1
|
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int J Mol Sci 2025; 26:1967. [PMID: 40076592 PMCID: PMC11900642 DOI: 10.3390/ijms26051967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Water-soluble B vitamins, mainly obtained through dietary intake of fruits, vegetables, grains, and dairy products, act as co-factors in various biochemical processes, including DNA synthesis, repair, methylation, and energy metabolism. These vitamins include B1 (Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic Acid), B6 (Pyridoxine), B7 (Biotin), B9 (Folate), and B12 (Cobalamin). Recent studies have shown that besides their fundamental physiological roles, B vitamins influence oncogenic metabolic pathways, including glycolysis (Warburg effect), mitochondrial function, and nucleotide biosynthesis. Although deficiencies in these vitamins are associated with several complications, emerging evidence suggests that excessive intake of specific B vitamins may also contribute to cancer progression and interfere with therapy due to impaired metabolic and genetic functions. This review discusses the tumor-suppressive and tumor-progressive roles of B vitamins in cancer. It also explores the recent evidence on a comprehensive understanding of the relationship between B vitamin metabolism and cancer progression and underscores the need for further research to determine the optimal balance of B vitamin intake for cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
2
|
Krasnovskaya OO, Akasov RA, Spector DV, Pavlov KG, Bubley AA, Kuzmin VA, Kostyukov AA, Khaydukov EV, Lopatukhina EV, Semkina AS, Vlasova KY, Sypalov SA, Erofeev AS, Gorelkin PV, Vaneev AN, Nikitina VN, Skvortsov DA, Ipatova DA, Mazur DM, Zyk NV, Sakharov DA, Majouga AG, Beloglazkina EK. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12882-12894. [PMID: 36854172 DOI: 10.1021/acsami.3c01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.
Collapse
Affiliation(s)
- Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anna A Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Evgeny V Khaydukov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropot-kinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daria A Ipatova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Alexander G Majouga
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
3
|
Das CGA, Kumar VG, Dhas TS, Karthick V, Kumar CMV. Nanomaterials in anticancer applications and their mechanism of action - A review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102613. [PMID: 36252911 DOI: 10.1016/j.nano.2022.102613] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The current challenges in cancer treatment using conventional therapies have made the emergence of nanotechnology with more advancements. The exponential growth of nanoscience has drawn to develop nanomaterials (NMs) with therapeutic activities. NMs have enormous potential in cancer treatment by altering the drug toxicity profile. Nanoparticles (NPs) with enhanced surface characteristics can diffuse more easily inside tumor cells, thus delivering an optimal concentration of drugs at tumor site while reducing the toxicity. Cancer cells can be targeted with greater affinity by utilizing NMs with tumor specific constituents. Furthermore, it bypasses the bottlenecks of indiscriminate biodistribution of the antitumor agent and high administration dosage. Here, we focus on the recent advances on the use of various nanomaterials for cancer treatment, including targeting cancer cell surfaces, tumor microenvironment (TME), organelles, and their mechanism of action. The paradigm shift in cancer management is achieved through the implementation of anticancer drug delivery using nano routes.
Collapse
Affiliation(s)
- C G Anjali Das
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| |
Collapse
|
4
|
Salehi F, Behboudi H, Salehi E, Ardestani SK, Piroozmand F, Kavoosi G. Apple pectin-based Zataria multiflora essential oil (ZEO) nanoemulsion: An approach to enhance ZEO DNA damage induction in breast cancer cells as in vitro and in silico studies reveal. Front Pharmacol 2022; 13:946161. [PMID: 36133807 PMCID: PMC9483017 DOI: 10.3389/fphar.2022.946161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zataria multiflora essential oil (ZEO) is a natural complex of compounds with a high apoptotic potential against breast cancer cells and minor toxicity toward normal cells; however, similar to many essential oils, ZEO utilization in pharmaceutical industries has limitations due to its labile and sensitive ingredients. Nanoemulsification based on natural polymers is one approach to overcome this issue. In this study, an apple pectin-ZEO nanoemulsion (AP-ZEONE) was prepared and its morphology, FTIR spectra, and physical properties were characterized. Furthermore, it was shown that AP-ZEONE substantially suppresses the viability of MDA-MB-231, T47D, and MCF-7 breast cancer cells. AP-ZEONE significantly induced apoptotic morphological alterations and DNA fragmentation as confirmed by fluorescent staining and TUNEL assay. Moreover, AP-ZEONE induced apoptosis in MDA-MB-231 cells by loss of mitochondrial membrane potential (ΔΨm) associated with the accumulation of reactive oxygen species (ROS), G2/M cell cycle arrest, and DNA strand breakage as flow cytometry, DNA oxidation, and comet assay analysis revealed, respectively. Spectroscopic and computational studies also confirmed that AP-ZEONE interacts with genomic DNA in a minor groove/partial intercalation binding mode. This study demonstrated the successful inhibitory effect of AP-ZEONE on metastatic breast cancer cells, which may be beneficial in the therapy process.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Faculty of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Elaheh Salehi
- Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sussan K. Ardestani
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Firoozeh Piroozmand
- Department of Microbiology, College of Science, University of Tehran, Tehran, Iran
| | - Gholamreza Kavoosi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- *Correspondence: Gholamreza Kavoosi,
| |
Collapse
|
5
|
Lin J, Xia L, Oyang L, Liang J, Tan S, Wu N, Yi P, Pan Q, Rao S, Han Y, Tang Y, Su M, Luo X, Yang Y, Chen X, Yang L, Zhou Y, Liao Q. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene 2022; 41:1024-1039. [PMID: 34997215 PMCID: PMC8837540 DOI: 10.1038/s41388-021-02148-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Cancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.
Collapse
Affiliation(s)
- Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Alkahtani S, Alarifi S, Aljarba NH, Alghamdi HA, Alkahtane AA. Mesoporous SBA-15 Silica-Loaded Nano-formulation of Quercetin: A Probable Radio-Sensitizer for Lung Carcinoma. Dose Response 2022; 20:15593258211050532. [PMID: 35110975 PMCID: PMC8777362 DOI: 10.1177/15593258211050532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is considered as one of the most serious disease worldwide. The progress of drug carriers based on nonmaterial, which selectively hold chemotherapeutic agents to cancer cells, has become a major focus in biomedical research. This study aimed to evaluate the growth inhibition and apoptosis induction of the human lung cancer cells (A-549) by Q-loaded SBA-15 conjugate system. Mesoporous silica nanoparticles (SBA-15) as host materials for transporting therapeutics medicaments were fabricated for targeted drug delivery toward lung cancer. With the objective of increasing bioavailability and aqueous solubility of flavonoids, SBA-15 was successfully loaded with the quercetin (Q)-a major flavonoid and characterized with the help of Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The biological investigation on A549 cell line confirmed that the efficacy of Q-SBA-15 is much higher than only Q. Moreover, the apoptotic pathway of synthesized Q-SBA-15 NPs examined that the Q-SBA-15-mediated apoptosis via PI3K/AKT/mTOR signaling pathway. Thus, the newly conjugated Q-SBA-15 system improved the apoptotic fate through caspase-mediated apoptosis via PI3K/AKT/mTOR signaling pathway and hence, it can be potentially employed as an anticancer agent for lung cancer.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada H. Aljarba
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman
University, Riyadh, Saudi Arabia
| | - Hamzah A. Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Astanov SK, Kasimova GK, Kurtaliev EN, Nizomov NN, Jumabaev A. Electronic nature and structure of aggregates of riboflavin molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119177. [PMID: 33257239 DOI: 10.1016/j.saa.2020.119177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Aggregation process of riboflavin molecules in binary mixtures: water - dioxane, water - DMSO, and ethanol - isobutanol, were investigated using spectroscopic methods and quantum-chemical calculation. It was shown that at a constant concentration of riboflavin and different ratios of binary mixtures, a deformation of the electronic absorption spectra with a hypochromic effect is observed. The observed changes are caused by the formation of a hydrogen bond and dipole-dipole interaction between riboflavin molecules, which is accompanied by a shift and resonance splitting of excited electronic levels.
Collapse
Affiliation(s)
- Salikh Kh Astanov
- Bukhara Engineering and Technological Institute, Murtazaeva str., 15, 200117 Bukhara, Uzbekistan.
| | - Guzal K Kasimova
- Bukhara Engineering and Technological Institute, Murtazaeva str., 15, 200117 Bukhara, Uzbekistan
| | - Eldar N Kurtaliev
- Samarkand State University, University Blvd., 15, 140104 Samarkand, Uzbekistan.
| | - Negmat N Nizomov
- Samarkand State University, University Blvd., 15, 140104 Samarkand, Uzbekistan
| | - Abduvakhid Jumabaev
- Samarkand State University, University Blvd., 15, 140104 Samarkand, Uzbekistan
| |
Collapse
|
8
|
Rezvantalab S, Keshavarz Moraveji M, Khedri M, Maleki R. An insight into the role of riboflavin ligand in the self-assembly of poly(lactic-co-glycolic acid)-based nanoparticles - a molecular simulation and experimental approach. SOFT MATTER 2020; 16:5250-5260. [PMID: 32458880 DOI: 10.1039/d0sm00203h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles (NPs) used for targeted delivery purposes are rapidly gaining importance in diagnostic and therapeutic fields. These agents have been studied extensively so far to reveal their optimal physicochemical properties including the effects of ligands and their density on the surface of NPs. This article was conducted through a computational approach (all-atom molecular dynamics simulations) to predict the stability of NPs based on a poly-lactic-co-glycolic acid (PLGA) hydrophobic core with a poly-ethylene glycol (PEG) hydrophilic shell and varying numbers of riboflavin (RF) molecules as ligands. Depending on the molecular weight of the polymers, the most stable composition of NPs was achieved at 20 wt% and 10 wt% PLGA-PEG-RF for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa polymers, respectively. According to the simulations, riboflavin molecules were located on the surface of the NPs, which would indicate that riboflavin-bound PLGA-PEG NPs could be efficiently utilized for active targeting purposes. To scrutinize the simulation results, NPs with riboflavin ligands were synthesized and put into in vitro experiments. Outstandingly, the empirical outcomes revealed that the hydrodynamic sizes of NPs also met minimum points at 20 and 10 wt% for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa, respectively. Moreover, similar trends in the gyration radius as a function of riboflavin content were observed in the simulation analysis and the experimental results, which would indicate that the method of molecular dynamics (MD) simulation is a reliable mathematical technique and could be applied for predicting the physicochemical properties of NPs.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 71345, Iran
| |
Collapse
|
9
|
Dalal C, Jana NR. Riboflavin-Terminated, Multivalent Quantum Dot as Fluorescent Cell Imaging Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11380-11388. [PMID: 31389703 DOI: 10.1021/acs.langmuir.9b01168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bioconjugated nanoparticles are commonly used for targeting cellular/subcellular components, and labeling performance is known to depend on multivalency, i.e., the number of attached biomolecule per particle. However, these multivalency effects are largely unexplored. Here, we show that multivalency of nanoparticle-bound riboflavin controls the cellular interaction, cellular entry/exit mechanism, and subcellular trafficking property. We have synthesized riboflavin-functionalized quantum dot (QD) of 15-25 nm hydrodynamic size with average riboflavin multivalencies of 15, 30, and 70 [designated as QD(RF)15, QD(RF)30, and QD(RF)70, respectively] and investigated their uptake mechanism in riboflavin receptor overexpressed KB cells. We found that increased multivalency from 15 to 70 increases the cellular interaction with QD, shifts the cell uptake mechanism from caveolae-clathrin to exclusive clathrin-mediated endocytosis, and enhances lysosomal trafficking. This work demonstrates the importance of multivalency of bioconjugated molecule at the nanoparticle surface toward biolabeling performance and should be optimized for best performance of designed nanobioconjugate.
Collapse
Affiliation(s)
- Chumki Dalal
- School of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Nikhil R Jana
- School of Materials Science , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| |
Collapse
|
10
|
Kumar S, Diwan A, Singh P, Gulati S, Choudhary D, Mongia A, Shukla S, Gupta A. Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv 2019; 9:23894-23907. [PMID: 35530631 PMCID: PMC9069781 DOI: 10.1039/c9ra03608c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
Surface-modified gold nanoparticles are recognized as promising gene delivery vehicles in the treatment of cancer owing to their excellent biocompatibility with biomolecules (like DNA or RNA) and their unique optical and structural properties. In this context, this review article focuses on the diverse transfection abilities of the gene to the targeted cell on the basis of different shapes and sizes of gold nanoparticles in order to promote its effective expression for cancer treatment. In addition, recent trends in gold nanoparticle mediated gene silencing, gene delivery, detection and combinatory therapies are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Devanshu Choudhary
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
11
|
Akasov RA, Sholina NV, Khochenkov DA, Alova AV, Gorelkin PV, Erofeev AS, Generalova AN, Khaydukov EV. Photodynamic therapy of melanoma by blue-light photoactivation of flavin mononucleotide. Sci Rep 2019; 9:9679. [PMID: 31273268 PMCID: PMC6609768 DOI: 10.1038/s41598-019-46115-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive and lethal form of cancer. Photodynamic therapy (PDT) is a clinically approved technique for cancer treatment, including non-melanoma skin cancer. However, the most of conventional photosensitizers are of low efficacy against melanoma due to the possible dark toxicity at high drug concentrations, melanin pigmentation, and induction of anti-oxidant defense mechanisms. In the current research we propose non-toxic flavin mononucleotide (FMN), which is a water-soluble form of riboflavin (vitamin B2) as a promising agent for photodynamic therapy of melanoma. We demonstrated selective accumulation of FMN in melanoma cells in vivo and in vitro in comparison with keratinocytes and fibroblasts. Blue light irradiation with dose 5 J/cm2 of melanoma cells pre-incubated with FMN led to cell death through apoptosis. Thus, the IC50 values of human melanoma A375, Mel IL, and Mel Z cells were in a range of FMN concentration 10–30 µM that can be achieved in tumor tissue under systemic administration. The efficiency of reactive oxygen species (ROS) generation under FMN blue light irradiation was measured in single melanoma cells by a label-free technique using an electrochemical nanoprobe in a real-time control manner. Melanoma xenograft regression in mice was observed as a result of intravenous injection of FMN followed by blue-light irradiation of tumor site. The inhibition of tumor growth was 85–90% within 50 days after PDT treatment.
Collapse
Affiliation(s)
- R A Akasov
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia. .,Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997, Miklukho-Maklaya str. 16/10, Moscow, Russia. .,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia. .,National University of Science and Technology «MISIS», Leninskiy Prospect 4, 119991, Moscow, Russia.
| | - N V Sholina
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,FSBSI "N.N. Blokhin National medical research center for oncology" of Ministry of Health of the Russian Federation, 115478, Kashirskoe Shosse 24, Moscow, Russia
| | - D A Khochenkov
- Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,FSBSI "N.N. Blokhin National medical research center for oncology" of Ministry of Health of the Russian Federation, 115478, Kashirskoe Shosse 24, Moscow, Russia.,Togliatti State University, 445020, Belorusskaya str. 14, Togliatti, Russia
| | - A V Alova
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - P V Gorelkin
- Medical Nanotechnology LLC, Stroiteley 4-5-47, 119311, Moscow, Russia
| | - A S Erofeev
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia.,National University of Science and Technology «MISIS», Leninskiy Prospect 4, 119991, Moscow, Russia
| | - A N Generalova
- Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997, Miklukho-Maklaya str. 16/10, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia
| | - E V Khaydukov
- I.M. Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia.,Federal Scientific Research Center «Crystallography and Photonics» Russian Academy of Sciences, 119333, Leninskiy Prospekt 59, Moscow, Russia.,Volgograd State University, 400062, Universitetskiy Prospect, 100, Volgograd, Russia
| |
Collapse
|
12
|
Wu CY, Chen YC. Riboflavin immobilized Fe 3O 4 magnetic nanoparticles carried with n-butylidenephthalide as targeting-based anticancer agents. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:210-220. [PMID: 30663404 DOI: 10.1080/21691401.2018.1548473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
n-Butylidenephthalide (BP) is a potential anti-cancer drug, which can be extracted from Angelica sinensis (Danggui). Previous reports have shown the effectiveness of BP in treating cancer diseases. However, BP has no targeting capacity towards specific cancer cells. To improve treatment efficiency and reduce the dose of BP used in cancer treatment, targeting-based approaches should be developed. In the present study, we used riboflavin-5'-phosphate (RFMP) immobilized iron oxide magnetic nanoparticles (Fe3O4 MNPs) as carriers for BP to treat cancer cell lines derived from liver, prostate and breast. These model cancer cells overexpress riboflavin receptors on their cell membrane and are also sensitive to BP treatment. Thus, BP-binding free RFMP on MNPs can be used as probes to target these model cells, whereas BP can be readily released on target cancer cells. Cell viability was twofold lower by using Fe3O4@RFMP MNPs immobilized with BP than that achieved by using free-form BP at a similar amount. Moreover, BP-Fe3O4@RFMP MNPs have no apparent harmful effects on non-target cells. In addition, we evaluated the level of cysteine-aspartic acid protease 3 (caspase 3) in the resultant cell lysate obtained after treatment by BP-Fe3O4@RFMP MNPs to demonstrate that apoptosis is mainly involved in the growth inhibition of target cells.
Collapse
Affiliation(s)
- Ching-Yi Wu
- a Department of Applied Chemistry , National Chiao Tung University , Hsinchu , Taiwan
| | - Yu-Chie Chen
- a Department of Applied Chemistry , National Chiao Tung University , Hsinchu , Taiwan
| |
Collapse
|
13
|
Szczuko M, Ziętek M, Kulpa D, Seidler T. Riboflavin - properties, occurrence and its use in medicine. Pteridines 2019. [DOI: 10.1515/pteridines-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Riboflavin is built on an isoalloxazin ring, which contains three sixcarbon rings: benzoic, pyrazine and pyrimidine. Riboflavin is synthesized by some bacteria, but among humans and animals, the only source of flavin coenzymes (FAD, FMN) is exogenous riboflavin. Riboflavin transport in enterocytes takes place via three translocators encoded by the SLC52 gene. Deficiency of dietary riboflavin has wide ranging implications for the efficacy of other vitamins, the mechanism of cellular respiration, lactic acid metabolism, hemoglobin, nucleotides and amino acid synthesis. In studies it was found that, pharmacologic daily doses (100 mg) have the potential to react with light, which can have adverse cellular effects. Extrene caution should be exercised when using riboflavin as phototherapy in premature newborns. At the cellular level, riboflavin deficiency leads to increased oxidative stress and causes disorders in the glutathione recycling process. Risk factors for developing riboflavin deficinecy include pregnancy, malnutrition (including anorexia and other eating disorders, vegitarianism, veganism and alcoholism. Furthermore, elderly people and atheletes are also at risk of developing this deficiency. Widespread use of riboflavin in medicine, cancer therapy, treatment of neurodegenerative diseases, corneal ectasia and viral infections has resulted in the recent increased interest in this flavina.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Biochemistry and Human Nutrition , Pomeranian Medical University in Szczecin , Poland
| | - Maciej Ziętek
- Clinic of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin , Poland
| | - Danuta Kulpa
- Department of Genetics, Plant Breeding and Biotechnology , West Pomeranian University of Technology in Szczecin , Poland
| | - Teresa Seidler
- Department of Human Nutrition , West Pomeranian University of Technology in Szczecin , Poland
| |
Collapse
|