1
|
Mukherjee RN, Ghorai PK, Biswas R. Entropy of Mixing: Contributions from Interparticle Interactions and Its Relevance to Deep Eutectic Solvents. J Phys Chem B 2025; 129:4410-4419. [PMID: 40299637 DOI: 10.1021/acs.jpcb.4c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Theoretical modeling of solid-liquid equilibria is critical for choosing the appropriate mixture components and compositions for the formation of deep eutectic solvents (DESs). Earlier theoretical approaches mapped the solid-liquid equilibria of a few DESs in terms of the regular solution theory, where a fit parameter (χold) in the enthalpy change (ΔH̅mix) accounted for interspecies interactions and combinatorics provided the entropy contribution (ΔS̅mix). Later, the excluded volume effects in the combinatorial entropy were introduced. The free energy change due to mixing (ΔG̅mix) in these models was dominated by ΔH̅mix, where ΔS̅mix did not account for the attractive part of interparticle interactions. In this work, we have developed a theoretical formalism, where excess entropy (S̅mixe) has been introduced, and both repulsive (excluded volume effects) and attractive parts of interparticle interactions have been systematically incorporated in ΔH̅mix and ΔS̅mix contributions. The fit parameter in the present theory (χnew) is therefore modified by the interspecies interactions through both ΔH̅mix and ΔS̅mix. Subsequently, when ΔH̅mix and ΔS̅mix for the acetamide + urea mixture were obtained from molecular dynamics simulations and employed as inputs, the present theory predicted endothermic mixing (that is, ΔH̅mix positive) but is favored and overcompensated by ΔS̅mix, producing an overall negative ΔG̅mix. This is in contrast to the predictions from the earlier theoretical approaches, where ΔH̅mix provided the required thermodynamic driving force. This is further reflected in the different signs of parameters χnew (present theory) and χold. The present theory can be extended to treat multicomponent mixtures as well.
Collapse
Affiliation(s)
- Rik N Mukherjee
- Chemical and Biological Sciences, Satyendra Nath Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Pradip K Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Ranjit Biswas
- Chemical and Biological Sciences, Satyendra Nath Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
2
|
Haque MA, Hamilton ST, Feric TG, Park AHA, Dadmun MD. Elucidating the assembly of nanoparticle organic hybrid materials (NOHMs) near an electrode interface with varying potential using neutron reflectivity. NANOSCALE 2024; 16:8521-8532. [PMID: 38592848 DOI: 10.1039/d3nr06621e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A critical concern regarding electrolyte formulation in an electrochemical environment is the impact of the interaction of the multiple components (i.e., supporting electrolyte or additive) with the electrode surface. Recently, liquid-like neat Nanoparticle Organic Hybrid Materials (NOHMs) have been considered as an electrolyte component to improve the transport of redox-active species to the electrode surface. However, the structure and assembly of the NOHMs near the electrode surface is unknown and could significantly impact the electrode-electrolyte interface. Hence, we have investigated the depth profile of polyetheramine (HPE) polymer and NOHM-I-HPE (nanoparticles with ionically bonded HPE polymer) in deuterated water (D2O) in the presence of two different salts (KHCO3 and ZnCl2) near two different electrode surfaces using neutron reflectometry. Moreover, the depth profile of the NOHM-I-HPE near the electrode surface in a potential has also been studied with in situ reflectivity experiments. Our results indicate that a change in the chemical structure/hydrophilicity of the electrode surface does not significantly impact the ordering of HPE polymer or NOHM-I-HPE near the surface. This study also indicates that the NOHM-I-HPE particles form a clear layer near the electrode surface immediately above an adsorbed layer of free polymer on the electrode surface. The addition of salt does not impact the layering of NOHM-I-HPE, though it does alter the conformation of the polymer grafted to the nanoparticle surface and free polymer sequestered near the surface. Finally, the application of negative potential results in an increased amount of free polymer near the electrode surface. Correlating the depth profile of free polymer and NOHM-I-HPE particles with the electrochemical performance indicates that this assembly of free polymer near the electrode surface in NOHM-I-HPE solutions contributes to the higher current density of the system. Therefore, this holistic study offers insight into the importance of the assembly of NOHM-I-HPE electrolyte and free polymer near the electrode surface in an electrochemical milieu on its performance.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Sara T Hamilton
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, USA
| | - Tony G Feric
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, USA
| | - Ah-Hyung Alissa Park
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, USA
| | - Mark D Dadmun
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Xiong W, Zhang X, Tu Z, Hu X, Wu Y. Novel Deep Eutectic Electrolyte Induced by Na···N Interactions for Sodium Batteries. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wenjie Xiong
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing210023, P. R. China
| | - Xiaomin Zhang
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing210023, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, P. R. China
| | - Zhuoheng Tu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing210023, P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing210023, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing210023, P. R. China
| |
Collapse
|
4
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
|
6
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 947] [Impact Index Per Article: 189.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
7
|
Molecular insight into wetting behavior of deep eutectic solvent droplets on ionic substrates: A molecular dynamics study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Evaluation of a Non-Aqueous Vanadium Redox Flow Battery Using a Deep Eutectic Solvent and Graphene-Modified Carbon Electrodes via Electrophoretic Deposition. BATTERIES-BASEL 2020. [DOI: 10.3390/batteries6030038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Common issues aqueous-based vanadium redox flow batteries (VRFBs) face include low cell voltage due to water electrolysis side reactions and highly corrosive and environmentally unfriendly electrolytes (3 to 5 M sulfuric acid). Therefore, this investigation looks into the comparison of a highly conductive ionic liquid with a well-studied deep eutectic solvent (DES) as electrolytes for non-aqueous VRFBs. The latter solvent gives 50% higher efficiency and capacity utilization than the former. These figures of merit increase by 10% when nitrogen-doped graphene (N-G)-modified carbon papers, via a one-step binder-free electrophoretic deposition process, are used as electrodes. X-ray computed tomography confirms the enhancement of electrochemical surface area of the carbon electrodes due to N-G while electrochemical impedance spectra show the effect of its higher conductivity on improving RFB performance. Finally, potential strategies for the scaling-up of DES-based VRFBs using a simple economical model are also briefly discussed. From this study, it is deduced that more investigations on applying DESs as non-aqueous electrolytes to replace the commonly used acetonitrile may be a positive step forward because DESs are not only cheaper but also safer to handle, far less toxic, non-flammable, and less volatile than acetonitrile.
Collapse
|