1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Huang Z, Li Q, Zhang X, Xue H, Liao W, Yin C, Yuan J, Tao L, Wei Y. A series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structure for drugs delivery systems of paclitaxel: Synthesis, structure-activity relationship and anti-tumors effect. Colloids Surf B Biointerfaces 2024; 244:114136. [PMID: 39116602 DOI: 10.1016/j.colsurfb.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Aggregation-induced emission (AIE) materials are attracting great attention in biomedical fields such as sensors, bioimaging, and cancer treatment, et al. due to their strong fluorescence emission in the aggregated state. In this contribution, a series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structures were synthesized by Suzuki coupling reaction and Knoevenagel condensation, and their relationship of chemical structure and fluorescence properties was investigated in detail, among which TPPA compound was selected as the monomer owing to the longest emission wavelength at about 530 nm with low energy band gap ΔE 3.09 eV of neutral TPPA and 1.43 eV of protonated TPPA. Novel amphiphilic AIE PEG-TA copolymers were prepared by RAFT polymerization of TPPA and PEGMA with about 1.44×104 Mw and narrow PDI, and the molar ratio of TPPA in the PEG-TA1 and PEG-TA2 copolymers was about 23.4 % and 29.6 %. The as-prepared PEG-TA copolymers would self-assembled in aqueous solution to form core-shell structures with a diameter of 150-200 nm, and their emission wavelength could reversibly convert from 545 nm to 650 nm with excellent pH sensitivity. The CLSM images showed that the PEG-TA FONs and PTX drugs-loaded PTX-TA FONs could be endocytosed by cells and mainly enriched in the cytoplasm, and CCK-8 results showed that the PEG-TA FONs had excellent biocompatibility but PTX-TA FONs had high inhibition ratio for A549 cells, moreover, the flow cytometry also showed that PTX-TA FONs could result in the apoptosis of A549 cells with some extent anti-tumor effect.
Collapse
Affiliation(s)
- Zengfang Huang
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China.
| | - Qiusha Li
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Xiaotong Zhang
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China; School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Haoyu Xue
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Wenxi Liao
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Chunmei Yin
- Zhongshan Institute, University of Electronic Science & Technology of China, Zhongshan 528402, PR China
| | - Jinying Yuan
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Lei Tao
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China
| | - Yen Wei
- Department of Chemistry, the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Wang J, Yang Y, Gu F, Zhai X, Yao C, Zhang J, Jiang C, Xi X. Molecular Engineering Modulating the Singlet-Triplet Energy Splitting of Indolocarbazole-Based TADF Emitters Exhibiting AIE Properties for Nondoped Blue OLEDs with EQE of Nearly 20. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59643-59654. [PMID: 38090754 DOI: 10.1021/acsami.3c14230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of efficient blue thermally activated delayed fluorescence (TADF) emitters with an aggregation-induced emission (AIE) nature, for the construction of organic light-emitting diodes (OLEDs), is still insufficient. This can be attributed to the challenges encountered in molecular design, including the inherent trade-off between radiative decay and reverse intersystem crossing (RISC), as well as small singlet-triplet energy splitting (ΔEST) and the requirement for high photoluminescence quantum yields (ΦPL). Herein, we present the design of three highly efficient blue TADF molecules with AIE characteristics by combining π-extended donors with different acceptors to modulate the differences in the electron-donating and electron-withdrawing abilities. This approach not only ensures high emission efficiency by suppressing close π-π stacking, weakening nonradiative relaxation, and enhancing radiative transition but also maintains the equilibrium ratio between the triplet and singlet excitons by facilitating the process of RISC. These emitters exhibit AIE and TADF properties, featuring quick radiative rates and low nonradiative rates. The ΦPL of these emitters reached an impressive 88%. Based on their excellent comprehensive performance, nondoped PICzPMO and PICzPMO OLEDs achieved excellent electroluminescence performance, exhibiting maximum external quantum efficiency (EQEmax) of up to 19.5%, while the doped device achieved a higher EQEmax of 20.8%. This work demonstrated that by fusing π-extended large rigid donors with different acceptors, it is possible to regulate the difference in electron-donating and electron-withdrawing abilities, resulting in a small ΔEST, high ΦPL, and fast RISC process, which is a highly feasible strategy for designing efficient TADF molecules.
Collapse
Affiliation(s)
- Jinshan Wang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuguang Yang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fei Gu
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuesong Zhai
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chuang Yao
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China
| | - Jianfeng Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Cuifeng Jiang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xinguo Xi
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
4
|
Liu J, Zhao Z, Li Q, Hua L, Zhao H, Yu C, Cao W, Ren Z. Thermally Activated Delayed Fluorescence Emitters Based on a Special Tetrahedral Silane Core. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874777 DOI: 10.1021/acsami.3c08770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Based on the tetraphenylsilane skeleton, a new class of thermally activated delayed fluorescence (TADF) molecules have been designed and synthesized. Benefiting from the unique tetrahedron architecture of tetraphenylsilane, the intermolecular distance between TADF units can be enlarged and thus weakened the aggregation-induced quenching of triplet excitons. By adjusting the numbers of TADF subunits, the spin-orbit coupling processes can be controlled, leading to efficient up-conversion processes. The related OLEDs are fabricated through the solution processing technology, and pure-blue and green electroluminescence were observed with maximum external quantum efficiencies (EQEmax) of 6.6 and 13.8% as well as Commission Internationale de l'Eclairage coordinates of (0.14, 0.15) and (0.25, 0.45), respectively. This study provides a new idea for designing color-tunable TADF emitters through spatial structure regulation.
Collapse
Affiliation(s)
- Junhui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haisong Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | - Weiyu Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Zhou T, Zhang W, Cao Q, Zhang K, Ban X, Pei M, Wang J. Unveiling the In Situ and Solvent Polymerization Engineering for Highly Efficient and Flexible Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37197999 DOI: 10.1021/acsami.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thermally activated delayed fluorescence (TADF) polymer has great potential for the construction of flexible solution-processed organic light-emitting diodes (OLEDs). However, the relationship between polymerization engineering and device functions has rarely been reported. Here, two novel TADF polymers, P-Ph4CzCN and P-Ph5CzCN, with a small energy gap between the first excited singlet and triplet states (ΔEST; <0.16 eV) were newly developed by both solvent and in situ polymerization of a styrene component. Detailed device performance testing indicates that both polymerization strategies ensure that the TADF polymer achieves comparable high efficiencies in commonly rigid devices, and the maximum external quantum efficiencies (EQEmax) were 11.9%, 14.1%, and 16.2% for blue, green, and white OLEDs, respectively. Although in situ polymerization provides a simplified device fabrication process, which avoids the complicated synthesis and purification of the polymer, the inevitable high-temperature annealing makes it fail in a plastic substrate device. In contrast, P-Ph5CzCN achieved by solvent polymerization enables the successful fabrication of a flexible device on a poly(ethylene terephthalate) (PET) substrate, which was the first reported flexible OLED based on a TADF polymer. This work provides a strong guideline for the simple fabrication of TADF polymer devices and the application of TADF polymer materials in OLED flexible panels and flexible lighting.
Collapse
Affiliation(s)
- Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Wenhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Qingpeng Cao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Ming Pei
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jiayi Wang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| |
Collapse
|
6
|
Zhang M, Dai G, Zheng C, Wang K, Shi Y, Fan X, Lin H, Tao S, Zhang X. New electron-donating segment to develop thermally activated delayed fluorescence emitters for efficient solution-processed non-doped organic light-emitting diodes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang J, Zhang J, Jiang C, Yao C, Xi X. Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57713-57724. [PMID: 34813274 DOI: 10.1021/acsami.1c17449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-color purity organic emitters with a simultaneous combination of aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) characteristics are in great demand due to their excellent comprehensive performances toward efficient organic light-emitting diodes (OLEDs). In this work, two D-π-A-structure emitters, ICz-DPS and ICz-BP, exhibiting AIE and TADF properties were developed, and both the emitters have narrow singlet (S1)-triplet (T1) splitting (ΔEST) and excellent photoluminescence (PL) quantum yields (ΦPL), derived from the distorted configurations and weak intra/intermolecular interactions, suppressing exciton annihilation and concentration quenching. Their doped OLEDs based on ICz-BP provide an excellent electroluminescence external quantum efficiency (ηext) and current efficiency (ηC) of 17.7% and 44.8 cd A-1, respectively, with an ηext roll-off of 2.9%. Their nondoped OLEDs based on ICz-DPS afford high efficiencies of 11.7% and 30.1 cd A-1, with pure-blue emission with Commission Internationale de l'Éclairage (CIE) coordinates of (0.15, 0.08) and a low roll-off of 6.0%. This work also shows a strategy for designing AIE-TADF molecules by rational use of steric hindrance and weak inter/intramolecular interactions to realize high ΦPL values, fast reverse intersystem crossing process, and reduced nonradiative transition process properties, which may open the way toward highly efficient and small-efficiency roll-off devices.
Collapse
Affiliation(s)
- Jinshan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jianfeng Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Cuifeng Jiang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chuang Yao
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China
| | - Xinguo Xi
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
Chen D, Kusakabe Y, Ren Y, Sun D, Rajamalli P, Wada Y, Suzuki K, Kaji H, Zysman-Colman E. Multichromophore Molecular Design for Thermally Activated Delayed-Fluorescence Emitters with Near-Unity Photoluminescence Quantum Yields. J Org Chem 2021; 86:11531-11544. [PMID: 34323488 DOI: 10.1021/acs.joc.1c01101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Three multichromophore thermally activated delayed fluorescence (TADF) molecules, p-di2CzPN, m-di2CzPN, and 1,3,5-tri2CzPN, were synthesized and characterized. These molecules were designed by connecting the TADF moiety 4,5-di(9H-carbazol-9-yl)phthalonitrile (2CzPN) to different positions of a central benzene ring scaffold. Three highly soluble emitters all exhibited near-quantitative photoluminescence quantum yields (ΦPL) in toluene. High ΦPLs were also achieved in doped films, 59 and 70% for p-di2CzPN and m-di2CzPN in 10 wt % DPEPO doped film, respectively, and 54% for 1,3,5-tri2CzPN in 20 wt % doped CBP films. The rate constant of reverse intersystem crossing (kRISC) for p-di2CzPN and m-di2CzPN in DPEPO films reached 1.1 × 105 and 0.7 × 105 s-1, respectively, and kRISC for 1,3,5-tri2CzPN in the CBP film reached 1.7 × 105 s-1. A solution-processed organic light-emitting diode based on 1,3,5-tri2CzPN exhibited a sky-blue emission with CIE coordinates of (0.22, 0.44) and achieved a maximum external quantum efficiency of 7.1%.
Collapse
Affiliation(s)
- Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Yu Kusakabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yongxia Ren
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Pachaiyappan Rajamalli
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Yoshimasa Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
9
|
Lee Y, Han YJ, Cho KY, Cho KH, Jeong YC. Large-Scale and High-Resolution Patterning Based on the Intense Pulsed Light Transfer of Inkjet-Printed Light-Emitting Materials. Macromol Res 2021. [DOI: 10.1007/s13233-021-9017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Strategy to improve the efficiency of solution-processed phosphorescent organic light-emitting devices by modified TADF host with tert-butyl carbazole. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Potopnyk MA, Kravets M, Luboradzki R, Volyniuk D, Sashuk V, Grazulevicius JV. Carbazole-modified thiazolo[3,2- c][1,3,5,2]oxadiazaborinines exhibiting aggregation-induced emission and mechanofluorochromism. Org Biomol Chem 2021; 19:406-415. [PMID: 33313635 DOI: 10.1039/d0ob02225j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two highly emissive carbazole-containing thiazole-fused oxadiazaborinines were designed and synthesized. These N,O-chelated organoboron dyes displayed large Stokes shifts and remarkable solvatofluorochromism in solutions, as well as good thermal stability and comparatively high photoluminescence quantum yields (up to 34%) in the solid state. The presence of a carbazole donor unit, linked with the oxadiazaborinine acceptor via a phenyl linker, restricted intramolecular rotation, leading to enhanced aggregation-induced emission properties of the compounds: in THF/water mixtures with a large water percentage, they demonstrated the formation of emissive nanoaggregates with an average size of 79 and 89 nm for complexes 2 and 3, respectively. The introduction of bulky tert-butyl groups attached to the carbazole moiety induced significant mechanofluorochromic properties of the compounds.
Collapse
Affiliation(s)
- Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland. and Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| | - Mykola Kravets
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
12
|
Huang C, Qiu Z, Gao Y, Chen WC, Ji S, Huo Y. Research Progress on Aggregation-Induced Delayed Fluorescence in Materials and Devices. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Singh VD, Dwivedi BK, Kumar Y, Pandey DS. Artificial light-harvesting systems (LHSs) based on boron-difluoride (BF 2) hydrazone complexes (BODIHYs). NEW J CHEM 2021. [DOI: 10.1039/d0nj04547k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrazone based BF2–complexes (BODIHYs; B1–B2) have been synthesized and their photophysical and aggregation behavior have been established. These BODIHYs have been showed light harvesting properties in presence of RhB as acceptor.
Collapse
Affiliation(s)
- Vishwa Deepak Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | | | - Yogesh Kumar
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | - Daya Shankar Pandey
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| |
Collapse
|
14
|
Rakshit S, Das S, Govindaraj V, Maini R, Kumar A, Datta A. Morphological Evolution of Strongly Fluorescent Water Soluble AIEEgen-Triblock Copolymer Mixed Aggregates with Shape-Dependent Cell Permeability. J Phys Chem B 2020; 124:10282-10291. [PMID: 33135898 DOI: 10.1021/acs.jpcb.0c07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dimethyl-2,5-bis(4-methoxyphenylamino)terephthalate (DBMPT) is a water-insoluble fluorogenic molecule, which has been rendered water-soluble in physiological conditions, by the addition of triblock copolymers (TBPs), P123 (PEO19PPO69PEO19), and F127 (PEO100PPO65PEO100). DBMPT-TBP mixed aggregates, formed in the process, exhibit significant aggregation-induced enhancement of emission, with nanosecond fluorescence lifetimes. Dynamics involved in suppression of nonradiative pathways and consequent enhancement of fluorescence are followed by femtosecond transient absorption and time-resolved fluorescence spectroscopic techniques. Interestingly, shapes of the aggregates formed with the two TBPs are found to be very different, even though they differ only in the length of hydrophilic blocks. DBMPT-P123 aggregates are micrometer-sized and spherical, while DBMPT-F127 aggregates form nanorods. Evolution of their morphologies, as a function of TBP concentration, is monitored using cryo-TEM, FESEM, and fluorescence lifetime imaging microscopy. Fluorescence lifetime distribution provides useful insight into microheterogeneity in these mixed aggregates. Excellent cell permeability is observed for DBMPT-F127 nanorods, in contrast to DBMPT-P123 microspheres. These fluorescent nanorods exhibit the ability to mark lipid droplets within the cell and hence bear the promise for application in intracellular imaging.
Collapse
Affiliation(s)
- Soumyadipta Rakshit
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vinodhini Govindaraj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ratika Maini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Yang Z, Zhan Y, Qiu Z, Zeng J, Guo J, Hu S, Zhao Z, Li X, Ji S, Huo Y, Su SJ. Stimuli-Responsive Aggregation-Induced Delayed Fluorescence Emitters Featuring the Asymmetric D-A Structure with a Novel Diarylketone Acceptor Toward Efficient OLEDs with Negligible Efficiency Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29528-29539. [PMID: 32508095 DOI: 10.1021/acsami.0c07612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multifunctional luminescent materials with aggregation-induced delayed fluorescence (AIDF) are capable of suppressing concentration-caused emission quenching and exciton annihilation when used as organic light-emitting diode (OLED) emitters. In this contribution, three stimuli-responsive AIDF luminogens, pipd-BZ-PXZ, pipd-BZ-PTZ, and pipd-BZ-DMAC, featuring a D-A asymmetric framework based on a fused N-heterocycle diarylketone acceptor (imid-azo[1,2-a]pyridin-2-yl(phenyl)methanone pipd) are designed and synthesized. Interestingly, pipd-BZ-PTZ forms two different kinds of crystals (G-crystal and O-crystal) with distinct intermolecular interactions between pipd moieties. The G-crystal with a looser packing mode presents significant morphology-dependent stimuli-responsive behavior with a shifted emission wavelength of 56 nm. Generated by a strong intramolecular charge transfer effect, pipd-BZ-PXZ and pipd-BZ-PTZ exhibit orange to red emission in solution and neat films. Both nondoped and doped devices are fabricated for comparison. Nondoped devices present moderate performance with external quantum efficiencies and current efficiency that reach 7.04% and 19.86 cd A-1, respectively, and the corresponding efficiency roll off at 1000 cd m-2 is as small as 2.3%, which is among the best records of AIDF-OLEDs with an emission wavelength over 570 nm. Doped devices show better performance with corresponding efficiencies of up to 55.41 cd A-1 and 15.77%.
Collapse
Affiliation(s)
- Zhiwen Yang
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
| | - Yingying Zhan
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
| | - Zhipeng Qiu
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
| | - Jiajie Zeng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640 Guangzhou, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640 Guangzhou, China
| | - Sheng Hu
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640 Guangzhou, China
| | - Xianwei Li
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
| | - Shaomin Ji
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
| | - Yanping Huo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640 Guangzhou, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
16
|
Godumala M, Yoon J, Park SY, Lee C, Kim Y, Jeong JE, Park S, Woo HY, Cho MJ, Choi DH. 5H-Benzo[d]Benzo[4,5]Imidazo[2,1-b][1,3]Thiazine as a Novel Electron-Acceptor Cored High Triplet Energy Bipolar Host Material for Efficient Solution-Processable Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Front Chem 2020; 8:61. [PMID: 32117885 PMCID: PMC7020745 DOI: 10.3389/fchem.2020.00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
Organic entities that can transport electrons are seldom available to develop adequate bipolar host materials applicable for solution-processable thermally activated delayed fluorescence (TADF)-organic light-emitting diodes (OLEDs). Therefore, the introduction of new electron-affine entities that plausibly demonstrate high triplet energy (E T) is of urgent need. In this contribution, we introduced benzimidazo[1,2-a][3,1]benzothiazine (BBIT) as a novel electron-affine entity and developed two new bipolar host materials, CzBBIT and 2CzBBIT. Both host materials exhibit high E T of 3.0 eV, superior thermal robustness with the thermal decomposition temperature of up to 392°C, a glass transition temperature of up to 161°C, and high solubility in common organic solvents. Consequently, the solution-processable OLEDs fabricated using a recognized IAcTr-out as the green TADF emitter doped into CzBBIT as the host, realized a maximum external quantum efficiency (EQE) of 23.3%, while the 2CzBBIT:IAcTr-out blend film-based device displayed an EQE of 18.7%. These outcomes corroborated that this work could shed light on the scientific community on the design of new electron-affine entities to establish the effective use of bipolar host materials toward proficient solution-processable TADF-OLEDs.
Collapse
Affiliation(s)
- Mallesham Godumala
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Jiwon Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Seo Yeon Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Chiho Lee
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Youngseo Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Ji-Eun Jeong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
17
|
Ban X, Liu Y, Pan J, Chen F, Zhu A, Jiang W, Sun Y, Dong Y. Design of Blue Thermally Activated Delayed Fluorescent Emitter with Efficient Exciton Gathering Property for High-Performance Fully Solution-Processed Hybrid White OLEDs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1190-1200. [PMID: 31840975 DOI: 10.1021/acsami.9b20903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The blue thermally activated delay fluorescence (TADF) emitters are highly attractive in the fields of constructing hybrid white organic light-emitting diodes (WOLEDs) due to its high efficiency and color stability. However, few blue TADF emitters can withstand sequential orthogonal solvents, making it impossible to fabricate the fully solution-processed hybrid WOLEDs. Here, two TADF materials, PCz-4CzCN and TPA-4CzCN, were designed and synthesized by equipping the emissive core with nonconjugated bulky units, which can effectively enhance the solvent resistance ability without disturbing the TADF feature. The photophysical investigation indicates that phenylcarbazole unit can efficiently block the electromer formation to enhance the energy transfer and exciton utilization of the emitter. Accordingly, the blue OLEDs of PCz-4CzCN shows higher external quantum efficiency (EQE) of 22.6%, which is the best performance recorded among the fully solution-processed blue OLEDs. Upon further doping, the yellow phosphor PO-01, the fully solution-processed TADF-phosphor (T-P) hybrid WOLEDs was successfully obtained with high performance for the first time. Thanks to the efficient exciplex formation, the turn-on voltage of the white device is only 2.8 V, and the maximum brightness and power efficiency are as high as 53 300 cd m-2 and 38.5 lm W-1, respectively, which are even higher than the previous reported T-P hybrid WOLEDs with a vacuum-deposited electron transfer layer.
Collapse
Affiliation(s)
- Xinxin Ban
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China
| | - Yan Liu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China
| | - Jie Pan
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China
| | - Feng Chen
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China
| | - Aiyun Zhu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , China
| | - Yajie Dong
- Nanoscience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| |
Collapse
|
18
|
Ma F, Zhao G, Zheng Y, He F, Hasrat K, Qi Z. Molecular Engineering of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission via Introducing Intramolecular Hydrogen-Bonding Interactions for Efficient Solution-Processed Nondoped OLEDs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1179-1189. [PMID: 31826613 DOI: 10.1021/acsami.9b17545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purely organic luminescent materials concurrently exhibiting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) features are in great demand due to their high efficiency in aggregation-state toward efficient nondoped OLEDs. Herein, a class of TADF emitters adopting phenyl(pyridyl)methanone as electron-accepting segments and di(tert-butyl)carbazole and 9,9-dimethyl-9,10-dihydroacridine (or phenoxazine) as electron-donating groups are designed and synthesized. The existence of intramolecular hydrogen bonding is conducive to minish the energy difference between a singlet and a triplet (ΔEst), suppress nonradiative decay, and increase the luminescence efficiency. By using 3CPyM-DMAC as the emitter, the nondoped device via a solution process realize a high current efficiency (CE) and external quantum efficiency (EQE) of 35.4 cd A-1 and 11.4%, respectively, which is superior to that of CBM-DMAC with a CE and EQE of 14.3 cd A-1 and 6.7%. This work demonstrates a promising tactic to the establishment of TADF emitters with AIE features via introducing intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Fulong Ma
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Guimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Yu Zheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Kamran Hasrat
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| |
Collapse
|
19
|
Affiliation(s)
- Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
20
|
Kim HJ, Kim SK, Godumala M, Yoon J, Kim CY, Jeong JE, Woo HY, Kwon JH, Cho MJ, Choi DH. Novel molecular triad exhibiting aggregation-induced emission and thermally activated fluorescence for efficient non-doped organic light-emitting diodes. Chem Commun (Camb) 2019; 55:9475-9478. [DOI: 10.1039/c9cc05391c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel molecular triad single-component emitter (BPCP-2CPC) exhibiting TADF and AIE characteristics was successfully synthesized and applied to solution-processed non-doped TADF-OLEDs.
Collapse
|
21
|
Ban X, Chen F, Zhao Y, Zhu A, Tong Z, Jiang W, Sun Y. Strategy for the Realization of Highly Efficient Solution-Processed All-Fluorescence White OLEDs-Encapsulated Thermally Activated Delayed Fluorescent Yellow Emitters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37335-37344. [PMID: 30303007 DOI: 10.1021/acsami.8b13101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fabrication of highly efficient all thermally activated delayed fluorescence (TADF) white organic light-emitting diodes (WOLEDs) through solution-process still remains a big challenge. Here, two encapsulated TADF molecules with a small singlet-triplet energy gap (Δ EST) and high photoluminescence quantum yield (PLQY) were designed and synthesized as yellow emitters for solution-processed WOLEDs. The high current, power, and external quantum efficiencies of 41.6 cd A-1, 30.4 lm W-1, and 17.3% were achieved for the solution-processed all-fluorescence WOLEDs with a single-emission layer. In contrast, even with the same Δ EST and PLQY, the corresponding unencapsulated parent emitters will account for nearly 50% loss of the potential device efficiency. This is for the first time that the small molecular TADF blue host and TADF yellow guest are used to construct solution-processed all-fluorescence WOLEDs, which exhibit high efficiency comparable with most of the vacuum-deposited all-fluorescence white devices. These results not only demonstrate the great potential of TADF emitters in achieving highly efficient solution-processed WOLEDs, but also testify the key role of molecular encapsulation in reducing polar-exciton quenching and enhancing electroluminescence performance.
Collapse
Affiliation(s)
- Xinxin Ban
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Feng Chen
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Yaqing Zhao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Aiyun Zhu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Zhiwei Tong
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , China
| |
Collapse
|