1
|
Heng W, Yin S, Chen Y, Gao W. Exhaled Breath Analysis: From Laboratory Test to Wearable Sensing. IEEE Rev Biomed Eng 2025; 18:50-73. [PMID: 39412981 PMCID: PMC11875904 DOI: 10.1109/rbme.2024.3481360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
Collapse
|
2
|
Kundu A, Arief I, Mandal S, Meena KK, Krause B, Staudinger U, Mondal T, Wießner S, Das A. Elastomeric Sensor-Triboelectric Nanogenerator Coupled System for Multimodal Strain Sensing and Organic Vapor Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53083-53097. [PMID: 39308340 DOI: 10.1021/acsami.4c14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Stretchable, flexible sensors are one of the most critical components of smart wearable electronics and Internet of Things (IoT), thereby attracting multipronged research interest in the last decades. Following miniaturization and multicomponent development of several sensors in one could further propel the demand for wireless, multimodal platforms. Greener substitutes to conventional sensors that can operate in a self-powered configuration are highly desirable in terms of all-in-one sensor utilities. However, fabrication of composite-based ultrastretchable, self-powered sensors with multifunctionality, robustness, and conformability is still only partially achieved and, therefore, demands further investigation. In this work, we report a triboelectric nanogenerator (TENG)-based multifunctional strain and organic vapor sensor using cross-linked ethylene propylene diene monomer (EPDM) elastomer and conducting carbon black as active fillers in the presence of an ionic liquid. The resulting piezoresistive sensor demonstrates ultrahigh gauge factor (GF > 220k) and wide range strain sensitivity and is, therefore, suitable for subtle-to-high frequency motion detection devices. Supported by excellent triboelectric outputs (force sensitivity 0.5 V/N in the range of 50-300 N, maximum output voltage VOC ∼ 178 V, short circuit current ISC ∼ 18 μA, maximum power density 0.11 mW/cm2), the hybrid sensors offer remarkable mechanical toughness and seamless voltage generation under contact-separation, even after several thousand cycles of operations. Furthermore, the sensor substrates exhibited reproducible organic vapor-sensing behavior, with high responsivity of 1.92 and 1 for ethanol and acetone, respectively, under flowing vapor conditions. This work lays a strong foundation for developing a truly multimodal, TENG-based, self-powered organic vapor and strain sensors.
Collapse
Affiliation(s)
- Arpita Kundu
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
| | - Injamamul Arief
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
| | - Subhradeep Mandal
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
- TUD Dresden University of Technology, Institute of Materials Science, Helmholtzstraße 7a, Dresden D-01069, Germany
| | - Kamal Kumar Meena
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
| | - Beate Krause
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
| | - Ulrike Staudinger
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sven Wießner
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
- TUD Dresden University of Technology, Institute of Materials Science, Helmholtzstraße 7a, Dresden D-01069, Germany
| | - Amit Das
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden D-01069, Germany
- Tampere University, Tampere 33720, Finland
| |
Collapse
|
3
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Binabaji F, Dashtian K, Zare-Dorabei R, Naseri N, Noroozifar M, Kerman K. Innovative Wearable Sweat Sensor Array for Real-Time Volatile Organic Compound Detection in Noninvasive Diabetes Monitoring. Anal Chem 2024; 96:13522-13532. [PMID: 39110633 DOI: 10.1021/acs.analchem.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Wearable sweat sensors are reshaping healthcare monitoring, providing real-time data on hydration and electrolyte levels with user-friendly, noninvasive devices. This paper introduces a highly portable two-channel microfluidic device for simultaneous sweat sampling and the real-time detection of volatile organic compound (VOC) biomarkers. This innovative wearable microfluidic system is tailored for monitoring diabetes through the continuous and noninvasive tracking of acetone and ammonia VOCs, and it seamlessly integrates with smartphones for easy data management. The core of this system lies in the utilization of carbon polymer dots (CPDs) and carbon dots (CDs) derived from monomers such as catechol, resorcinol, o-phenylenediamine, urea, and citric acid. These dots are seamlessly integrated into hydrogels made from gelatin and poly(vinyl alcohol), resulting in an advanced solid-state fluorometric sensor coating on a cellulose paper substrate. These sensors exhibit exceptional performance, offering linear detection ranges of 0.05-0.15 ppm for acetone and 0.25-0.37 ppm for ammonia, with notably low detection limits of 0.01 and 0.08 ppm, respectively. Rigorous optimization of operational parameters, encompassing the temperature, sample volume, and assay time, has been undertaken to maximize device performance. Furthermore, these sensors demonstrate impressive selectivity, effectively discerning between biologically similar substances and other potential compounds commonly present in sweat. As this field matures, the prospect of cost-effective, continuous, personalized health monitoring through wearable VOC sensors holds significant potential for overcoming barriers to comprehensive medical care in underserved regions. This highlights the transformative capacity of wearable VOC sweat sensing in ensuring equitable access to advanced healthcare diagnostics, particularly in remote or geographically isolated areas.
Collapse
Affiliation(s)
- Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
5
|
Das GS, Tripathi VK, Dwivedi J, Jangir LK, Tripathi KM. Nanocarbon-based sensors for the structural health monitoring of smart biocomposites. NANOSCALE 2024; 16:1490-1525. [PMID: 38186362 DOI: 10.1039/d3nr05522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Structural health monitoring (SHM) is a critical aspect of ensuring the safety and durability of smart biocomposite materials used as multifunctional materials. Smart biocomposites are composed of renewable or biodegradable materials and have emerged as eco-friendly alternatives of traditional non-biodegradable glass fiber-based composite materials. Although biocomposites exhibit fascinating properties and many desirable traits, real-time and early stage SHM is the most challenging issue to enable their long-term use. Smart biocomposites are integrated with sensors for in situ identification of the progress of damage and composite failure. The sensitivity of such smart biocomposites is a key functionality, which can be tuned by the introduction of an appropriate filler. In particular, nanocarbons hold promising potential to be incorporated in SHM applications of biocomposites. This review focused on the potential applications of nanocarbons in SHM of biocomposites. The aspects related to fabrication techniques and working mechanism of sensors are comprehensively discussed. Furthermore, their unique mechanical and electrical properties and sustainable nature ensure seamless integration into biocomposites, allowing for real-time monitoring without compromising the material's properties. These sensors offer multi-parameter sensing capabilities, such as strain, pressure, humidity, temperature, and chemical exposure, allowing a comprehensive assessment of biocomposite health. Additionally, their durability and longevity in harsh conditions, along with wireless connectivity options, provide cost-effective and sustainable SHM solutions. As research in this field advances, ongoing efforts seek to enhance the sensitivity and selectivity of these sensors, optimizing their performance for real-world applications. This review highlights the significant advances, ongoing efforts to enhance the sensitivity and selectivity, and performance optimization of nanocarbon-based sensors along with their working mechanism in the field of SHM for smart biocomposites. The key challenges and future research perspectives facing the conversion of nanocarbons to smart biocomposites are also displayed.
Collapse
Affiliation(s)
- Gouri Sankar Das
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. kumud@
| | - Vijayendra Kumar Tripathi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Jaya Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Lokesh Kumar Jangir
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi-221005, India.
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. kumud@
| |
Collapse
|
6
|
Madagalam M, Bartoli M, Tagliaferro A. A Short Overview on Graphene and Graphene-Related Materials for Electrochemical Gas Sensing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:303. [PMID: 38255471 PMCID: PMC10817420 DOI: 10.3390/ma17020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
The development of new and high-performing electrode materials for sensing applications is one of the most intriguing and challenging research fields. There are several ways to approach this matter, but the use of nanostructured surfaces is among the most promising and highest performing. Graphene and graphene-related materials have contributed to spreading nanoscience across several fields in which the combination of morphological and electronic properties exploit their outstanding electrochemical properties. In this review, we discuss the use of graphene and graphene-like materials to produce gas sensors, highlighting the most relevant and new advancements in the field, with a particular focus on the interaction between the gases and the materials.
Collapse
Affiliation(s)
- Mallikarjun Madagalam
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi 24, 10129 Turin, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti, 9, 50121 Florence, Italy
| | - Mattia Bartoli
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti, 9, 50121 Florence, Italy
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi 24, 10129 Turin, Italy;
- Faculty of Science, OntarioTech University, Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
7
|
Liu J, Wang Y, Li X, Wang J, Zhao Y. Graphene-Based Wearable Temperature Sensors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2339. [PMID: 37630924 PMCID: PMC10458602 DOI: 10.3390/nano13162339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Flexible sensing electronics have received extensive attention for their potential applications in wearable human health monitoring and care systems. Given that the normal physiological activities of the human body are primarily based on a relatively constant body temperature, real-time monitoring of body surface temperature using temperature sensors is one of the most intuitive and effective methods to understand physical conditions. With its outstanding electrical, mechanical, and thermal properties, graphene emerges as a promising candidate for the development of flexible and wearable temperature sensors. In this review, the recent progress of graphene-based wearable temperature sensors is summarized, including material preparation, working principle, performance index, classification, and related applications. Finally, the challenges and future research emphasis in this field are put forward. This review provides important guidance for designing novel and intelligent wearable temperature-sensing systems.
Collapse
Affiliation(s)
| | - Ying Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.L.); (X.L.); (J.W.)
| | | | | | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.L.); (X.L.); (J.W.)
| |
Collapse
|
8
|
Li T, Zhu X, Hai X, Bi S, Zhang X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens 2023; 8:994-1016. [PMID: 36848439 DOI: 10.1021/acssensors.2c02596] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The traditional sensors are designed based on the "lock-and-key" strategy with high selectivity and specificity for detecting specific analytes, which however are not suitable for detecting multiple analytes simultaneously. With the help of pattern recognition technologies, the sensor arrays excel in distinguishing subtle changes caused by multitarget analytes with similar structures in a complex system. To construct a sensor array, the multiple sensing elements are undoubtedly indispensable units that will selectively interact with targets to generate the unique "fingerprints" based on the distinct responses, enabling the identification among various analytes through pattern recognition methods. This comprehensive review mainly focuses on the construction strategies and principles of sensing elements, as well as the applications of sensor array for identification and detection of target analytes in a wide range of fields. Furthermore, the present challenges and further perspectives of sensor arrays are discussed in detail.
Collapse
Affiliation(s)
- Tian Li
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueying Zhu
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
9
|
Wang C, Lei G, Zhang R, Zhou X, Cui J, Shen Q, Luo G, Zhang L. Shear-Thickening Covalent Adaptive Networks for Bifunctional Impact-Protective and Post-Tunable Tactile Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2267-2276. [PMID: 36573932 DOI: 10.1021/acsami.2c19492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shear-thickening materials have been widely applied in fields related to smart impact protection due to their ability to absorb large amounts of energy during sudden shock. Shear-thickening materials with multifunctional properties are expanding their applications in wearable electronics, where tactile sensors require interconnected networks. However, current bifunctional shear-thickening cross-linked polymer materials depend on supramolecular networks or slightly dynamic covalently cross-linked networks, which usually exhibit lower energy-absorption density than the highly dynamic covalently cross-linked networks. Herein, we employed boric ester-based covalent adaptive networks (CANs) to elucidate the shear-thickening property and the mechanism of energy dissipation during sudden shock. Guided by the enhanced energy-absorption capability of double networks and the requirements of the conductive networks for the wearable tactile sensors, tungsten powders (W) were incorporated into the boric ester polymer matrix to form a second network. The W networks make the materials stiffer, with a 13-fold increase in Young's modulus. Additionally, the energy-absorption capacity increased nearly 7 times. Finally, we applied these excellent energy-absorbing and conductive materials to bifunctional shock-protective and strain rate-dependent tactile sensors. Considering the self-healable and recyclable properties, we believe that these anti-impact and tactile sensing materials will be of great interest in wearable devices, smart impact-protective systems, post-tunable materials, etc.
Collapse
Affiliation(s)
- Chuanbin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Guoliang Lei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Ruizhi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Xiaozhuang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313001, China
| | - Qiang Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Hubei Longzhong Laboratory, Xiangyang441000, Hubei, China
| | - Guoqiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou521000, China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou521000, China
| |
Collapse
|
10
|
Ghosh A, Nag S, Gomes A, Gosavi A, Ghule G, Kundu A, Purohit B, Srivastava R. Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance. MICROMACHINES 2022; 14:121. [PMID: 36677182 PMCID: PMC9862021 DOI: 10.3390/mi14010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The need for innovation in the healthcare sector is essential to meet the demand of a rapidly growing population and the advent of progressive chronic ailments. Over the last decade, real-time monitoring of health conditions has been prioritized for accurate clinical diagnosis and access to accelerated treatment options. Therefore, the demand for wearable biosensing modules for preventive and monitoring purposes has been increasing over the last decade. Application of machine learning, big data analysis, neural networks, and artificial intelligence for precision and various power-saving approaches are used to increase the reliability and acceptance of smart wearables. However, user compliance and ergonomics are key areas that need focus to make the wearables mainstream. Much can be achieved through the incorporation of smart materials and soft electronics. Though skin-friendly wearable devices have been highlighted recently for their multifunctional abilities, a detailed discussion on the integration of smart materials for higher user compliance is still missing. In this review, we have discussed the principles and applications of sustainable smart material sensors and soft electronics for better ergonomics and increased user compliance in various healthcare devices. Moreover, the importance of nanomaterials and nanotechnology is discussed in the development of smart wearables.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Alyssa Gomes
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurva Gosavi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gauri Ghule
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aniket Kundu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Buddhadev Purohit
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Adsorptive carbon-based materials for biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Li D, Liu W, Zhu B, Qu M, Zhang Q, Fu Y, Xie J. Machine Learning-Assisted Multifunctional Environmental Sensing Based on a Piezoelectric Cantilever. ACS Sens 2022; 7:2767-2777. [PMID: 36106454 DOI: 10.1021/acssensors.2c01423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multifunctional environmental sensing is crucial for various applications in agriculture, pollution monitoring, and disease diagnosis. However, most of these sensing systems consist of multiple sensors, leading to significantly increased dimensions, energy consumption, and structural complexity. They also often suffer from signal interferences among multiple sensing elements. Herein, we report a multifunctional environmental sensor based on one single sensing element. A MoS2 film was deposited on the surface of a piezoelectric microcantilever (300 × 1000 μm2) and used as both a sensing layer and top electrode to make full use of the changes in multiple properties of MoS2 after its exposure to various environments. The proposed sensor has been demonstrated for humidity detection and achieved high resolution (0.3% RH), low hysteresis (5.6%), and fast response (1 s) and recovery (2.8 s). Based on the analysis of the magnitude spectra for transmission using machine learning algorithms, the sensor accurately quantifies temperatures and CO2 concentrations in the interference of humidity with accuracies of 91.9 and 92.1%, respectively. Furthermore, the sensor has been successfully demonstrated for real-time detection of humidity and temperature or CO2 concentrations for various applications, revealing its great potential in human-machine interactions and health monitoring of plants and human beings.
Collapse
Affiliation(s)
- Dongsheng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weiting Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Boyi Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Mengjiao Qu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qian Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - YongQing Fu
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, U.K
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
13
|
Yin Y, Guo C, Li H, Yang H, Xiong F, Chen D. The Progress of Research into Flexible Sensors in the Field of Smart Wearables. SENSORS (BASEL, SWITZERLAND) 2022; 22:5089. [PMID: 35890768 PMCID: PMC9319532 DOI: 10.3390/s22145089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
In modern society, technology associated with smart sensors made from flexible materials is rapidly evolving. As a core component in the field of wearable smart devices (or 'smart wearables'), flexible sensors have the advantages of excellent flexibility, ductility, free folding properties, and more. When choosing materials for the development of sensors, reduced weight, elasticity, and wearer's convenience are considered as advantages, and are suitable for electronic skin, monitoring of health-related issues, biomedicine, human-computer interactions, and other fields of biotechnology. The idea behind wearable sensory devices is to enable their easy integration into everyday life. This review discusses the concepts of sensory mechanism, detected object, and contact form of flexible sensors, and expounds the preparation materials and their applicability. This is with the purpose of providing a reference for the further development of flexible sensors suitable for wearable devices.
Collapse
Affiliation(s)
- Yunlei Yin
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Cheng Guo
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Hong Li
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Hongying Yang
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
- Henan Province Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou 450007, China
| | - Fan Xiong
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Dongyi Chen
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
- College of Automation Engineering, University of Electronic Science and Technology, Chengdu 611731, China
| |
Collapse
|
14
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
15
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
16
|
Singh SU, Chatterjee S, Lone SA, Ho HH, Kaswan K, Peringeth K, Khan A, Chiang YW, Lee S, Lin ZH. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochim Acta 2022; 189:236. [PMID: 35633385 PMCID: PMC9146825 DOI: 10.1007/s00604-022-05317-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Given the huge economic burden caused by chronic and acute diseases on human beings, it is an urgent requirement of a cost-effective diagnosis and monitoring process to treat and cure the disease in their preliminary stage to avoid severe complications. Wearable biosensors have been developed by using numerous materials for non-invasive, wireless, and consistent human health monitoring. Graphene, a 2D nanomaterial, has received considerable attention for the development of wearable biosensors due to its outstanding physical, chemical, and structural properties. Moreover, the extremely flexible, foldable, and biocompatible nature of graphene provide a wide scope for developing wearable biosensor devices. Therefore, graphene and its derivatives could be trending materials to fabricate wearable biosensor devices for remote human health management in the near future. Various biofluids and exhaled breath contain many relevant biomarkers which can be exploited by wearable biosensors non-invasively to identify diseases. In this article, we have discussed various methodologies and strategies for synthesizing and pattering graphene. Furthermore, general sensing mechanism of biosensors, and graphene-based biosensing devices for tear, sweat, interstitial fluid (ISF), saliva, and exhaled breath have also been explored and discussed thoroughly. Finally, current challenges and future prospective of graphene-based wearable biosensors have been evaluated with conclusion. Graphene is a promising 2D material for the development of wearable sensors. Various biofluids (sweat, tears, saliva and ISF) and exhaled breath contains many relevant biomarkers which facilitate in identify diseases. Biosensor is made up of biological recognition element such as enzyme, antibody, nucleic acid, hormone, organelle, or complete cell and physical (transducer, amplifier), provide fast response without causing organ harm.
Collapse
Affiliation(s)
- Santoshi U Singh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Subhodeep Chatterjee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shahbaz Ahmad Lone
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Hsuan Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kiran Peringeth
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arshad Khan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
17
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
18
|
Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. SENSORS INTERNATIONAL 2022; 3:100183. [PMID: 35633818 PMCID: PMC9126002 DOI: 10.1016/j.sintl.2022.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Graphene's potential as material for wearable, highly sensitive and robust sensor in various fields of technology has been widely investigated until now in order to capitalize on its unique intrinsic physical and chemical properties. In the wake of Covid-19 pandemic, it has been noticed that there are various potentials roles that can be fulfilled by graphene-based temperature, humidity and strain sensor, whose roles has not been widely explored to date. This paper takes the liberty to mainly highlight the progress layout and characterization technique for graphene-based sensor while including a brief discussion on the possible strategy of sensing data analysis that can be employed to minimize and prevent the risk of Covid-19 infection within a living community. While majority of the reported sensor is still in the in-progress status, its highlighted role in this work may provide a brief idea on how the ongoing research in graphene-based sensor may lead to the future implementation of the device for routine healthcare check-up and diagnostic point-care during and post-pandemic era. On the other hand, the sensitivity and response time data against working temperature, humidity and strain range that are provided could serve as a reference for benchmarking purpose, which certainly would help enthusiast in the development of a graphene-based sensor with a better performance for the future.
Collapse
|
19
|
Wang M, Zhao J, Zhang D, Chen Z, Zheng J, Zhang P, Deng K. Honeycomb-like N-doped porous carbon derived from poly(Schiff-base) as an electrode material for high-performance supercapacitor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Li X, Wang X, Liu J, Dai M, Zhang Q, Li Y, Huang JA. Surface-enhanced Raman spectroscopy detection of organic molecules and in situ monitoring of organic reactions by ion-induced silver nanoparticle clusters. Phys Chem Chem Phys 2022; 24:2826-2831. [PMID: 35043815 DOI: 10.1039/d1cp04857k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) finds wide applications in the field of organic molecule detection. However, reliable SERS detection of organic molecules and in situ monitoring of organic reactions under natural conditions by metal colloids are still challenging due to the formation of unstable nanoparticle clusters in solution and the low solubility of the organic molecules. Here, we approach the problems by introducing calcium ions to aggregate silver nanoparticles to form stable hot spots and acetone to promote uniform distribution of organic molecules on the nanoparticle surface. Significantly, our method exhibits stable SERS detection of up to 6 types of organic molecules in liquid. With acetone signals as an internal standard, we are able to determine molecule concentrations as well as monitor 3 kinds of organic reactions in situ. Our method shows potential for biomedical analysis, environmental analysis, and organic catalysis research.
Collapse
Affiliation(s)
- Xiaoyue Li
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China.
| | - Xiaotong Wang
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China.
| | - Jiaxin Liu
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China.
| | - Miaomiao Dai
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China.
| | - Qianjun Zhang
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China.
| | - Yang Li
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China. .,College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province, China.
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 2125B, Aapistie 5A, 90220 Oulu, Finland.
| |
Collapse
|
21
|
Zhao C, Lv B, Pan Z, Zhu Z, Li H, Li Z, Li Y, Wang Y, Mu H, Li W, Shi J. Highly sensitive gas sensor based on a parity-time-symmetric system. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:227-232. [PMID: 35200957 DOI: 10.1364/josaa.443024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Achieving extremely high sensitivity is an important indicator in the development of novel and stable gas concentration sensors. In this paper, we present a gas concentration sensor with parity-time symmetry for high sensitivity at low concentrations. The proposed sensor can detect toxic gases, such as benzene, bromine, and acetone, by probing the faint changing of the permittivity. Furthermore, the level of the sensitivity can be adjusted by the resistance segment, which is realized by various metallic formations. Our proposed structure provides a novel idea for the development of future gas concentration sensors, showing an exciting prospect for gas sensing technologies.
Collapse
|
22
|
Abir SSH, Sadaf MUK, Saha SK, Touhami A, Lozano K, Uddin MJ. Nanofiber-Based Substrate for a Triboelectric Nanogenerator: High-Performance Flexible Energy Fiber Mats. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60401-60412. [PMID: 34882388 DOI: 10.1021/acsami.1c17964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible and stretchable triboelectric nanogenerators (TENGs) are the next-generation systems for wearable and portable electronics. In this study, we have demonstrated an all nanofiber-based TENG for energy harvesting and biomechanical sensing applications. The TENG was prepared using the Forcespinning (FS) method to produce poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber (NF) membranes. The TPU nanofiber membranes were interfaced with a homogeneously sputtered gold nanofilm. The experimental characterization of the PVDF-TPU/Au NF-TENG revealed that surface interfaced with dispersed gold in a TPU fiber membrane produced a maximum open-circuit voltage of 254 V and a short-circuit current of 86 μA output at a 240 bpm load frequency, which was, respectively, 112 and 87% greater than bare PVDF-TPU NF-based TENG. All systems were composed of an active contact surface area of 3.2 × 2.5 cm2. Furthermore, the TENG was able to light up 75 LEDs (1.5 V of each) by the hand-tapping motion. The resistive load and capacitor test results exemplified a TENG offering a simple and high-performance self-chargeable device. Furthermore, we have tested the TENG's response for biomechanical movements at different frequencies, suggesting the TENG's potential to be also used as a cost-effective self-powered flexible body motion sensor.
Collapse
Affiliation(s)
- Sk Shamim Hasan Abir
- Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
- Center for Nanotechnology, Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Muhtasim Ul Karim Sadaf
- Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Sunanda Kumar Saha
- Center for Nanotechnology, Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Ahmed Touhami
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Brownsville, Texas 78520, United States
| | - Karen Lozano
- Center for Nanotechnology, Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Mohammed Jasim Uddin
- Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
23
|
Flexible Impedimetric Electronic Nose for High-Accurate Determination of Individual Volatile Organic Compounds by Tuning the Graphene Sensitive Properties. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated functionalized graphene materials to create highly sensitive sensors for volatile organic compounds (VOCs) such as formaldehyde, methanol, ethanol, acetone, and isopropanol. First, we prepared VOC-sensitive films consisting of mechanically exfoliated graphene (eG) and chemical graphene oxide (GO), which have different concentrations of structural defects. We deposited the films on silver interdigitated electrodes on Kapton substrate and submitted them to thermal treatment. Next, we measured the sensitive properties of the resulting sensors towards specific VOCs by impedance spectroscopy. We obtained the eG- and GO-based electronic nose composed of two eG films- and four GO film-based sensors with variable sensitivity to individual VOCs. The smallest relative change in impedance was 5% for the sensor based on eG film annealed at 180 °C toward 10 ppm formaldehyde, whereas the highest relative change was 257% for the sensor based on two-layers deposited GO film annealed at 200 °C toward 80 ppm ethanol. At 10 ppm VOC, the GO film-based sensors were sensitive enough to distinguish between individual VOCs, which implied excellent selectivity, as confirmed by Principle Component Analysis (PCA). According to a PCA-Support Vector Machine-based signal processing method, the electronic nose provided identification accuracy of 100% for individual VOCs. The proposed electronic nose can be used to detect multiple VOCs selectively because each sensor is sensitive to VOCs and has significant cross-selectivity to others.
Collapse
|
24
|
Dixit K, Fardindoost S, Ravishankara A, Tasnim N, Hoorfar M. Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities. BIOSENSORS 2021; 11:476. [PMID: 34940233 PMCID: PMC8699302 DOI: 10.3390/bios11120476] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 05/15/2023]
Abstract
With the global population prevalence of diabetes surpassing 463 million cases in 2019 and diabetes leading to millions of deaths each year, there is a critical need for feasible, rapid, and non-invasive methodologies for continuous blood glucose monitoring in contrast to the current procedures that are either invasive, complicated, or expensive. Breath analysis is a viable methodology for non-invasive diabetes management owing to its potential for multiple disease diagnoses, the nominal requirement of sample processing, and immense sample accessibility; however, the development of functional commercial sensors is challenging due to the low concentration of volatile organic compounds (VOCs) present in exhaled breath and the confounding factors influencing the exhaled breath profile. Given the complexity of the topic and the skyrocketing spread of diabetes, a multifarious review of exhaled breath analysis for diabetes monitoring is essential to track the technological progress in the field and comprehend the obstacles in developing a breath analysis-based diabetes management system. In this review, we consolidate the relevance of exhaled breath analysis through a critical assessment of current technologies and recent advancements in sensing methods to address the shortcomings associated with blood glucose monitoring. We provide a detailed assessment of the intricacies involved in the development of non-invasive diabetes monitoring devices. In addition, we spotlight the need to consider breath biomarker clusters as opposed to standalone biomarkers for the clinical applicability of exhaled breath monitoring. We present potential VOC clusters suitable for diabetes management and highlight the recent buildout of breath sensing methodologies, focusing on novel sensing materials and transduction mechanisms. Finally, we portray a multifaceted comparison of exhaled breath analysis for diabetes monitoring and highlight remaining challenges on the path to realizing breath analysis as a non-invasive healthcare approach.
Collapse
Affiliation(s)
- Kaushiki Dixit
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
| | - Somayeh Fardindoost
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
| | - Adithya Ravishankara
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
25
|
Baachaoui S, Aldulaijan S, Raouafi F, Besbes R, Sementa L, Fortunelli A, Raouafi N, Dhouib A. Pristine graphene covalent functionalization with aromatic aziridines and their application in the sensing of volatile amines - an ab initio investigation. RSC Adv 2021; 11:7070-7077. [PMID: 35423218 PMCID: PMC8694903 DOI: 10.1039/d0ra09964c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Food quality is of paramount importance for public health safety. For instance, fish freshness can be assessed by sensing the volatile short chain alkylamines produced by spoiled fish. Functionalized graphene is a good candidate for the design of gas sensors for such compounds and therefore of interest as the basic material in food quality sensor devices. To shed theoretical insight in this direction, in the present work we investigate via first-principles density functional theory (DFT) simulations: (i) graphene functionalization via aziridine appendages and (ii) the adsorption of short chain alkylamines (methylamine MA, dimethylamine DMA, and trimethylamine TMA) on the chemically functionalized graphene sheets. Optimal geometries, adsorption energies, and projected density of states (PDOS) are computed using a DFT method. We show that nitrene reactive intermediates, formed by thermal or photo splitting of arylazides - p-carboxyphenyl azide (1a), p-carboxyperfluorophenyl azide (1b), and p-nitrophenyl azide (1c) - react with graphene to yield functionalized derivatives, with reaction energies >-1.0 eV and barriers of the order of 2.0 eV, and open a ∼0.3 to 0.5 eV band gap which is in principle apt for applications in sensing and electronic devices. The interaction between the amines and functionalized graphene, as demonstrated from the calculations of charge density differences showing regions of charge gain and others of charge depletion between the involved groups, occurs through hydrogen bonding with interaction energies ranging from -0.04 eV to -0.76 eV, and induce charge differences in the system, which in the case of p-carboxyperfluorophenyl azide (1b) are sizeable enough to be experimentally observable in sensing.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Departement de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar Tunis El Manar 2092 Tunisia
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31113 Saudi Arabia
| | - Sarah Aldulaijan
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31113 Saudi Arabia
| | - Fayçal Raouafi
- Institut Préparatoire aux Etudes Scientifiques et Techniques (IPEST), Université de Carthage La Marsa Tunisia
| | - Rafaa Besbes
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Departement de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar Tunis El Manar 2092 Tunisia
| | - Luca Sementa
- Consiglio Nazionale delle Ricerche, CNR-ICCOM & IPCF Pisa 56124 Italy
| | | | - Noureddine Raouafi
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Departement de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar Tunis El Manar 2092 Tunisia
| | - Adnene Dhouib
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31113 Saudi Arabia
| |
Collapse
|
26
|
Yang S, Sun J, Xu L, Zhou Q, Chen X, Zhu S, Dong B, Lu G, Song H. Au@ZnO functionalized three–dimensional macroporous WO3: A application of selective H2S gas sensor for exhaled breath biomarker detection. SENSORS AND ACTUATORS B: CHEMICAL 2020; 324:128725. [DOI: 10.1016/j.snb.2020.128725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
|
27
|
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901924. [PMID: 31282063 DOI: 10.1002/adma.201901924] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Indexed: 05/19/2023]
Abstract
Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Raza Qazi
- Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute for Bioengineering and Biosciences, Center for Flexible and Wearable Electronics Advanced Research, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
28
|
Pang Y, Yang Z, Yang Y, Ren TL. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901124. [PMID: 31364311 DOI: 10.1002/smll.201901124] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Indexed: 05/12/2023]
Abstract
Recently, advancement in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable electronics for human healthcare monitoring and medical diagnosis. Particularly, with the emergence of 2D materials many merits including light weight, high stretchability, excellent biocompatibility, and high performance are used for those potential applications. Thus, it is urgent to review the wearable electronics based on 2D materials for the detection of various human signals. In this work, the typical graphene-based materials, transition-metal dichalcogenides, and transition metal carbides or carbonitrides used for the wearable electronics are discussed. To well understand the human physiological information, it is divided into two dominated categories, namely, the human physical and the human chemical signals. The monitoring of body temperature, electrograms, subtle signals, and limb motions is described for the physical signals while the detection of body fluid including sweat, breathing gas, and saliva is reviewed for the chemical signals. Recent progress and development toward those specific utilizations are highlighted in the Review with the representative examples. The future outlook of wearable healthcare techniques is briefly discussed for their commercialization.
Collapse
Affiliation(s)
- Yu Pang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhen Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Duan J, Li Y, Pan Y, Behera N, Jin W. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Huang H, Su S, Wu N, Wan H, Wan S, Bi H, Sun L. Graphene-Based Sensors for Human Health Monitoring. Front Chem 2019; 7:399. [PMID: 31245352 PMCID: PMC6580932 DOI: 10.3389/fchem.2019.00399] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Since the desire for real-time human health monitoring as well as seamless human-machine interaction is increasing rapidly, plenty of research efforts have been made to investigate wearable sensors and implantable devices in recent years. As a novel 2D material, graphene has aroused a boom in the field of sensor research around the world due to its advantages in mechanical, thermal, and electrical properties. Numerous graphene-based sensors used for human health monitoring have been reported, including wearable sensors, as well as implantable devices, which can realize the real-time measurement of body temperature, heart rate, pulse oxygenation, respiration rate, blood pressure, blood glucose, electrocardiogram signal, electromyogram signal, and electroencephalograph signal, etc. Herein, as a review of the latest graphene-based sensors for health monitoring, their novel structures, sensing mechanisms, technological innovations, components for sensor systems and potential challenges will be discussed and outlined.
Collapse
Affiliation(s)
- Haizhou Huang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shi Su
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
| | - Nan Wu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hao Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shu Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hengchang Bi
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| |
Collapse
|
31
|
Khan S, Ali S, Bermak A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1230. [PMID: 30862062 PMCID: PMC6427552 DOI: 10.3390/s19051230] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Wearable biosensors attract significant interest for their capabilities in real-time monitoring of wearers' health status, as well as the surrounding environment. Sensor patches are embedded onto the human epidermis accompanied by data readout and signal conditioning circuits with wireless communication modules for transmitting data to the computing devices. Wearable sensors designed for recognition of various biomarkers in human epidermis fluids, such as glucose, lactate, pH, cholesterol, etc., as well as physiological indicators, i.e., pulse rate, temperature, breath rate, respiration, alcohol, activity monitoring, etc., have potential applications both in medical diagnostics and fitness monitoring. The rapid developments in solution-based nanomaterials offered a promising perspective to the field of wearable sensors by enabling their cost-efficient manufacturing through printing on a wide range of flexible polymeric substrates. This review highlights the latest key developments made in the field of wearable sensors involving advanced nanomaterials, manufacturing processes, substrates, sensor type, sensing mechanism, and readout circuits, and ends with challenges in the future scope of the field. Sensors are categorized as biological and fluidic, mounted directly on the human body, or physiological, integrated onto wearable substrates/gadgets separately for monitoring of human-body-related analytes, as well as external stimuli. Special focus is given to printable materials and sensors, which are key enablers for wearable electronics.
Collapse
Affiliation(s)
- Saleem Khan
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| | - Shawkat Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| | - Amine Bermak
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 5825, Qatar.
| |
Collapse
|
32
|
Jayathilaka WADM, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C, Wang H, He J, Cui S, Thomas SW, Ramakrishna S. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805921. [PMID: 30589117 DOI: 10.1002/adma.201805921] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Indexed: 05/05/2023]
Abstract
Together with the evolution of digital health care, the wearable electronics field has evolved rapidly during the past few years and is expected to be expanded even further within the first few years of the next decade. As the next stage of wearables is predicted to move toward integrated wearables, nanomaterials and nanocomposites are in the spotlight of the search for novel concepts for integration. In addition, the conversion of current devices and attachment-based wearables into integrated technology may involve a significant size reduction while retaining their functional capabilities. Nanomaterial-based wearable sensors have already marked their presence with a significant distinction while nanomaterial-based wearable actuators are still at their embryonic stage. This review looks into the contribution of nanomaterials and nanocomposites to wearable technology with a focus on wearable sensors and actuators.
Collapse
Affiliation(s)
| | - Kun Qi
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- School of Textile and Clothing, Jiangnan University, Wuxi, 214122, China
| | - Yanli Qin
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| | - William Serrano-García
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- Advanced Materials Bio & Integration Research Laboratory, Department of Electrical Engineering, University of South Florida - Tampa, FL, 33620, USA
| | - Chinnappan Baskar
- THDC Institute of Hydropower Engineering and Technology Tehri, Uttarakhand Technical University, Dehradun, Uttarakhand, 248007, India
| | - Hongbo Wang
- School of Textile and Clothing, Jiangnan University, Wuxi, 214122, China
| | - Jianxin He
- Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan, 450007, China
- Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
| | - Shizhong Cui
- Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
| | - Sylvia W Thomas
- Advanced Materials Bio & Integration Research Laboratory, Department of Electrical Engineering, University of South Florida - Tampa, FL, 33620, USA
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| |
Collapse
|
33
|
Wu X, Niu F, Zhong A, Han F, Chen Y, Li J, Zhang G, Sun R, Wong CP. Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics. RSC Adv 2019; 9:39958-39964. [PMID: 35541377 PMCID: PMC9076172 DOI: 10.1039/c9ra08118f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
Silver nanoparticle-decorated three-dimensional graphene foams were prepared and packaged with half-cured PMDS films, forming a special “hollow packaged” structure that exhibited high sensitivity for wearable strain sensor applications.
Collapse
Affiliation(s)
- Xinxiu Wu
- The Shenzhen International Innovation Institutes of Advanced Electronic Materials
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Fangfang Niu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Physics and Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Ao Zhong
- The Shenzhen International Innovation Institutes of Advanced Electronic Materials
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Fei Han
- Academy for Engineering and Technology
- Fudan University
- Shanghai 200433
- China
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment
- Guangdong University of Technology
- Guangzhou
- China
| | - Jinhui Li
- The Shenzhen International Innovation Institutes of Advanced Electronic Materials
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Guoping Zhang
- The Shenzhen International Innovation Institutes of Advanced Electronic Materials
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Rong Sun
- The Shenzhen International Innovation Institutes of Advanced Electronic Materials
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Ching-Ping Wong
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| |
Collapse
|
34
|
Xie Y, Ma Q, Qi H, Song Y, Tian J, Musa MA, Yu W, Dong X, Li D, Liu G. Electrospun Janus-like pellicle displays coinstantaneous tri-function of aeolotropic conduction, magnetism and luminescence. RSC Adv 2019; 9:30890-30904. [PMID: 35529405 PMCID: PMC9072224 DOI: 10.1039/c9ra06444c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022] Open
Abstract
A new Janus-like pellicle with top-bottom structure, functionalized by conductive aeolotropism, magnetism and luminescence (defined as a CML Janus-like pellicle), is conceived and constructed via electrospinning by combining microcosmic with macroscopic partitions. [PANI/PMMA]//[Eu(BA)3phen/PMMA] and [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] Janus-like microribbons are selected as building units to construct a conductive aeolotropism-luminescence layer (CL layer) and magnetism-luminescence layer (ML layer), and the two layers are combined to form a CML Janus-like pellicle. Macroscopic partition is achieved by designing the Janus-like structure of the pellicle, while Janus-like microribbons are used for the microcosmic partition by separating rare earth luminescent compounds from dark-colored magnetic Fe3O4 NPs and conductive PANI. The CML Janus-like pellicle has stronger luminescence compared to the contrast samples. The magnetism of the CML Janus-like pellicle can be adjusted by changing the doping amount of Fe3O4 NPs. The CML Janus-like pellicle can achieve a strong and variable conductive aeolotropism via changing the doping amount of PANI and the highest conductive aeolotropism ratio can reach ca. 108 times when the PANI content is 70%. Microcosmic and macroscopic partitions are simultaneously integrated into the CML Janus-like pellicle, which results in almost no detrimental mutual influences between the two layers, and the overall performances of the CML Janus-like pellicle are greatly improved. Janus-like pellicle with conductive aeolotropism, magnetism and luminescence is designed and constructed via electrospinning by combining microcosmic with macroscopic partitions.![]()
Collapse
Affiliation(s)
- Yunrui Xie
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Haina Qi
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Yan Song
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Jiao Tian
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Makiyyu Abdullahi Musa
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|
35
|
Yang G, Pang G, Pang Z, Gu Y, Mantysalo M, Yang H. Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based Enhancement for Chronic Disease Care. IEEE Rev Biomed Eng 2018; 12:34-71. [PMID: 30571646 DOI: 10.1109/rbme.2018.2887301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.
Collapse
|
36
|
Li Y, Pötschke P, Pionteck J, Voit B. Electrical and vapor sensing behaviors of polycarbonate composites containing hybrid carbon fillers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Ketelsen B, Yesilmen M, Schlicke H, Noei H, Su CH, Liao YC, Vossmeyer T. Fabrication of Strain Gauges via Contact Printing: A Simple Route to Healthcare Sensors Based on Cross-Linked Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37374-37385. [PMID: 30280559 DOI: 10.1021/acsami.8b12057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we developed a novel and efficient process for the fabrication of resistive strain gauges for healthcare-related applications. First, 1,9-nonanedithiol cross-linked gold nanoparticle (GNP) films were prepared via layer-by-layer (LbL) spin-coating and subsequently transferred onto flexible polyimide foil by contact printing. Four-point bending tests revealed linear response characteristics with gauge factors of ∼14 for 4 nm GNPs and ∼26 for 7 nm GNPs. This dependency of strain sensitivity is attributed to the perturbation of charge carrier tunneling between neighboring GNPs, which becomes more efficient with increasing particle size. Fatigue tests revealed that the strain-resistance performance remained nearly the same after 10.000 strain/relaxation cycles. We demonstrate that these sensors are well suited to monitor muscle movements. Furthermore, we fabricated all-printed strain sensors by directly transferring cross-linked GNP films onto soft PDMS sheets equipped with interdigitated electrodes. Due to the low elastic modulus of poly(dimethylsiloxane) (PDMS), these sensors are easily deformed and, therefore, they respond sensitively to faint forces. When taped onto the skin above the radial artery, they enable the well-resolved and robust recording of pulse waves with diagnostically relevant details.
Collapse
Affiliation(s)
- Bendix Ketelsen
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Mazlum Yesilmen
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Hendrik Schlicke
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Heshmat Noei
- DESY NanoLab , Deutsches Elektronen-Synchrotron DESY , 22607 Hamburg , Germany
| | - Chun-Hao Su
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Tobias Vossmeyer
- Institute of Physical Chemistry , University of Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| |
Collapse
|