1
|
Guo R, Zhou Y, Wang W, Zhai Y, Liu X, He W, Ou W, Ding R, Zhang HL, Wu M, Jiang Z, Zhou KG. Interlayer confinement toward short hydrogen bond network construction for fast hydroxide transport. SCIENCE ADVANCES 2025; 11:eadr5374. [PMID: 40085705 PMCID: PMC11908492 DOI: 10.1126/sciadv.adr5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Driven by boosting demands for sustainable energy, highly conductive hydroxide exchange membranes (HEMs) are urgently required in electrochemical conversion devices. The hydrogen bonds shorter than 2.5 angstrom are expected to accelerate the ion transport. However, short hydrogen bonds (SHBs) can hardly form naturally because of the electron-withdrawing capability of O atom, which impedes its applications in water-mediated ion transport. This work develops an interlayer confinement strategy to construct SHB networks in a two-dimensional (2D) nanocapillary assembled by bismuth oxyiodide (BiOI) nanosheets and boost the ionic conductivity of HEMs. With confined nanochannels and adjustable hydrophilic groups in BiOI-based HEMs, the number of SHBs increases by 12 times, creating a shortcut for the Grotthuss-type anion transport, which in turn affords a high ionic conductivity of 168 millisiemens per centimeter at 90°C, higher than polymeric HEM and 2D-based HEM. This work demonstrates the facile approach to generating SHB networks in 2D capillaries and opens a promising avenue to developing advanced HEMs.
Collapse
Affiliation(s)
- Ruixiang Guo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| | - Yecheng Zhou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| | - Yeming Zhai
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| | - Xiaofen Liu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| | - Weijun He
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| | - Wen Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Rui Ding
- School of Chemical Engineering and Technology, Tianjin University, Nankai District, Tianjin 300072, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meiling Wu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Tianjin University, Nankai District, Tianjin 300072, P. R. China
| | - Kai-Ge Zhou
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Kayukova L, Vologzhanina A. A New 2-Aminospiropyrazolylammonium Cation with Possible Uses in the Topical Areas of Ionic Liquids. Molecules 2024; 29:2326. [PMID: 38792187 PMCID: PMC11124009 DOI: 10.3390/molecules29102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Based on the fact that 2-aminospiropyrazolinium compounds and structurally related azoniaspiro compounds belong, in a broad sense, to the class of ionic liquids, we have reviewed them and studied their practical applications. To search for possible uses of a new 2-aminospiropyrazolinium compounds, it is necessary to undertake a comparison with the related class of azoniaspiro compounds based on available information. The structures of the well-studied class of azoniaspiro compounds and the related but little-studied class of 2-aminospiropyrazolinium have rigid frameworks, limited conformational freedom, and a salt nature. These properties give them the ability to organize the nearby molecular space and enable the structure-forming ability of azoniaspiro compounds in the synthesis of zeolites, as well as the ability to act as phase-transfer catalysts and have selective biological effects. Additionally, these characteristics enable their ability to act as electrolytes and serve as materials for anion exchange membranes in fuel cells and water electrolyzers. Thus, the well-studied properties of azoniaspiro compounds as phase-transfer catalysts, structure-directing agents, electrolytes, and materials for membranes in power sources would encourage the study of the similar properties of 2-aminospiropyrazolinium compounds, which we have studied in relation to in vitro antitubercular, antidiabetic, and antimicrobial activities.
Collapse
Affiliation(s)
- Lyudmila Kayukova
- Laboratory of Chemistry of Synthetic and Natural Drug Substances, JSC A.B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov Str., 050010 Almaty, Kazakhstan
| | - Anna Vologzhanina
- X-ray Diffraction Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., B-334, 119334 Moscow, Russia;
| |
Collapse
|
3
|
Wickramasinghe S, Hoehn A, Wetthasinghe ST, Lin H, Wang Q, Jakowski J, Rassolov V, Tang C, Garashchuk S. Theoretical Examination of the Hydroxide Transport in Cobaltocenium-Containing Polyelectrolytes. J Phys Chem B 2023; 127:10129-10141. [PMID: 37972315 DOI: 10.1021/acs.jpcb.3c04118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymers incorporating cobaltocenium groups have received attention as promising components of anion-exchange membranes (AEMs), exhibiting a good balance of chemical stability and high ionic conductivity. In this work, we analyze the hydroxide diffusion in the presence of cobaltocenium cations in an aqueous environment based on the molecular dynamics of model systems confined in one dimension to mimic the AEM channels. In order to describe the proton hopping mechanism, the forces are obtained from the electronic structure computed at the density-functional tight-binding level. We find that the hydroxide diffusion depends on the channel size, modulation of the electrostatic interactions by the solvation shell, and its rearrangement ability. Hydroxide diffusion proceeds via both the vehicular and structural diffusion mechanisms with the latter playing a larger role at low diffusion coefficients. The highest diffusion coefficient is observed under moderate water densities (around half the density of liquid water) when there are enough water molecules to form the solvation shell, reducing the electrostatic interaction between ions, yet there is enough space for the water rearrangements during the proton hopping. The effects of cobaltocenium separation, orientation, chemical modifications, and the role of nuclear quantum effects are also discussed.
Collapse
Affiliation(s)
- Sachith Wickramasinghe
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alexandria Hoehn
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shehani T Wetthasinghe
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Huina Lin
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qi Wang
- Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Highly alkali-stable polyolefin-based anion exchange membrane enabled by N-cyclic quaternary ammoniums for alkaline fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Abstract
This Review provides an overview of the emerging concepts of catalysts, membranes, and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs), also known as zero-gap alkaline water electrolyzers. Much of the recent progress is due to improvements in materials chemistry, MEA designs, and optimized operation conditions. Research on anion-exchange polymers (AEPs) has focused on the cationic head/backbone/side-chain structures and key properties such as ionic conductivity and alkaline stability. Several approaches, such as cross-linking, microphase, and organic/inorganic composites, have been proposed to improve the anion-exchange performance and the chemical and mechanical stability of AEMs. Numerous AEMs now exceed values of 0.1 S/cm (at 60-80 °C), although the stability specifically at temperatures exceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still a limiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have the highest activity. There is debate on the active-site mechanism of the NiFe catalysts, and their long-term stability needs to be understood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolution reaction (HER) shows carbon-supported Pt to be dominating, although PtNi alloys and clusters of Ni(OH)2 on Pt show competitive activities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbon supports show promising HER activities. However, the stability of these catalysts under actual AEMWE operating conditions needs to be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques, standardized evaluation protocols for AEMWE conditions, and innovative catalyst-structure designs. Nevertheless, single AEM water electrolyzer cells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm2, respectively.
Collapse
Affiliation(s)
- Naiying Du
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Claudie Roy
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- National
Research Council of Canada, 2620 Speakman Drive, Mississauga, Ontario L5K 1B1, Canada
| | - Retha Peach
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
| | - Matthew Turnbull
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Simon Thiele
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
- Department
Chemie- und Bioingenieurwesen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christina Bock
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
6
|
Wang X, Qiao X, Liu S, Liu L, Li N. Poly(terphenyl piperidinium) containing hydrophilic crown ether units in main chains as anion exchange membranes for alkaline fuel cells and water electrolysers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Liang M, Peng J, Cao K, Shan C, Liu Z, Wang P, Hu W, Liu B. Multiply quaternized poly(phenylene oxide)s bearing β-cyclodextrin pendants as “assisting moiety” for high-performance anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Shirase Y, Matsumoto A, Lim KL, Tryk DA, Miyatake K, Inukai J. Properties and Morphologies of Anion-Exchange Membranes with Different Lengths of Fluorinated Hydrophobic Chains. ACS OMEGA 2022; 7:13577-13587. [PMID: 35559206 PMCID: PMC9088773 DOI: 10.1021/acsomega.1c06958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
An anion-exchange electrolyte membrane, QPAF(C6)-4, polymerized with hydrophobic 1,4'-bis(3-chlorophenyl)perfluorohexane and hydrophilic (6,6'-(2,7-dichloro-9H-fluorene-9.9-diyl)bis(N,N-dimethylhexan-1-amine) is physically flexible and chemically stable. The drawbacks are relatively large water swelling and lower OH- conductivity at higher water uptakes, which are considered to be due to the entanglement of the flexible hydrophobic structure of the membrane. In this study, a QPAF(C4)-4 membrane was newly synthesized with shortened hydrophobic fluoroalkyl chains. Unexpectedly, QPAF(C4)-4 showed a higher water uptake and a lower bulk/surface conductivity than QPAF(C6)-4 possibly due to the decrease in hydrophobicity with a smaller number of fluorine atoms. The thermal stability of QPAF(C4)-4 was higher than that of QAPF(C6)-4, possibly due to the rigidity of the QAPF(C4)-4 structure. A higher mechanical strength of QAPF(C6)-4 than that of QPAF(C4)-4 could be explained by the larger interactions between molecules, as shown in the ultraviolet-visible spectrum. The interactions of molecules were understood in more detail with density functional theory calculations. Both the chemical structures of the polymers and the arrangements of the polymers in the membranes were found to influence the membrane properties.
Collapse
Affiliation(s)
- Yuto Shirase
- Integrated
Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Akinobu Matsumoto
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
| | - Kean Long Lim
- Fuel
Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Donald A. Tryk
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
| | - Kenji Miyatake
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
- Clean
Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Junji Inukai
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
- Fuel
Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
- Clean
Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
9
|
Kim HM, Hu C, Wang HH, Park JH, Chen N, Lee YM. Impact of side-chains in poly(dibenzyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Zhai FH, Zhan QQ, Yang YF, Ye NY, Wan RY, Wang J, Chen S, He RH. A deep learning protocol for analyzing and predicting ionic conductivity of anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Liu J, Gao L, Di M, Hu L, Sun X, Wu X, Jiang X, Dai Y, Yan X, He G. Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yang W, Chen J, Yan J, Liu S, Yan Y, Zhang Q. Advance of click chemistry in anion exchange membranes for energy application. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jin Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jing Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Shuang Liu
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yi Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
13
|
Sang J, Yang L, Li Z, Wang F, Wang Z, Zhu H. Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
|
15
|
Min CM, Jang J, Kang BG, Lee JS. Influence of crosslinking in phosphoric acid-doped poly(phenylene oxide) membranes on their proton exchange membrane properties. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Pahal S, Boranna R, Prashanth GR, Varma MM. Simplifying Molecular Transport in Polyelectrolyte Multilayer Thin Films. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem) Bengaluru Karnataka 560065 India
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| | - Rakshith Boranna
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Gurusiddappa R. Prashanth
- Department of Electronics and Communication Engineering National Institute of Technology Goa Farmagudi Ponda Goa 403401 India
| | - Manoj M. Varma
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru Karnataka 560012 India
| |
Collapse
|
17
|
Chen N, Hu C, Wang HH, Park JH, Kim HM, Lee YM. Chemically & physically stable crosslinked poly(aryl-co-aryl piperidinium)s for anion exchange membrane fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Highly conductive hydroxide exchange membranes containing fluorene-units tethered with dual pairs of quaternary piperidinium cations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, Li H, Fan J, Lee YM. Insight into the Alkaline Stability of N‐Heterocyclic Ammonium Groups for Anion‐Exchange Polyelectrolytes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Yiqi Jin
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Haijun Liu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Chuan Hu
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Bo Wu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Shaoyi Xu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Academy for Advanced Interdisciplinary Studies of SUSTech Southern University of Science and Technology Shenzhen 1088 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Hui Li
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Jiantao Fan
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Academy for Advanced Interdisciplinary Studies of SUSTech Southern University of Science and Technology Shenzhen 1088 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Young Moo Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
20
|
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, Li H, Fan J, Lee YM. Insight into the Alkaline Stability of N-Heterocyclic Ammonium Groups for Anion-Exchange Polyelectrolytes. Angew Chem Int Ed Engl 2021; 60:19272-19280. [PMID: 34164897 DOI: 10.1002/anie.202105231] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Indexed: 11/06/2022]
Abstract
The alkaline stability of N-heterocyclic ammonium (NHA) groups is a critical topic in anion-exchange membranes (AEMs) and AEM fuel cells (AEMFCs). Here, we report a systematic study on the alkaline stability of 24 representative NHA groups at different hydration numbers (λ) at 80 °C. The results elucidate that γ-substituted NHAs containing electron-donating groups display superior alkaline stability, while electron-withdrawing substituents are detrimental to durable NHAs. Density-functional-theory calculations and experimental results suggest that nucleophilic substitution is the dominant degradation pathway in NHAs, while Hofmann elimination is the primary degradation pathway for NHA-based AEMs. Different degradation pathways determine the alkaline stability of NHAs or NHA-based AEMs. AEMFC durability (from 1 A cm-2 to 3 A cm-2 ) suggests that NHA-based AEMs are mainly subjected to Hofmann elimination under 1 A cm-2 current density for 1000 h, providing insights into the relationship between current density, λ value, and durability of NHA-based AEMs.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yiqi Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haijun Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bo Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Shaoyi Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Academy for Advanced Interdisciplinary Studies of SUSTech, Southern University of Science and Technology, Shenzhen, 1088, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Jiantao Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Academy for Advanced Interdisciplinary Studies of SUSTech, Southern University of Science and Technology, Shenzhen, 1088, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
21
|
Wu J, Wei X, Jiang H, Zhu Y. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
The alkaline stability and fuel cell performance of poly(N-spirocyclic quaternary ammonium) ionenes as anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Zhu H, Sun Z, Cao H, Wang B, Zhao J, Pan J, Xu G, Jin Z, Yan F. Highly Conductive and Dimensionally Stable Anion Exchange Membranes Based on Poly(dimethoxybenzene- co-methyl 4-formylbenzoate) Ionomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hairong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huixing Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bowen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Chen N, Wang HH, Kim SP, Kim HM, Lee WH, Hu C, Bae JY, Sim ES, Chung YC, Jang JH, Yoo SJ, Zhuang Y, Lee YM. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat Commun 2021; 12:2367. [PMID: 33888709 PMCID: PMC8062622 DOI: 10.1038/s41467-021-22612-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Low-cost anion exchange membrane fuel cells have been investigated as a promising alternative to proton exchange membrane fuel cells for the last decade. The major barriers to the viability of anion exchange membrane fuel cells are their unsatisfactory key components-anion exchange ionomers and membranes. Here, we present a series of durable poly(fluorenyl aryl piperidinium) ionomers and membranes where the membranes possess high OH- conductivity of 208 mS cm-1 at 80 °C, low H2 permeability, excellent mechanical properties (84.5 MPa TS), and 2000 h ex-situ durability in 1 M NaOH at 80 °C, while the ionomers have high water vapor permeability and low phenyl adsorption. Based on our rational design of poly(fluorenyl aryl piperidinium) membranes and ionomers, we demonstrate alkaline fuel cell performances of 2.34 W cm-2 in H2-O2 and 1.25 W cm-2 in H2-air (CO2-free) at 80 °C. The present cells can be operated stably under a 0.2 A cm-2 current density for ~200 h.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ho Hyun Wang
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Pyo Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hae Min Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Won Hee Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joon Yong Bae
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eun Seob Sim
- Department of Materials Science and Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong-Chae Chung
- Department of Materials Science and Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jue-Hyuk Jang
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Chen N, Hu C, Wang HH, Kim SP, Kim HM, Lee WH, Bae JY, Park JH, Lee YM. Poly(Alkyl-Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline-Membrane Fuel-Cell Performance of 2.58 W cm -2. Angew Chem Int Ed Engl 2021; 60:7710-7718. [PMID: 33368927 PMCID: PMC8048807 DOI: 10.1002/anie.202013395] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Indexed: 11/11/2022]
Abstract
Aryl-ether-free anion-exchange ionomers (AEIs) and membranes (AEMs) have become an important benchmark to address the insufficient durability and power-density issues associated with AEM fuel cells (AEMFCs). Here, we present aliphatic chain-containing poly(diphenyl-terphenyl piperidinium) (PDTP) copolymers to reduce the phenyl content and adsorption of AEIs and to increase the mechanical properties of AEMs. Specifically, PDTP AEMs possess excellent mechanical properties (storage modulus>1800 MPa, tensile strength>70 MPa), H2 fuel-barrier properties (<10 Barrer), good ion conductivity, and ex-situ stability. Meanwhile, PDTP AEIs with low phenyl content and high-water permeability display excellent peak power densities (PPDs). The present AEMFCs reach outstanding PPDs of 2.58 W cm-2 (>7.6 A cm-2 current density) and 1.38 W cm-2 at 80 °C in H2 /O2 and H2 /air, respectively, along with a specific power (PPD/catalyst loading) over 8 W mg-1 , which is the highest record for Pt-based AEMFCs so far.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Chuan Hu
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Ho Hyun Wang
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Sun Pyo Kim
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Hae Min Kim
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Won Hee Lee
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Joon Yong Bae
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Jong Hyeong Park
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Young Moo Lee
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
27
|
Zhang M, Zhang L, Wu Z, Ding A, Shen C, Gao S. Multi‐cation side‐chain‐type containing piperidinium group poly(2,6‐dimethyl‐1,4‐phenylene oxide) alkaline anion exchange membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingliang Zhang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Lin Zhang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Zhihui Wu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Ao Ding
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Chunhui Shen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Shanjun Gao
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| |
Collapse
|
28
|
Jang J, Ahn MK, Lee SB, Min CM, Kang BG, Lee JS. Conductive and Stable Crosslinked Anion Exchange Membranes Based on Poly(arylene ether sulfone). Macromol Res 2021. [DOI: 10.1007/s13233-021-9023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Chen N, Hu C, Wang HH, Kim SP, Kim HM, Lee WH, Bae JY, Park JH, Lee YM. Poly(Alkyl‐Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline‐Membrane Fuel‐Cell Performance of 2.58 W cm
−2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Chuan Hu
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Ho Hyun Wang
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Sun Pyo Kim
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Hae Min Kim
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Won Hee Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Joon Yong Bae
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Jong Hyeong Park
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Young Moo Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
30
|
|
31
|
Wang F, Li Y, Li C, Zhu H. Preparation and study of spirocyclic cationic side chain functionalized polybiphenyl piperidine anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Zhang Y, Chen W, Li T, Yan X, Zhang F, Wang X, Wu X, Pang B, He G. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Salma U, Nagao Y. Alkaline stability of ether bond free fluorene-based anion exchange polymer containing cycloaliphatic quaternary ammonium groups. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Li Z, Li C, Long C, Sang J, Tian L, Wang F, Wang Z, Zhu H. Elastic and durable multi‐cation‐crosslinked anion exchange membrane based on poly(styrene‐
b
‐(ethylene‐
co
‐butylene)‐
b
‐styrene). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ziming Li
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Conghui Li
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Chuan Long
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Jing Sang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| |
Collapse
|
35
|
Zhang S, Wang Y, Liu P, Wang X, Zhu X. Photo-cross-linked poly(N-allylisatin biphenyl)-co-poly(alkylene biphenyl)s with pendant N-cyclic quaternary ammonium as anion exchange membranes for direct borohydride/hydrogen peroxide fuel cells. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Zhang Y, Chen W, Yan X, Zhang F, Wang X, Wu X, Pang B, Wang J, He G. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Zhang S, Wang Y, Gao X, Liu P, Wang X, Zhu X. Enhanced conductivity and stability via comb-shaped polymer anion exchange membrane incorporated with porous polymeric nanospheres. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117509] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Zhang X, Cao Y, Zhang M, Huang Y, Wang Y, Liu L, Li N. Enhancement of the mechanical properties of anion exchange membranes with bulky imidazolium by “thiol-ene” crosslinking. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117700] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Liu FH, Yang Q, Gao XL, Wu HY, Zhang QG, Zhu AM, Liu QL. Anion exchange membranes with dense N-spirocyclic cations as side-chain. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117560] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Xue J, Liu X, Zhang J, Yin Y, Guiver MD. Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Qaisrani NA, Ma L, Hussain M, Liu J, Li L, Zhou R, Jia Y, Zhang F, He G. Hydrophilic Flexible Ether Containing, Cross-Linked Anion-Exchange Membrane Quaternized with DABCO. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3510-3521. [PMID: 31880910 DOI: 10.1021/acsami.9b15435] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anion-exchange membranes (AEM) with high ion content usually suffer from excessive water absorption and dilution effects that impair conductivity and mechanical properties. We herein report a novel ether containing a cross-linking strategy without adopting high ion-exchange capacity (IEC). The ether-containing cross-links and the quaternized structure are created simultaneously by introducing an ether-containing flexible hydrophilic spacer between two 1,4-diazabicyclo[2,2,2,2]octane or DABCO molecules; the resultant bi-DABCO structure was further employed to react with chloromethylated polysulfone. The long spacer with the ether moiety may benefit the hydroxide ion transport, and the cross-links will control the swelling and water absorption of the AEM. The two ether groups in the long spacer of the cross-links will also shield the DABCO cation from OH- attack due to an electron-donating effect. The prepared membranes exhibited an improved conductivity of 31 mS/cm (at 25 °C) at a comparatively low IEC (1.08 mmol/g) with a rational water absorption and low swelling ratio (95.0 and 27.1%, respectively); they also displayed an enhanced alkaline stability in 1 M NaOH aqueous solution at 80 °C for 150 h. The density functional theory study and physical characterization after the alkaline treatment further confirm the better chemical stability of the cross-linked membrane over its counterpart. Our work presents an effective strategy to balance AEM conductivity and robustness.
Collapse
Affiliation(s)
- Naeem Akhtar Qaisrani
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Lingling Ma
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Manzoor Hussain
- Department of Chemistry , Karakoram International University (KIU) , Gilgit , Baltistan 15100 , Pakistan
| | - Jiafei Liu
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Lv Li
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Ruiting Zhou
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Yabin Jia
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Fengxiang Zhang
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering , Dalian University of Technology , Panjin 124221 , China
| |
Collapse
|
43
|
Anion conductive piperidinium based poly (ether sulfone): Synthesis, properties and cell performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
|
45
|
Peng J, Liang M, Liu Z, Wang P, Shi C, Hu W, Liu B. Poly(arylene ether sulfone) crosslinked networks with pillar[5]arene units grafted by multiple long-chain quaternary ammonium salts for anion exchange membranes. Chem Commun (Camb) 2020; 56:928-931. [DOI: 10.1039/c9cc07105a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the first time, high-molecular-weight pillar[5]arene-containing aromatic polymers were synthesized and further modified for application as anion exchange membranes.
Collapse
Affiliation(s)
- Jinwu Peng
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Minhui Liang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Zhenchao Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Peng Wang
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Chengying Shi
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| | - Wei Hu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Baijun Liu
- Key Laboratory of High Performance Plastics
- Ministry of Education
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer
- College of Chemistry
- Jilin University
| |
Collapse
|
46
|
Pham TH, Allushi A, Olsson JS, Jannasch P. Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations. Polym Chem 2020. [DOI: 10.1039/d0py01291b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Piperidine-based cations tethered to ether-free polymer membranes via the 4-position instead of the conventional 1(N)-position show significantly improved thermal and alkaline stability while retaining high hydroxide conductivity.
Collapse
Affiliation(s)
- Thanh Huong Pham
- Polymer & Materials Chemistry
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Andrit Allushi
- Polymer & Materials Chemistry
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Joel S. Olsson
- Polymer & Materials Chemistry
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Patric Jannasch
- Polymer & Materials Chemistry
- Department of Chemistry
- Lund University
- Lund
- Sweden
| |
Collapse
|
47
|
Sun G, Guo J, Niu H, Chen N, Zhang M, Tian G, Qi S, Wu D. The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries. RSC Adv 2019; 9:40084-40091. [PMID: 35541409 PMCID: PMC9076257 DOI: 10.1039/c9ra08006f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we design a controllable approach for preparing multifunctional polybenzimidazole porous membranes with superior fire-resistance, excellent thermo-stability, and high wettability. Specifically, the recyclable imidazole is firstly utilized as the eco-friendly template for micropores formation, which is an interesting finding and has tremendous potential for low-cost industrial production. The unique backbone structure of the as-prepared polybenzimidazole porous membrane endows the separator with superb thermal dimensional stability at 300 °C. Most significantly, the inherent flame retardancy of polybenzimidazole can ensure the high security of lithium-ion batteries, and the existence of polar groups of imidazole can regulate the Li+ flux and improve the ionic conductivity of lithium ions. Notably, the cell with a polybenzimidazole porous membrane presents higher capability (131.7 mA h g-1) than that of a commercial Celgard membrane (95.4 mA h g-1) at higher charge-discharge density (5C), and it can work normally at 120 °C. The fascinating comprehensive properties of the polybenzimidazole porous membrane with excellent thermal-stability, satisfying wettability, superb flame retardancy and good electrochemical performance indicate its promising application for high-safety and high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Guohua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Jiacong Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Hongqing Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University Seoul 04763 Republic of Korea
| | - Mengying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Guofeng Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Shengli Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology Changzhou 213164 Jiangsu China +86 10 6442 2381
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| |
Collapse
|
48
|
Construction of crosslinked polybenz imidazole-based anion exchange membranes with ether-bond-free backbone. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Zhu H, Li Y, Chen N, Lu C, Long C, Li Z, Liu Q. Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5] undecanium) for long-lifetime anion exchange membrane applications. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
|