ma
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Ying Yan
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Mingjian Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
33
|
Li C, Wang H, Shang J, Liu X, Yuan B, Wang F. Highly Sensitive Assay of Methyltransferase Activity Based on an Autonomous Concatenated DNA Circuit. ACS Sens 2018; 3:2359-2366. [PMID: 30350594 DOI: 10.1021/acssensors.8b00738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methyltransferase-involved DNA methylation is one of the most important epigenetic processes, making the ultrasensitive MTase assay highly desirable in clinical diagnosis as well as biomedical research. Traditional single-stage amplification means often achieve linear amplification that might not fulfill the increasing demands for detecting trace amount of target. It is desirable to construct multistage cascaded amplifiers that allow for enhanced signal amplifications. Herein, a powerful nonenzymatic MTase-sensing platform is successfully engineered based on a two-layered DNA circuit, in which the upstream catalytic hairpin assembly (CHA) circuit successively generates DNA product that could be used to activate the downstream hybridization chain reaction (HCR) circuit, resulting in the generation of a dramatically amplified fluorescence signal. In the absence of M.SssI MTase, HpaII endonuclease could specifically recognize the auxiliary hairpin substrate and then catalytically cleave the corresponding recognition site, releasing a DNA fragment that triggers the CHA-HCR-mediated FRET transduction. Yet the M.SssI-methylated hairpin substrate could not be cleaved by HpaII enzyme, and thus prohibits the CHA-HCR-mediated FRET generation, providing a substantial signal difference with that of MTase-absent system. Taking advantage of the high specificity of multiple-guaranteed recognitions of MTase/endonuclease and the synergistic amplification features of concatenated CHA-HCR circuit, this method enables an ultrasensitive detection of MTase and its inhibitors in serum and E. coli cells. Furthermore, the rationally assembled CHA-HCR also allows for probing other different biotransformations through a facile design of the corresponding substrates. It is anticipated that the infinite layer of multilayered DNA circuit could further improve the signal gain of the system for accurately detecting other important biomarkers, and thus holds great promise for cancerous treatment and biomedical research.
Collapse
Affiliation(s)
- Chunxiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Huimin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Bifeng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
34
|
Peng Y, Li Y, Li L, Zhu JJ. A label-free aptasensor for ultrasensitive Pb 2+ detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen) 32. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:121-128. [PMID: 30014907 DOI: 10.1016/j.jhazmat.2018.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
A label-free aptasensor was developed for ultrasensitive detection of Pb2+ based on electrochemiluminescence resonance energy transfer (ECL-RET) from graphitic carbon nitride nanofibers (CNNFs) to Ru(phen)32+. The CNNFs synthesized via a facile two-step hydrolysis-electrolysis strategy showed intense and stable ECL signal by taking advantages of amplifying and stabilizing effect of carbon nanotubes and Au nanoparticles. After the specific hybridation between capture DNA and Pb2+ specific aptamer, Ru(phen)32+ could be captured onto CNNFs modified electrode by effectively intercalating into the grooves of double-strand DNA, thus triggering the ECL-RET and leading to highly enhanced ECL intensity. The presence of Pb2+ would result in the detachment of Ru(phen)32+ and then the inhibition of ECL-RET. Then Pb2+ concentration could be quantified based on ECL change before and after introduction of Pb2+. The target recycling based on exonuclease I (Exo I) mediated digestion of Pb2+-aptamer complex was implemented to further improve the sensitivity. These synergistic amplification strategies enabled the aptasensor to be ultrasensitive for Pb2+ determination with a detection limit of 0.04 pM. The proposed probe was utilized to analyze environmental samples with satisfactory results.
Collapse
Affiliation(s)
- Yujiao Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Lingling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
35
|
Ma J, Song L, Shi H, Yang H, Ye W, Guo X, Luan S, Yin J. Development of hierarchical Fe 3O 4 magnetic microspheres as solid substrates for high sensitive immunoassays. J Mater Chem B 2018; 6:3762-3769. [PMID: 32254838 DOI: 10.1039/c8tb00846a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the detection sensitivity of enzyme linked immunosorbent assay (ELISA) is of the utmost importance for meeting the demand of early disease diagnosis. In this work, a sensitive solid substrate for ELISA, i.e., hierarchical iron oxide magnetic microspheres, Fe3O4@mSiO2@poly[poly(ethylene glycol) methacrylate-co-glycidyl methacrylate], was developed via a novel surface-initiated photoiniferter-mediated polymerization (SI-PIMP) strategy. The magnetic microspheres consist of a magnetic Fe3O4 core that gives a high magnetic response, a 3D backbone, a mesoporous SiO2 middle layer, that facilitates microsphere stability and provides anchoring sites, and polymer brushes, that serve as an antifouling and oriented antibody immobilization layer. As a result, the as-prepared microspheres possess a high antibody loading capacity, an enhanced detection signal and a dramatically improved sensitivity, resulting in a 25-fold improvement over conventional ELISA solid substrates.
Collapse
Affiliation(s)
- Jiao Ma
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | | | | | | | | | | | | | | |
Collapse
|