1
|
Martino S, Yilmaz D, Tammaro C, Misso G, Esposito A, Falco M, Cossu AM, Lombardi A, Amler E, Divin R, Giannetti A, Scrima M, Dardano P, De Stefano L, Rea I, De Luca AC, Caraglia M. Flexible 3D nanofiber-based SERS biosensor for detection of miRNA-223-3p in early Laryngeal Cancer diagnosis. Talanta 2025; 285:127293. [PMID: 39615084 DOI: 10.1016/j.talanta.2024.127293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/23/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-22 nucleotides) that regulate gene expression and are associated with various diseases, including Laryngeal Cancer (LCa), which has a high mortality rate due to late diagnosis. Traditional methods for miRNA detection present several drawbacks (time-consuming steps, high cost and high false positive rate). Early-stage diagnosis and selective detection of miRNAs remain challenging. This study proposes a 3D flexible biosensor that combines nanofibers (NFs), gold nanoparticles (AuNPs), and an inverse molecular sentinel (iMS) for enzyme-free, SERS-based detection of miRNA-223-3p, evaluated as a potential LCa biomarker. The electrospun flexible nanofibers decorated with AuNPs enhance Raman signal. Selective detection of miRNA-223-3p is achieved by immobilizing an iMS-DNA probe labeled with a Raman reporter (Cyanine 3) on the AuNPs. The iMS distinctive stem-and-loop structure undergoes a conformational change upon interaction with the miRNA-223-3p, producing an "on to off" SERS signal. The proposed sensor demonstrated a linear detection range from 10 to 250 fM, with a limit of detection (LOD) of 19.50 ± 0.05 fM. The sensor selectivity was confirmed by analyzing the SERS signal behaviour in the presence of both Non-complementary miRNA and miRNA with three mismatched base pairs. This easily fabricable sensor requires no amplification and offers key advantages, including sensitivity, flexibility, and cost-effectiveness.
Collapse
Affiliation(s)
- Sara Martino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, National Research Council, 80131, Naples, Italy
| | - Deniz Yilmaz
- Institute for Experimental Endocrinology and Oncology "G. Salvatore"-Second Unit, National Research Council, 80131, Naples, Italy
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Alessandro Esposito
- Institute for Experimental Endocrinology and Oncology "G. Salvatore"-Second Unit, National Research Council, 80131, Naples, Italy
| | - Michela Falco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| | - Angela Lombardi
- U.P. Cytometric and Mutational Diagnostics, AOU Policlinico, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 83031, Naples, Italy
| | - Evzen Amler
- Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic; University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 27343, Bustehrad, Czech Republic
| | - Radek Divin
- Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic; University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 27343, Bustehrad, Czech Republic
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, FI, Italy
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, National Research Council, 80131, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, National Research Council, 80131, Naples, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, National Research Council, 80131, Naples, Italy.
| | - Anna Chiara De Luca
- Institute for Experimental Endocrinology and Oncology "G. Salvatore"-Second Unit, National Research Council, 80131, Naples, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| |
Collapse
|
2
|
Gilic M, Ghobara M, Reissig L. Tuning SERS Signal via Substrate Structuring: Valves of Different Diatom Species with Ultrathin Gold Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101594. [PMID: 37242011 DOI: 10.3390/nano13101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
The discovered light modulation capabilities of diatom silicious valves make them an excellent toolkit for photonic devices and applications. In this work, a reproducible surface-enhanced Raman scattering (SERS) enhancement was achieved with hybrid substrates employing diatom silica valves coated with an ultrathin uniform gold film. Three structurally different hybrid substrates, based on the valves of three dissimilar diatom species, have been compared to elucidate the structural contribution to SERS enhancement. The comparative analysis of obtained results showed that substrates containing cylindrical Aulacoseira sp. valves achieved the highest enhancement, up to 14-fold. Numerical analysis based on the frequency domain finite element method was carried out to supplement the experimental results. Our results demonstrate that diatom valves of different shapes can enhance the SERS signal, offering a toolbox for SERS-based sensors, where the magnitude of the enhancement depends on valve geometry and ultrastructure.
Collapse
Affiliation(s)
- Martina Gilic
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
3
|
Crisci T, Moretti L, Gioffrè M, Casalino M. Mono- and Bilayer Graphene/Silicon Photodetectors Based on Optical Microcavities Formed by Metallic and Double Silicon-on-Insulator Reflectors: A Theoretical Investigation. MICROMACHINES 2023; 14:mi14050906. [PMID: 37241532 DOI: 10.3390/mi14050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
In this work, we theoretically investigate a graphene/silicon Schottky photodetector operating at 1550 nm whose performance is enhanced by interference phenomena occurring inside an innovative Fabry-Pèrot optical microcavity. The structure consists of a hydrogenated amorphous silicon/graphene/crystalline silicon three-layer realized on the top of a double silicon-on-insulator substrate working as a high-reflectivity input mirror. The detection mechanism is based on the internal photoemission effect, and the light-matter interaction is maximized through the concept of confined mode, exploited by embedding the absorbing layer within the photonic structure. The novelty lies in the use of a thick layer of gold as an output reflector. The combination of the amorphous silicon and the metallic mirror is conceived to strongly simplify the manufacturing process by using standard microelectronic technology. Configurations based on both monolayer and bilayer graphene are investigated to optimize the structure in terms of responsivity, bandwidth, and noise-equivalent power. The theoretical results are discussed and compared with the state-of-the-art of similar devices.
Collapse
Affiliation(s)
- Teresa Crisci
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Abramo Lincoln, 5, 81100 Caserta, Italy
- Institute of Applied Science and Intelligent Systems "Eduardo Caianiello" (CNR), Via P. Castellino n. 141, 80131 Naples, Italy
| | - Luigi Moretti
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Abramo Lincoln, 5, 81100 Caserta, Italy
| | - Mariano Gioffrè
- Institute of Applied Science and Intelligent Systems "Eduardo Caianiello" (CNR), Via P. Castellino n. 141, 80131 Naples, Italy
| | - Maurizio Casalino
- Institute of Applied Science and Intelligent Systems "Eduardo Caianiello" (CNR), Via P. Castellino n. 141, 80131 Naples, Italy
| |
Collapse
|
4
|
Ghobara M, Oschatz C, Fratzl P, Reissig L. Numerical Analysis of the Light Modulation by the Frustule of Gomphonema parvulum: The Role of Integrated Optical Components. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010113. [PMID: 36616023 PMCID: PMC9823621 DOI: 10.3390/nano13010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Siliceous diatom frustules present a huge variety of shapes and nanometric pore patterns. A better understanding of the light modulation by these frustules is required to determine whether or not they might have photobiological roles besides their possible utilization as building blocks in photonic applications. In this study, we propose a novel approach for analyzing the near-field light modulation by small pennate diatom frustules, utilizing the frustule of Gomphonema parvulum as a model. Numerical analysis was carried out for the wave propagation across selected 2D cross-sections in a statistically representative 3D model for the valve based on the finite element frequency domain method. The influences of light wavelength (vacuum wavelengths from 300 to 800 nm) and refractive index changes, as well as structural parameters, on the light modulation were investigated and compared to theoretical predictions when possible. The results showed complex interference patterns resulting from the overlay of different optical phenomena, which can be explained by the presence of a few integrated optical components in the valve. Moreover, studies on the complete frustule in an aqueous medium allow the discussion of its possible photobiological relevance. Furthermore, our results may enable the simple screening of unstudied pennate frustules for photonic applications.
Collapse
Affiliation(s)
- Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cathleen Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
5
|
Chai R, Yu L, Dong C, Yin Y, Wang S, Chen Y, Zhang Q. Oxygen-evolving photosynthetic cyanobacteria for 2D bismuthene radiosensitizer-enhanced cancer radiotherapy. Bioact Mater 2022; 17:276-288. [PMID: 35386463 PMCID: PMC8965086 DOI: 10.1016/j.bioactmat.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The local hypoxic tumor environment substantially hampers the therapeutic efficiency of radiotherapy, which typically requires the large X-ray doses for tumor treatment but induces the serious side effects. Herein, a biomimetic radiosensitized platform based on a natural in-situ oxygen-evolving photosynthetic cyanobacteria combined with two-dimensional (2D) bismuthene with high atomic-number (Z) components, is designed and engineered to effectively modulate the radiotherapy-resistant hypoxic tumor environment and achieve sufficient radiation energy deposition into tumor. Upon the exogenous sequential irradiation of 660 nm laser and X-ray beam, continuous photosynthetic oxygen evolution by the cyanobacteria and considerable generation of reactive oxygen species by the 2D bismuthene radiosensitizer substantially augmented the therapeutic efficacy of radiotherapy and suppressed the in vivo tumor growth, as demonstrated on both LLC-lung tumor xenograft-bearing C57/B6 mice model and 4T1-breast tumor xenograft-bearing Balb/c mice model, further demonstrating the photosynthetic hypoxia-alleviation capability and radiosensitization performance of the engineered biomimetic radiosensitized platform. This work exemplifies a distinct paradigm on the construction of microorganism-enabled tumor-microenvironment modulation and nanoradiosensitizer-augmented radiotherapy for efficient tumor treatment. The unique microorganism-based and 2D bismuthene-mediated biomimetic radiosensitization platform has been engineered for enhanced tumor nanotherapy. The photosynthetic production of oxygen has been utilized via natural microorganism cyanobacteria to effectively modulate the radiotherapy-resistant hypoxic tumor environment with high biocompatibility. The biomimetic dual-radiosensitized platform has achieved sufficient radiation energy deposition for inducing overproduction of reactive oxygen species to augment the RT efficacy.
Collapse
Affiliation(s)
- Rong Chai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| |
Collapse
|
6
|
Pan XT, Yang XY, Mao TQ, Liu K, Chen ZZ, Ji LN, Jiang DC, Wang K, Gu ZZ, Xia XH. Super-Long SERS Active Single Silver Nanowires for Molecular Imaging in 2D and 3D Cell Culture Models. BIOSENSORS 2022; 12:bios12100875. [PMID: 36291012 PMCID: PMC9599576 DOI: 10.3390/bios12100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 05/21/2023]
Abstract
Establishing a systematic molecular information analysis strategy for cell culture models is of great significance for drug development and tissue engineering technologies. Here, we fabricated single silver nanowires with high surface-enhanced Raman scattering activity to extract SERS spectra in situ from two-dimensional (2D) and three-dimensional (3D) cell culture models. The silver nanowires were super long, flexible and thin enough to penetrate through multiple cells. A single silver nanowire was used in combination with a four-dimensional microcontroller as a cell endoscope for spectrally analyzing the components in cell culture models. Then, we adopted a machine learning algorithm to analyze the obtained spectra. Our results show that the abundance of proteins differs significantly between the 2D and 3D models, and that nucleic acid-rich and protein-rich regions can be distinguished with satisfactory accuracy.
Collapse
Affiliation(s)
- Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuan-Ye Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Qi Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zao-Zao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - De-Chen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Roychoudhury P, Bose R, Dąbek P, Witkowski A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal-A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6597. [PMID: 36233939 PMCID: PMC9572592 DOI: 10.3390/ma15196597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 05/30/2023]
Abstract
The siliceous exoskeletal shells of diatoms, commonly known as frustules, have drawn attention because of their photoluminescence property and high volume to surface area. Photonic biosilica can also enhance the plasmonic sensitivity of nanoparticles. Because of this, researchers have studied the effectiveness of various metal particles after combining with biosilica. Additionally, naturally occurring diatom-based biosilica has excellent adsorption and absorption capabilities, which have already been exploited for wastewater treatment. Moreover, the nanoporous, ultra-hydrophilic frustules can easily accumulate more molecules on their surfaces. As a consequence, it becomes easier to conjugate noble metals with silica, making them more stable and effective. The main focus of this review is to agglomerate the utility of biocompatible diatom frustules, which is a no-cost natural resource of biosilica, in metal modification and removal.
Collapse
Affiliation(s)
- Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Rahul Bose
- Department of Botany, University of Calcutta, Ballygunge Circular Road 35, Kolkata 700019, India
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
8
|
De Tommasi E, De Luca AC. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:3080-3101. [PMID: 35774319 PMCID: PMC9203090 DOI: 10.1364/boe.457483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/01/2023]
Abstract
Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Endocrinology and Experimental Oncology "Gaetano Salvatore", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| |
Collapse
|
9
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|
10
|
Swartzwelter BJ, Michelini S, Frauenlob T, Barbero F, Verde A, De Luca AC, Puntes V, Duschl A, Horejs-Hoeck J, Italiani P, Boraschi D. Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Front Immunol 2021; 12:751683. [PMID: 34804037 PMCID: PMC8600232 DOI: 10.3389/fimmu.2021.751683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; β-glucan and the β-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, β-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Sara Michelini
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Tobias Frauenlob
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Duschl
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
11
|
Verde A, Mangini M, Managò S, Tramontano C, Rea I, Boraschi D, Italiani P, De Luca AC. SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles. Front Immunol 2021; 12:758410. [PMID: 34691081 PMCID: PMC8530015 DOI: 10.3389/fimmu.2021.758410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
Engineered gold nanoparticles (AuNPs) find application in several fields related to human activities (i.e., food and cosmetic industry or water purification) including medicine, where they are employed for diagnosis, drug delivery and cancer therapy. As for any material/reagent for human use, the safety of AuNPs needs accurate evaluation. AuNPs are prone to contamination by bacterial endotoxin (lipopolysaccharide, LPS), a potent elicitor of inflammatory responses in mammals. It is therefore important, when assessing AuNP immunosafety and immune-related effects, to discriminate between inflammatory effects intrinsic to the NPs from those caused by an undeliberate and undetected LPS contamination. Detection of LPS contamination in AuNP preparations poses different problems when using the current LPS detection assays, given the general interference of NPs, similar to other particulate agents, with the assay reagents and endpoints. This leads to time-consuming search for optimal assay conditions for every NP batch, with unpredictable results, and to the use in parallel of different assays, each with its weaknesses and unpredictability. Thus, the development of highly sensitive, quantitative and accurate assays able to detect of LPS on AuNPs is very important, in view of their medical applications. Surface-enhanced Raman spectroscopy (SERS) is a label-free, sensitive, chemical-specific, nondestructive and fast technique that can be used to directly obtain molecular fingerprint information and a quantitative analysis of LPS adsorbed on AuNPs. Within this study, we describe the use of SERS for the label-free identification and quantitative evaluation - down to few attograms - of the LPS adsorbed on the surface of 50 nm AuNPs. We thus propose SERS as an efficient tool to detect LPS on the AuNP surface, and as the basis for the development of a new sensitive and specific LPS-detection sensor based on the use of AuNPs and SERS.
Collapse
Affiliation(s)
- Alessandro Verde
- Institute for Experimental Endocrinology and Oncology, "G. Salvatore" (IEOS), Second Unit, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy.,Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Maria Mangini
- Institute for Experimental Endocrinology and Oncology, "G. Salvatore" (IEOS), Second Unit, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy.,Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Stefano Managò
- Institute for Experimental Endocrinology and Oncology, "G. Salvatore" (IEOS), Second Unit, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Chiara Tramontano
- Institute of Applied Sciences and Intelligent Systems (ISASI), Unit of Napoli, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), Unit of Napoli, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica "Anton Dohrn", Napoli, Italy.,The Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Anna Chiara De Luca
- Institute for Experimental Endocrinology and Oncology, "G. Salvatore" (IEOS), Second Unit, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy.,Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| |
Collapse
|
12
|
De Tommasi E, Rea I, Ferrara MA, De Stefano L, De Stefano M, Al-Handal AY, Stamenković M, Wulff A. Underwater Light Manipulation by the Benthic Diatom Ctenophora pulchella: From PAR Efficient Collection to UVR Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2855. [PMID: 34835620 PMCID: PMC8621762 DOI: 10.3390/nano11112855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Several species of diatoms, unicellular microalgae which constitute the main component of phytoplankton, are characterized by an impressive photosynthetic efficiency while presenting a noticeable tolerance versus exposure to detrimental UV radiation (UVR). In particular, the growth rate of the araphid diatom Ctenophora pulchella is not significantly affected by harsh treatments with UVR, even in absence of detectable, specific UV-absorbing pigments and even if it is not able to avoid high UV exposure by motility. In this work we applied a multi-disciplinary approach involving numerical computation, photonics, and biological parameters in order to investigate the possible role of the frustule, micro- and nano-patterned silica shell which encloses the cell, in the ability of C. pulchella to efficiently collect photosynthetic active radiation (PAR) and to simultaneously screen the protoplasm from UVR. The characterization of the photonic properties of the frustule has been accompanied by in vivo experiments conducted in water in order to investigate its function as optical coupler between light and plastids.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Maria Antonietta Ferrara
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Mario De Stefano
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Adil Y. Al-Handal
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| | - Marija Stamenković
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
- Department of Ecology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| |
Collapse
|
13
|
Das GM, Managò S, Mangini M, De Luca AC. Biosensing Using SERS Active Gold Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2679. [PMID: 34685120 PMCID: PMC8539114 DOI: 10.3390/nano11102679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool for biosensing applications owing to its fingerprint recognition, high sensitivity, multiplex detection, and biocompatibility. This review provides an overview of the most significant aspects of SERS for biomedical and biosensing applications. We first introduced the mechanisms at the basis of the SERS amplifications: electromagnetic and chemical enhancement. We then illustrated several types of substrates and fabrication methods, with a focus on gold-based nanostructures. We further analyzed the relevant factors for the characterization of the SERS sensor performances, including sensitivity, reproducibility, stability, sensor configuration (direct or indirect), and nanotoxicity. Finally, a representative selection of applications in the biomedical field is provided.
Collapse
Affiliation(s)
| | - Stefano Managò
- Laboratory of Biophotonics and Advanced Microscopy, Second Unit, Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (G.M.D.); (M.M.)
| | | | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Second Unit, Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (G.M.D.); (M.M.)
| |
Collapse
|
14
|
In-Situ Synthesis of Methyl Cellulose Film Decorated with Silver Nanoparticles as a Flexible Surface-Enhanced Raman Substrate for the Rapid Detection of Pesticide Residues in Fruits and Vegetables. MATERIALS 2021; 14:ma14195750. [PMID: 34640144 PMCID: PMC8510044 DOI: 10.3390/ma14195750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to develop a flexible substrate methylcellulose-decorated silver nanoparticles (MC/Ag NPs) film and explore its application in fruits and vegetables by surface enhanced Raman spectroscopy (SERS) technology for rapid detection of pesticides. The performance of the MC/Ag NPs film substrate was characterized by Nile blue A (NBA), and the detection limit was as low as 10−8 M. The substrate also exhibited satisfactory Raman signal strength after two months of storage. The impressive sensitivity and stability were due to the excellent homogeneity of the silver nanoparticles that were grown in situ in the methylcellulose matrix, which generated “hot spots” between the silver nanoparticles without a large amount of aggregation, and resulted in the ultra-high sensitivity and excellent stability of the MC/Ag NPs film substrate. The MC/Ag NPs film substrate was used to detect thiram pesticides on tomato and cucumber peels, and the minimum detectable level of thiram was 2.4 ng/cm2, which was much lower than the maximum residue level. These results indicate that the MC/Ag NPs film is sensitive to rapid detection of multiple pesticides in food.
Collapse
|
15
|
Managò S, Tramontano C, Delle Cave D, Chianese G, Zito G, De Stefano L, Terracciano M, Lonardo E, De Luca AC, Rea I. SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonic-Assisted Diatomite Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101711. [PMID: 34302422 DOI: 10.1002/smll.202101711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The small molecule Galunisertib (LY2157299, LY) shows multiple anticancer activities blocking the transforming growth factor-β1 receptor, responsible for the epithelial-to-mesenchymal transition (EMT) by which colorectal cancer (CRC) cells acquire migratory and metastatic capacities. However, frequent dosing of LY can produce highly toxic metabolites. Alternative strategies to reduce drug side effects can rely on nanoscale drug delivery systems that have led to a medical revolution in the treatment of cancer, improving drug efficacy and lowering drug toxicity. Here, a hybrid nanosystem (DNP-AuNPs-LY@Gel) made of a porous diatomite nanoparticle decorated with plasmonic gold nanoparticles, in which LY is retained by a gelatin shell, is proposed. The multifunctional capability of the nanosystem is demonstrated by investigating the efficient LY delivery, the enhanced EMT reversion in CRCs and the intracellular quantification of drug release with a sub-femtogram resolution by surface-enhanced Raman spectroscopy (SERS). The LY release trigger is the pH sensitivity of the gelatin shell to the CRC acidic microenvironment. The drug release is real-time monitored at single-cell level by analyzing the SERS signals of LY in CRC cells. The higher efficiency of LY delivered by the DNP-AuNPs-LY@Gel complex paves the way to an alternative strategy for lowering drug dosing and consequent side effects.
Collapse
Affiliation(s)
- Stefano Managò
- National Research Council, Institute of Biochemistry and Cell Biology, Naples, 80131, Italy
| | - Chiara Tramontano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
- University of Naples Federico II, Department of Pharmacy, Naples, 80131, Italy
| | - Donatella Delle Cave
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Giovanna Chianese
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Gianluigi Zito
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Monica Terracciano
- University of Naples Federico II, Department of Pharmacy, Naples, 80131, Italy
| | - Enza Lonardo
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute of Biochemistry and Cell Biology, Naples, 80131, Italy
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| |
Collapse
|
16
|
Surface-Enhanced Raman Spectroscopy for Molecule Characterization: HIM Investigation into Sources of SERS Activity of Silver-Coated Butterfly Scales. NANOMATERIALS 2021; 11:nano11071741. [PMID: 34361126 PMCID: PMC8308157 DOI: 10.3390/nano11071741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for obtaining structural information of molecules in solution at low concentrations. While commercial SERS substrates are available, high costs prevent their wide-spread use in the medical field. One solution is to prepare requisite noble metal nanostructures exploiting natural nanostructures. As an example of biomimetic approaches, butterfly wing scales with their intricate nanostructures have been found to exhibit exquisite SERS activity when coated with silver. Selecting appropriate scales from particular butterfly species and depositing silver of certain thicknesses leads to significant SERS activity. For morphological observations we used scanning electron microscopes as well as a helium ion microscope, highly suitable for morphological characterization of poorly conducting samples. In this paper, we describe a protocol for carrying out SERS measurements based on butterfly wing scales and demonstrate its LOD with a common Raman reporter, rhodamine 6 G. We also emphasize what special care is necessary in such measurements. We also try to shed light on what makes scales work as SERS substrates by carefully modifying the original nanostructures. Such a study allows us to either use scales directly as a raw material for SERS substrate or provides an insight as to what nanostructures need to be recreated for synthetic SERS substrates.
Collapse
|
17
|
Affiliation(s)
- Danni Zhong
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Zhen Du
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Min Zhou
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
- State Key Laboratory of Modern Optical Instrumentations Zhejiang University Hangzhou China
| |
Collapse
|
18
|
Tramontano C, Managò S, Delle Cave D, Chianese G, Lonardo E, De Stefano L, De Luca AC, Rea I. Intracellular SERS monitoring of drug release from plasmonic-assisted biosilica nanoparticles. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202125513002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nanoscale delivery systems have been investigated for therapy due to their advantages, including the sustained delivery of drugs to cells and reduction of systemic toxicity compared to conventional treatments. However, their application is still hampered by experimental challenges, such as the investigation of the drug release in cells rather than in vitro. Here, we describe a hybrid nanoplatform for monitoring the drug release in living colorectal cancer (CRC) cells by Surface-Enhanced Raman Scattering (SERS). Specifically, the anticancer drug Galunisertib is encapsulated in diatomite nanoparticles (DNPs) decorated by gold nanoparticles (AuNPs) and capped by gelatin. The combination of DNP loading capacities with the Raman enhancement of Galunisertib provided by AuNPs enables bio-imaging and drug delivery without using fluorophores or markers, avoiding fluorescence-quenching issues. Thanks to the Raman enhancement of Galunisertib, the drug release profile is monitored and quantified in living cells by SERS with a femtogram scale resolution. When the gelatin shell is digested by proteases, Galunisertib is released and its SERS spectrum decreases, allowing real-time quantification in CRC cells. The therapeutic efficiency of the Galunisertib delivery platform offers an alternative route for lowering drug dose and toxicity.
Collapse
|
19
|
Physical, Chemical, and Genetic Techniques for Diatom Frustule Modification: Applications in Nanotechnology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diatom frustules represent one of the most complex examples of micro- and nano-structured materials found in nature, being the result of a biomineralization process refined through tens of milions of years of evolution. They are constituted by an intricate, ordered porous silica matrix which recently found several applications in optoelectronics, sensing, solar light harvesting, filtering, and drug delivery, to name a few. The possibility to modify the composition and the structure of frustules can further broaden the range of potential applications, adding new functions and active features to the material. In the present work the most remarkable physical and chemical techniques aimed at frustule modification are reviewed, also examining the most recent genetic techniques developed for its controlled morphological mutation.
Collapse
|
20
|
Editorial for the Special Issue on Miniaturized Silicon Photodetectors: New Perspectives and Applications. MICROMACHINES 2020; 11:mi11111010. [PMID: 33212757 PMCID: PMC7697994 DOI: 10.3390/mi11111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022]
|
21
|
Wang K, Sun DW, Pu H, Wei Q. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2020; 223:121782. [PMID: 33298287 DOI: 10.1016/j.talanta.2020.121782] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
The development of flexible and robust plasmonic substrates has become a hot research topic in simplifying and extending the application of surface-enhanced Raman scattering (SERS) technique for real-world analysis. In this work, a facile method to fabricate an Au@Ag nanoparticle array sandwiched between the adhesive acrylic polymer tape and polyethene terephthalate (PET) film (T/Au@Ag/PET) as a high-performance SERS chip was reported for nondestructive detection of thiram on fruit peels. For this SERS chip, the ordered Au@Ag nanoparticle array formed by the self-assembly method was closely-packed, which generated high-density sub-3-nm gaps and could produce high reproducible and sensitive SERS enhancement effects. The measurement of crystal violet with the limit of detection of 7.24 × 10-10 M was realized by targeting Raman shift at 1177 cm-1. Moreover, the excellent flexible feature of acrylic polymer tape enabled the substrate to withstand a tensile strain value of 20% for three cycles without significantly losing its SERS activity. By covering with a PET film, the SERS chip could maintain 87% SERS activity after storage for 60 days in the air environment, and could well withstand the influence of harsh conditions such as high temperature and ultrasound treatments. As a proof of the concept, the SERS tape was directly used to detect thiram on apple, tomato, and cucumber peels via a simple sampling-and-detection procedure, and the detection limit of 5 ng/cm2 was achieved. The T/Au@Ag/PET SERS chip should hold a promising candidate for food safety analysis in the future.
Collapse
Affiliation(s)
- Kaiqiang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
22
|
Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196811] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diatoms—unicellular photosynthetic algae—are promising natural sources of nanostructured silica. These microorganisms produce in their membrane approximately a highly ordered porous cell wall called a frustule as protection from environmental stress. Diatom frustules consist of hydrated silica that show peculiar properties including biocompatibility, tailorable surface chemistry, chemical inertness, and thermal stability. Frustules harvested from aquatic ecosystems or diatomaceous fossil sediments represent an excellent cost-effective source of biosilica for a broad range of biomedical applications. The porous ultrastructure of the frustules displays a large surface area available for coating with various biomolecules through different functionalization methods. In this review article, we highlight the main features of diatom biosilica and present some of the most advantageous properties that support the employment of frustules in the field of drug delivery, biosensing, and regenerative medicine. In particular, it is offered an insight into the most common functionalization strategies through which diatom physicochemical properties can be modified and tailored according to the described field of application.
Collapse
|
23
|
Elumalai S, Managó S, De Luca AC. Raman Microscopy: Progress in Research on Cancer Cell Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5525. [PMID: 32992464 PMCID: PMC7582629 DOI: 10.3390/s20195525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, Raman Spectroscopy (RS) was demonstrated to be a label-free, non-invasive and non-destructive optical spectroscopy allowing the improvement in diagnostic accuracy in cancer and analytical assessment for cell sensing. This review discusses how Raman spectra can lead to a deeper molecular understanding of the biochemical changes in cancer cells in comparison to non-cancer cells, analyzing two key examples, leukemia and breast cancer. The reported Raman results provide information on cancer progression and allow the identification, classification, and follow-up after chemotherapy treatments of the cancer cells from the liquid biopsy. The key obstacles for RS applications in cancer cell diagnosis, including quality, objectivity, number of cells and velocity of the analysis, are considered. The use of multivariant analysis, such as principal component analysis (PCA) and linear discriminate analysis (LDA), for an automatic and objective assessment without any specialized knowledge of spectroscopy is presented. Raman imaging for cancer cell mapping is shown and its advantages for routine clinical pathology practice and live cell imaging, compared to single-point spectral analysis, are debated. Additionally, the combination of RS with microfluidic devices and high-throughput screening for improving the velocity and the number of cells analyzed are also discussed. Finally, the combination of the Raman microscopy (RM) with other imaging modalities, for complete visualization and characterization of the cells, is described.
Collapse
Affiliation(s)
| | | | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via P. Castellino 111, 80131 Naples, Italy; (S.E.); (S.M.)
| |
Collapse
|
24
|
Casalino M. Theoretical Investigation of Near-Infrared Fabry-Pérot Microcavity Graphene/Silicon Schottky Photodetectors Based on Double Silicon on Insulator Substrates. MICROMACHINES 2020; 11:mi11080708. [PMID: 32707786 PMCID: PMC7465991 DOI: 10.3390/mi11080708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022]
Abstract
In this work a new concept of silicon resonant cavity enhanced photodetector working at 1550 nm has been theoretically investigated. The absorption mechanism is based on the internal photoemission effect through a graphene/silicon Schottky junction incorporated into a silicon-based Fabry–Pérot optical microcavity whose input mirror is constituted by a double silicon-on-insulator substrate. As output mirror we have investigated two options: a distributed Bragg reflector constituted by some periods of silicon nitride/hydrogenated amorphous silicon and a metallic gold reflector. In addition, we have investigated and compared two configurations: one where the current is collected in the transverse direction with respect to the direction of the incident light, the other where it is collected in the longitudinal direction. We show that while the former configuration is characterized by a better responsivity, spectral selectivity and noise equivalent power, the latter configuration is superior in terms of bandwidth and responsivity × bandwidth product. Our results show responsivity of 0.24 A/W, bandwidth in GHz regime, noise equivalent power of 0.6 nW/cm√Hz and full with at half maximum of 8.5 nm. The whole structure has been designed to be compatible with silicon technology.
Collapse
Affiliation(s)
- Maurizio Casalino
- Institute of Applied Science and Intelligent Systems "Eduardo Caianiello" (CNR), Via P. Castellino n. 141, 80131 Naples, Italy
| |
Collapse
|
25
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
26
|
Sun L, Cai J, Sun Y, Zhang D. Three-dimensional assembly of silver nanoparticles spatially confined by cellular structure of Spirulina, from nanospheres to nanosheets. NANOTECHNOLOGY 2019; 30:495704. [PMID: 31469089 DOI: 10.1088/1361-6528/ab3ee7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three-dimensional (3D) ordered construction of nanoparticles (NPs) has attracted much attention in wide applications, however, techniques with respect to cost effective nanofabrication of well defined functional architectures is still lacking. To address this specific issue, a bio-interface confinement approach is proposed that precisely replicates the complex cellular structural features of microbes and integrates silver NP (SNP) building blocks into their 3D framework in a precise, low cost and mass production way. Herein, the SNPs with nanospheres and nanosheets structure were synthesized by way of electroless deposition using Spirulina as template. Results showed that SNPs were orderly assembled along the cellular structure, and the spatially confinement of cellular texture induced the transformation of SNPs from sphere to flake morphology during their continuous growth. The silver assembly not only shows good antibacterial activity, but also exhibits excellent surface enhanced Raman scattering (SERS) performance with the enhancement factor as high as 5.95 × 108 and good recuperability towards Rhodamine 6G. The fascinating SERS performance can be ascribed to the combined action of nanosheets morphology of SNPs, hierarchical nanostructure of the cellular structure, and the small interparticle spacing. This strategy provides an effective strategy for controllable and ordered 3D assembly of NPs by using the cellular texture.
Collapse
Affiliation(s)
- Lili Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Sasirekha R, Sheena TS, Anitha R, Santhanam P, Kulandaivel J. Characterizations and analysis of genus Amphora diatom frustules: a promising biomaterial. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, the authors have synthesized biosilica from marine diatoms (Amphora sp.) by using an optimized procedure with a combination of acid and salt washing treatments. The purification of frustules employed a simple methodology that combines acid digestion and rinsing with hydrogen peroxide. The content of Amphora sp. biosilica has been analyzed through energy-dispersive spectroscopy. The result declares the purity of biosilica, which is highly pristine in comparison to diatomaceous earth. The structural architecture of Amphora sp. is typically amorphous in nature. Moreover, Amphora sp. biosilica has a mesopore diameter and a surface area of 4·838 nm and 332 m2/g, respectively, which are relatively higher than those from previous reports. The adsorption/desorption isotherm results suggest that the derived frustules have a highly porous architecture, which shows their great potential to be used as drug delivery carriers, biosensors, biocatalysts and adsorbents in the future.
Collapse
Affiliation(s)
- Rajendran Sasirekha
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirapalli, India
| | - Thankaraj Salammal Sheena
- Center for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirapalli, India
| | - Radhakrishnan Anitha
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirapalli, India
| | - Perumal Santhanam
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirapalli, India
| | - Jeganathan Kulandaivel
- Center for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirapalli, India
| |
Collapse
|
28
|
Zhao N, Li H, Xie Y, Feng Z, Wang Z, Yang Z, Yan X, Wang W, Tian C, Yu H. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Electrophoresis 2019; 40:3123-3131. [PMID: 31576580 DOI: 10.1002/elps.201900285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 11/06/2022]
Abstract
Plasmonic nanomaterials possessing large-volume, high-density hot spots with high field enhancement are highly desirable for ultrasensitive surface-enhanced Raman scattering (SERS) sensing. However, many as-prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two-step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2 ). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi-periodic cloud-like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large-area accessible dense hot spots. The optimized 3D-structured SERS substrate exhibits high-quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10-9 M. Furthermore, the as-prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10-7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large-area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS-based sensors.
Collapse
Affiliation(s)
- Nan Zhao
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Hefu Li
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Yanru Xie
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Zhenbao Feng
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Zongliang Wang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Zhenshan Yang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Xunling Yan
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Wenjun Wang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Cunwei Tian
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Huishan Yu
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| |
Collapse
|
29
|
Romano S, Zito G, Lara Yépez SN, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. OPTICS EXPRESS 2019; 27:18776-18786. [PMID: 31252814 DOI: 10.1364/oe.27.018776] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.
Collapse
|
30
|
Rusciano G, Sasso E, Capaccio A, Zambrano N, Sasso A. Revealing membrane alteration in cellsoverexpressing CA IX and EGFR by Surface-Enhanced Raman Scattering. Sci Rep 2019; 9:1832. [PMID: 30755643 PMCID: PMC6372785 DOI: 10.1038/s41598-018-37997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Sensitive detection of altered proteins expression in plasma membranes is of fundamental importance, for both diagnostic and prognostic purposes. Surface-Enhanced Raman Scattering (SERS) has proven to be a quite sensitive approach to detect proteins, even in very diluted samples. However, proteins detection in complex environment, such as the cellular membrane, is still a challenge. Herein, we demonstrate a SERS-based platform to reveal the overexpression of target proteins in cell membranes. As a proof of concept, we implemented ectopic expression of carbonic anhydrase IX (CA IX) and epidermal growth factor receptor (EGFR) in the plasma membrane of the SKOV3 tumor cell line. Our outcomes demonstrate that SERS signals from cells put in contact with a hyperuniform SERS substrate allow highlighting subtle differences in the biochemical composition of cell membranes, normally hidden in spontaneous Raman confocal microscopy. This opens new opportunities for a label-free membrane analysis and bio-sensing in a broader sense.
Collapse
Affiliation(s)
- Giulia Rusciano
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Univesitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy. .,National Institute of Optics (INO)-National Research Council (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, NA, Italy.
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, I-80131, Naples, Italy.,CEINGE Advanced Biotechnologies S.C.aR.L., Via G. Salvatore 486, I-80145, Naples, Italy.,Nouscom SRL, Rome, Italy
| | - Angela Capaccio
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Univesitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, I-80131, Naples, Italy. .,CEINGE Advanced Biotechnologies S.C.aR.L., Via G. Salvatore 486, I-80145, Naples, Italy.
| | - Antonio Sasso
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Univesitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy.,National Institute of Optics (INO)-National Research Council (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, NA, Italy
| |
Collapse
|
31
|
UV-shielding and wavelength conversion by centric diatom nanopatterned frustules. Sci Rep 2018; 8:16285. [PMID: 30390006 PMCID: PMC6214969 DOI: 10.1038/s41598-018-34651-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022] Open
Abstract
Diatoms can represent the major component of phytoplankton and contribute massively to global primary production in the oceans. Over tens of millions of years they developed an intricate porous silica shell, the frustule, which ensures mechanical protection, sorting of nutrients from harmful agents, and optimization of light harvesting. Several groups of microalgae evolved different strategies of protection towards ultraviolet radiation (UVR), which is harmful for all living organisms mainly through the formation of dimeric photoproducts between adjacent pyrimidines in DNA. Even in presence of low concentrations of UV-absorbing compounds, several diatoms exhibit significant UVR tolerance. We here investigated the mechanisms involved in UVR screening by diatom silica investments focusing on single frustules of a planktonic centric diatom, Coscinodiscus wailesii, analyzing absorption by the silica matrix, diffraction by frustule ultrastructure and also UV conversion into photosynthetically active radiation exerted by nanostructured silica photoluminescence. We identified the defects and organic residuals incorporated in frustule silica matrix which mainly contribute to absorption; simulated and measured the spatial distribution of UVR transmitted by a single valve, finding that it is confined far away from the diatom valve itself; furthermore, we showed how UV-to-blue radiation conversion (which is particularly significant for photosynthetic productivity) is more efficient than other emission transitions in the visible spectral range.
Collapse
|
32
|
Lomora M, Shumate D, Rahman AA, Pandit A. Therapeutic Applications of Phytoplankton, with an Emphasis on Diatoms and Coccolithophores. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mihai Lomora
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - David Shumate
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
- Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Asrizal Abdul Rahman
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| |
Collapse
|