1
|
Ding K, Yu X, Wang D, Wang X, Li Q. Small diameter expanded polytetrafluoroethylene vascular graft with differentiated inner and outer biomacromolecules for collaborative endothelialization, anti-thrombogenicity and anti-inflammation. Colloids Surf B Biointerfaces 2023; 229:113449. [PMID: 37506438 DOI: 10.1016/j.colsurfb.2023.113449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Without differentiated inner and outer biological function, expanded polytetrafluoroethylene (ePTFE) small-diameter (<6 mm) artificial blood vessels would fail in vivo due to foreign body rejection, thrombosis, and hyperplasia. In order to synergistically promote endothelialization, anti-thrombogenicity, and anti-inflammatory function, we modified the inner and outer surface of ePTFE, respectively, by grafting functional biomolecules, such as heparin and epigallocatechin gallate (EGCG), into the inner surface and polyethyleneimine and rapamycin into the outer surface via layer-by-layer self-assembly. Fourier-transform infrared spectroscopy showed the successful incorporation of EGCG, heparin, and rapamycin. The collaborative release profile of heparin and rapamycin lasted for 42 days, respectively. The inner surface promoted human umbilical vein endothelial cells (HUVECs) adhesion and growth and that the outer surface inhibited smooth muscle cells growth and proliferation. The modified ePTFE effectively regulated the differentiation behavior of RAW264.7, inhibited the expression of proinflammatory mediator TNF-α, and up-regulated the expression of anti-inflammatory genes Arg1 and Tgfb-1. The ex vivo circulation results indicated that the occlusions and total thrombus weight of modified ePTFE was much lower than that of the thrombus formed on the ePTFE, presenting good anti-thrombogenic properties. Hence, the straightforward yet efficient synergistic surface functionalization approach presented a potential resolution for the prospective clinical application of small-diameter ePTFE blood vessel grafts.
Collapse
Affiliation(s)
- Kangjia Ding
- School of Materials science & Engineering, Zhengzhou University, Zhengzhou 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xueke Yu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Shen M, Zheng L, Koole LH. Polymeric Microspheres Designed to Carry Crystalline Drugs at Their Surface or Inside Cavities and Dimples. Pharmaceutics 2023; 15:2146. [PMID: 37631360 PMCID: PMC10460081 DOI: 10.3390/pharmaceutics15082146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Injectable polymer microparticles with the ability to carry and release pharmacologically active agents are attracting more and more interest. This study is focused on the chemical synthesis, characterization, and preliminary exploration of the utility of a new type of injectable drug-releasing polymer microparticle. The particles feature a new combination of structural and physico-chemical properties: (i) their geometry deviates from the spherical in the sense that the particles have a cavity; (ii) the particles are porous and can therefore be loaded with crystalline drug formulations; drug crystals can reside at both the particle's surfaces and inside cavities; (iii) the particles are relatively dense since the polymer network contains covalently bound iodine (approximately 10% by mass); this renders the drug-loaded particles traceable (localizable) by X-ray fluoroscopy. This study presents several examples. First, the particles were loaded with crystalline voriconazole, which is a potent antifungal drug used in ophthalmology to treat fungal keratitis (infection/inflammation of the cornea caused by penetrating fungus). Drug loading as high as 10% by mass (=mass of immobilized drug/(mass of the microparticle + mass of immobilized drug) × 100%) could be achieved. Slow local release of voriconazole from these particles was observed in vitro. These findings hold promise regarding new approaches to treat fungal keratitis. Moreover, this study can help to expand the scope of the transarterial chemoembolization (TACE) technique since it enables the use of higher drug loadings (thus enabling higher local drug concentration or extended therapy duration), as well as application of hydrophobic drugs that cannot be used in combination with existing TACE embolic particles.
Collapse
Affiliation(s)
| | | | - Leo H. Koole
- Innovative Bioengineering Laboratory for Ocular Drug Delivery, School of Ophthalmology and Optometry, Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou 325027, China; (M.S.); (L.Z.)
| |
Collapse
|
3
|
Simultaneously Embedding Indomethacin and Electrodeposition of Polypyrrole on Various CoCr Alloys from Ionic Liquids. MATERIALS 2022; 15:ma15134714. [PMID: 35806838 PMCID: PMC9267949 DOI: 10.3390/ma15134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022]
Abstract
The aim of the present investigation is the electrochemical deposition of polypyrrole films from choline chloride-based ionic liquids at various potential, period times and simultaneously an indomethacin embedding and release. The electrodeposition films were performed on CoCr commercial type Wirobond C (WBC) and, Heraenium CE (Hera) using as electroprocedures for deposition cyclic voltammetry and chronoamperometry. The morphology of obtained films was investigated using scanning electron microscopy (SEM). An FT-IR investigation of CoCr alloys before and after electrodeposition was able to identify the presence of polymer and drug. The research included an evaluation of the hydrophilic character of all studied samples and their electrochemical characterization in Tanni Zuchi artificial saliva. In the electrochemical study, the following methods have been used: open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization. Indomethacin release from the polymeric film was determined using UV-VIS spectra. Based on Fick’s law of diffusion and indomethacin release profile, a kinetic law for release was established and discussed.
Collapse
|
4
|
Shaheen‐Mualim M, Kutner N, Farah S. The emerging potential of crystalline drug‐polymer combination for medical applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Merna Shaheen‐Mualim
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Neta Kutner
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
- The Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
5
|
Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J Control Release 2022; 344:113-133. [DOI: 10.1016/j.jconrel.2022.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
|
6
|
Lenzuni M, Suarato G, Miele D, Carzino R, Ruggeri M, Bertorelli R, Sandri G, Athanassiou A. Development of biodegradable zein-based bilayer coatings for drug-eluting stents. RSC Adv 2021; 11:24345-24358. [PMID: 35479013 PMCID: PMC9036829 DOI: 10.1039/d1ra03748j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Drug-eluting stents (DES) have been widely used for the treatment of cardiovascular diseases. Nevertheless, chronic inflammation and delayed re-endothelialization still represent challenges for their clinical use. In the present work, we developed novel bilayer coatings for stent applications that could overcome these limitations, exclusively using biodegradable plant-based drugs and polymers. In particular, stainless steel surfaces were coated with rutin-loaded zein (the active layer) and cross-linked alginate (the sacrificial layer) via facile dip and spray coating methods. Various mechanical tests and analysis tools, such as infrared spectroscopy, water contact angle measurements, and scanning electron microscopy were used to characterize the coated surfaces. Degradation and release studies of the films were extensively carried out and compared. The release rate of rutin from the bilayer coating reached 66.1 ± 3.2% within 24 hours of incubation (initial burst period), while the rest of the drug was released over 21 days in a sustained manner. Antioxidant assays confirmed that rutin retained its free radical scavenging ability after being eluted in phosphate buffer at 37 °C. In vitro results with human fibroblasts and endothelial cells suggested that the coating materials and their degradation products are highly biocompatible. In conclusion, our novel drug-eluting coatings, fabricated with natural biodegradable polymers, are promising materials for DES applications, allowing a sustained drug delivery and improving the biocompatibility of cardiovascular implanted devices.
Collapse
Affiliation(s)
- Martina Lenzuni
- Smart Materials Group, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- DIBRIS, University of Genoa via Opera Pia 13 Genoa Italy
| | - Giulia Suarato
- Smart Materials Group, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
- Translational Pharmacology, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia viale Taramelli 12 27100 Pavia Italy
| | - Riccardo Carzino
- Smart Materials Group, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia viale Taramelli 12 27100 Pavia Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia viale Taramelli 12 27100 Pavia Italy
| | | |
Collapse
|
7
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
8
|
Rykowska I, Nowak I, Nowak R. Drug-Eluting Stents and Balloons-Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020; 25:E4624. [PMID: 33050663 PMCID: PMC7594099 DOI: 10.3390/molecules25204624] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Controlled drug delivery is a matter of interest to numerous scientists from various domains, as well as an essential issue for society as a whole. In the treatment of many diseases, it is crucial to control the dosing of a drug for a long time and thus maintain its optimal concentration in the tissue. Heart diseases are particularly important in this aspect. One such disease is an obstructive arterial disease affecting millions of people around the world. In recent years, stents and balloon catheters have reached a significant position in the treatment of this condition. Balloon catheters are also successfully used to manage tear ducts, paranasal sinuses, or salivary glands disorders. Modern technology is continually striving to improve the results of previous generations of stents and balloon catheters by refining their design, structure, and constituent materials. These advances result in the development of both successive models of drug-eluting stents (DES) and drug-eluting balloons (DEB). This paper presents milestones in the development of DES and DEB, which are a significant option in the treatment of coronary artery diseases. This report reviews the works related to achievements in construction designs and materials, as well as preparation technologies, of DES and DEB. Special attention was paid to the polymeric biodegradable materials used in the production of the above-mentioned devices. Information was also collected on the various methods of producing drug release coatings and their effectiveness in releasing the active substance.
Collapse
Affiliation(s)
- I. Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - I. Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - R. Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
9
|
Hou R, Wu L, Zhu Y, Wang J, Yang Z, Tu Q, Huang N. Study of functional drug-eluting stent in promoting endothelialization and antiproliferation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:244-260. [PMID: 31626738 DOI: 10.1080/09205063.2019.1683266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drug-eluting stents have been widely used in the clinic because of their impressive ability to reduce restenosis. However, the conventional biodegradable polymers used for drug-loaded coatings undergo bulk erosion, which can induce internal catalysis, resulting in a high local acidity during the degradation process and unfavorable side-effects. Herein, poly(1,3-trimethylene carbonate), a surface eroding biodegradable polymer, was chosen as a drug-loaded coating for cardiovascular stents. We modified both sides of the stent to simultaneously promote re-endothelialization at the inner layer and reduce restenosis at the outer layer, using a titanium oxide (Ti-O) film as the inner layer and a Ti-O film/drug coating as the outer layer. In vitro and in vivo results indicated that the Ti-O film accelerated endothelial cell growth and re-endothelialization, and the drug coating inhibited platelet adhesion, activation, and aggregation, smooth muscle cell proliferation, and significantly reduced neointimal hyperplasia. Therefore, this novel stent may have potential as a cardiovascular stent to treat patients with coronary artery stenosis.
Collapse
Affiliation(s)
- Ruixia Hou
- Department of Anatomy and Histology and Embryology, Medical School of Ningbo University, Ningbo, China.,Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Leigang Wu
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yabin Zhu
- Department of Anatomy and Histology and Embryology, Medical School of Ningbo University, Ningbo, China
| | - Jin Wang
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
10
|
Farah S, Doloff JC, Müller P, Sadraei A, Han HJ, Olafson K, Vyas K, Tam HH, Hollister-Lock J, Kowalski PS, Griffin M, Meng A, McAvoy M, Graham AC, McGarrigle J, Oberholzer J, Weir GC, Greiner DL, Langer R, Anderson DG. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. NATURE MATERIALS 2019; 18:892-904. [PMID: 31235902 PMCID: PMC7184801 DOI: 10.1038/s41563-019-0377-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/16/2019] [Indexed: 05/02/2023]
Abstract
Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites-subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.
Collapse
Affiliation(s)
- Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical and Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Müller
- X-Ray Diffraction Facility, MIT Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hye Jung Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katy Olafson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ashley Meng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malia McAvoy
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam C Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - James McGarrigle
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Oberholzer
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Wentzlaff M, Senz V, Seidlitz A. Evaluation of the suitability of a fluidized bed process for the coating of drug-eluting stents. Eur J Pharm Biopharm 2019; 139:85-92. [PMID: 30878518 DOI: 10.1016/j.ejpb.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Drug-eluting stents are often coated using single-stent coating techniques. In pharmaceutical industry, single-tablet coating is unthinkable. Instead large batches of tablets are coated in fluidized bed apparatuses or pan coaters. Therefore, it was the aim of this work to evaluate whether stents can be coated using a fluidized bed process. For this purpose stents were coated with the model fluorescent drug triamterene embedded in ammonium methacrylate copolymer. Different stent lengths as well as different coating yields were assessed and also a drug-free topcoat was evaluated. The coated stents were analysed regarded coating layer mass, drug content, surface structure, coating thickness and drug release. Furthermore, coating yield and stent defect rate were examined. Except for one stent configuration good results were obtained without optimization of process parameters which indicates the suitability of the method to coat large amounts of stents simultaneously in principle. Drug release was tuneable over a wide range of time spans and a wide range of drug loadings was produced. Further work will be necessary to transform the results of this study from a model stent to a clinically relevant product.
Collapse
Affiliation(s)
- Monika Wentzlaff
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Anne Seidlitz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany.
| |
Collapse
|
12
|
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater 2018; 7:175-205. [PMID: 30203125 PMCID: PMC6173682 DOI: 10.1007/s40204-018-0097-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/25/2018] [Indexed: 12/01/2022] Open
Abstract
Compared to bare-metal stents (BMSs), drug-eluting stents (DESs) have been regarded as a revolutionary change in coronary artery diseases (CADs). Releasing pharmaceutical agents from the stent surface was a promising progress in the realm of cardiovascular stents. Despite supreme advantages over BMSs, in-stent restenosis (ISR) and long-term safety of DESs are still deemed ongoing concerns over clinically application of DESs. The failure of DESs for long-term clinical use is associated with following factors including permanent polymeric coating materials, metallic stent platforms, non-optimal drug releasing condition, and factors that have recently been supposed as contributory factors such as degradation products of polymers, metal ions due to erosion and degradation of metals and their alloys utilizing in some stents as metal frameworks. Discovering the direct relation between stent materials and associating adverse effects is a complicated process, and yet it has not been resolved. For clinical success it is of significant importance to optimize DES design and explore novel strategies to overcome all problems including inflammatory response, delay endothelialization, and sub-acute stent thrombosis (ST) simultaneously. In this work, scientific reports are reviewed particularly focusing on recent advancements in DES design which covers both potential improvements of existing and recently novel prototype stent fabrications. Covering a wide range of information from the BMSs to recent advancement, this study mostly sheds light on DES's concepts, namely stent composition, drug release mechanism, and coating techniques. This review further reports different forms of DES including fully biodegradable DESs, shape-memory ones, and polymer-free DESs.
Collapse
Affiliation(s)
- Setareh Borhani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Nanochemical Engineering, School of New Science and Technology, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| |
Collapse
|