1
|
Zhou C, Jia H, Yan P, Yang C, Xu S, An G, Song B, Xu Q. Electrocatalytic Conversion of Glucose into Renewable Formic Acid Using "Electron-Withdrawing" MoO 3 Support under Mild Conditions. CHEMSUSCHEM 2025:e2500297. [PMID: 40145507 DOI: 10.1002/cssc.202500297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
Electrocatalysis is a sustainable and effective approach to produce value-added chemical commodities from biomass, where highly effective catalyst is required. Since transition metal hydroxide is a feasible catalyst for electrochemical biomass conversion, rational optimization of its electrocatalytic activity is highly desired. Herein, electrocatalytic activity of glucose oxidation is significantly optimized by reducing the electron density at Ni active sites, which is achieved by depositing Ni(OH)2 at "electron-withdrawing" MoO3 support (Ni(OH)2MoO3-x). As results, the formation of active sites (NiOOH) and the adsorption of glucose are simultaneously facilitated in Ni(OH)2MoO3-x, which effectively converts glucose to formic acid (FA) with remarkable yield and Faraday efficiency (≈90.5 and 98%, respectively), far superior to conventional β-Ni(OH)2 catalyst (≈22.5 and 58.9%, respectively). In addition to a novel strategy for efficient FA production from glucose, this work offers valuable insights into the rational optimization of electrocatalytic oxidation of biomass-based substrates.
Collapse
Affiliation(s)
- Chaozheng Zhou
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Haozhe Jia
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Pengfei Yan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chenglong Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Song Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Guangyu An
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Baorui Song
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
2
|
Huang Y, You J, Ding Y, Xie Y, Wang T, Zhu F, Gong W, Zhao Z. A Hierarchical Core-Shell Structure of NiO@Cu 2O-CF for Effective Non-Enzymatic Electrochemical Glucose Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:47. [PMID: 39791806 PMCID: PMC11723071 DOI: 10.3390/nano15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)2@Cu(OH)2-CF) was fabricated and derived from NiO@Cu2O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005-4.5 mM with a detection sensitivity of 4.67 µA/µM/cm2. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu2O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenting Zhao
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China; (Y.H.); (J.Y.); (Y.D.); (Y.X.); (T.W.); (F.Z.); (W.G.)
| |
Collapse
|
3
|
Pathmanathan P, Gomathi A, Ramesh A, Subrahmanyam C. In situ generation of turbostratic nickel hydroxide as a nanozyme for salivary glucose sensor. RSC Adv 2024; 14:21808-21820. [PMID: 38984255 PMCID: PMC11232413 DOI: 10.1039/d4ra03559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Among the 3d-transition metal hydroxide series, nickel hydroxide is a well-studied electroactive catalyst. In particular, nickel hydroxide and its composite materials are well-suited for non-enzymatic glucose sensing. The electrocatalytic efficiency of nickel hydroxide is attributed to the thickness or to be precise, the thinness of the electroactive layer. Herein, we have successfully prepared metallic nickel@nickel hydroxide nanosheets through a straightforward one-pot solvothermal method. We were able to electrochemically generate a highly sensitive α-Ni(OH)2 on the nanosheets. The dynamic generation and synergy between α- and β-Ni(OH)2, imparts a glucose oxidase enzyme-like ability to the catalyst. Our proposed nickel nanozyme exhibits a good sensitivity of 683 μA mM-1 cm-2 for glucose. The sensor operates in the range of 0.001-3.1 mM, with a lower limit of detection (LOD) of 9.1 μM and exhibits a response time of ≈00.1 s. Nickel-nanozyme demonstrated better selectivity for glucose in the presence of interfering compounds. Notably, the sensor does not suffer from an interfering oxygen evolution reaction. This greatly improves sensitivity in glucose detection in lower concentrations making the sensor viable to measure salivary glucose levels. In this study, we demonstrate that our sensor can detect glucose in human saliva. The real sample analysis was carried out with saliva samples from three healthy human volunteers and one prediabetic volunteer. Our proposed sensor measurements show excellent agreement with calculated salivary glucose levels with 98% accuracy in sensing glucose in real saliva samples.
Collapse
Affiliation(s)
| | - A Gomathi
- Department of Chemistry, Mahindra University Hyderabad-500043 India
| | - Asha Ramesh
- Department of Chemistry, Indian Institute of Technology Hyderabad-502285 India
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad-502285 India
| |
Collapse
|
4
|
Mansouri S, Alharbi Y, Alqahtani A. Nanomaterials Connected to Bioreceptors to Introduce Efficient Biosensing Strategy for Diagnosis of the TORCH Infections: A Critical Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38193140 DOI: 10.1080/10408347.2023.2301649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
TORCH infection is a significant risk factor for severe fetal damage, especially congenital malformations. Screening pregnant women for TORCH pathogens could reduce the incidence of adverse pregnancy outcomes and prevent birth defects. Hence, timely identification and inhibition of TORCH infections are effective ways to successfully prevent them in pregnant women. Recently, the superiority of biosensors in TORCH pathogen sensing has been emphasized due to their intrinsic benefits, such as rapid response time, portability, cost-effectiveness, much friendlier preparation and determination steps. With the introduction of advanced nanomaterials into biosensing, the diagnostic properties of biosensors have significantly improved. This study core presents and debates the current progress in biosensing systems for TORCH pathogens using various artificial and natural receptors. The incorporation of nanomaterials into various transduction systems can enhance diagnostic performance. The key performance characteristics of optical and electrochemical biosensors, such as response time, limit of detection (LOD), and linear detection range, are systematically discussed, along with the current TORCH pathogens used for constructing biosensors. Finally, the major problems that exist for converting scientific investigation into product development are also outlined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City, Saudi Arabia
| |
Collapse
|
5
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Alizadeh Z, Mazloum-Ardakani M, Asadpour F, Yavari M. Highly Efficient Enzyme-Free Glutamate Sensors Using Porous Network Metal-Organic Framework-Ni-NiO-Ni-Carbon Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59246-59257. [PMID: 38102092 DOI: 10.1021/acsami.3c15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This study introduces an innovative electrochemical sensor designed to detect glutamate using a nonenzymatic approach. The sensor utilizes a porous network metal-organic framework (Ni-MOF)-NiO-Ni-Carbon nanocomposite (PNM-NiO-Ni-Carbon) as an electrode modifier, which was synthesized and assessed for its effectiveness. Cyclic voltammetry measurements demonstrated that the PNM-NiO-Ni-Carbon nanocomposite, synthesized at 450 °C, displayed remarkable electrocatalytic activity for glutamate oxidation. The linear range for detection spanned from 5 to 960 μmol/L, and the sensor achieved a low detection limit of 320 nmol/L (S/N = 3), which was comparable to previously reported data. Moreover, the sensor exhibited high accuracy and favorable recovery rates when tested with real samples, thus, demonstrating its potential for rapid glutamate detection. The real samples were analyzed using both electrochemical and high-performance liquid chromatography methods, and the results obtained from the two methods did not differ significantly, validating the sensor's excellent practical performance. Based on our findings, the PNM-NiO-Ni-Carbon system exhibits potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran
| | - Mohammad Mazloum-Ardakani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran
| | - Farzaneh Asadpour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Mozhgan Yavari
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran
| |
Collapse
|
7
|
Xu B, Chen J, Li P, Ouyang Y, Ma Y, Wang H, Li H. Transparent metal oxide interlayer enabling durable and fast-switching zinc anode-based electrochromic devices. NANOSCALE 2023. [PMID: 38018883 DOI: 10.1039/d3nr04902g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Growing energy and environmental challenges have imposed higher requirements for the development of novel multifunctional energy storage and energy-saving devices. Electrochromic devices having similar configurations and working mechanisms with secondary batteries exhibit promising applications in dual-functional electrochromic-energy storage (ECES) devices. Electrochromic Prussian blue (PB) as typical battery cathodes are of great interest for ECES devices although they suffer from poor stability and limited capacity. In this study, a transparent metal oxide (NiO nanosheets) interlayer was incorporated to enhance the structural stability and capacity of PB while offering enlarged optical modulation (ΔT) and accelerated switching kinetics in the NiO/PB film. Impressively, the NiO/PB nanocomposite film exhibited a high areal capacity of 50 mA h m-2 and excellent electrochemical stability, simultaneously manifesting a large ΔT (73.2% at 632.8 nm), fast switching time (tc = 1.4 s, tb = 2.6 s) and higher coloration efficiency (CE = 54.9 cm2 C-1), surpassing those of the bare PB film (ΔT = 69.1% at 632.8 nm, tc = 1.6 s, tb = 4.1 s, CE = 50.9 cm2 C-1). Finally, a prototype zinc anode-based electrochromic device assembled with NiO/PB nanocomposite film exhibited a self-bleaching function and ΔT retention of up to 92% after 1000 cycles, and a 100 cm2 large area device was also demonstrated for high performance. Such a transparent metal oxide interlayer has enabled the construction of durable and fast-switching dual-functional zinc anode-based electrochromic devices and will inspire more efforts in designing novel multifunctional ECES devices.
Collapse
Affiliation(s)
- Bing Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Ping Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yujia Ouyang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yu Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Haizeng Li
- Institute of Frontier & Interdisciplinary Science, Shandong University, Qingdao 266237, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
8
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
9
|
Yang T, Zhang W, Wu J, Zhang C, Song Y, Zhao Y. Programming a triple-shelled CuS@Ni(OH)2@CuS heterogeneous nanocage as robust electrocatalysts enabling long-term highly sensitive glucose detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Wang Z, Wang C, Ye L, Liu X, Xin L, Yang Y, Wang L, Hou W, Wen Y, Zhan T. MnO x Film-Coated NiFe-LDH Nanosheets on Ni Foam as Selective Oxygen Evolution Electrocatalysts for Alkaline Seawater Oxidation. Inorg Chem 2022; 61:15256-15265. [PMID: 36083871 DOI: 10.1021/acs.inorgchem.2c02579] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to freshwater electrolysis, seawater electrolysis to produce hydrogen is preferable and more promising, but this technology is plagued by the electrode's corrosion and oxidative reactions of the competitive Cl- ion on the anode. To develop efficient oxygen evolution reaction (OER) catalysts for seawater electrolysis, the ultrathin MnOx film-covered NiFe-layered double-hydroxide nanosheet array is directly assembled on Ni foam (MnOx/NiFe-LDH/NF) by hydrothermal and electrodeposition in turn. This catalyst demonstrates excellent OER-selective activity in alkaline saline electrolytes. In 1 M KOH/0.5 M NaCl and 1 M KOH/seawater electrolytes, MnOx/NiFe-LDH/NF exhibits lower overpotentials at 100 mA cm-2 (η100 values of 265 and 276 mV, respectively) and Tafel slopes (73 and 77 mV decade-1, respectively) than does the NiFe-LDH/NF electrode (η100 values of 298 and 327 mV and Tafel slopes of 91 and 140 mV decade-1, respectively). In alkaline saline solutions, the stability and durability of the former are also better than those of the latter. The good OER selectivity and catalytic performance are attributed to the MnOx overlayer that selectively blocks Cl- anions from approaching catalytic centers, and the good conductivity, fast kinetics, more oxygen vacancies, and abundant active sites of MnOx/NiFe-LDH/NF. The robust stability is due to the enhanced resistance for Cl- corrosion stemming from the MnOx protective film. Hence, MnOx/NiFe-LDH/NF can act as a promising OER electrocatalyst for alkalized natural seawater electrolysis.
Collapse
Affiliation(s)
- Zekun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xien Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanyuan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Bian L, Ma J, Ai J, Wang Y, Wang N, Wang X, Guo G, Pu Q. NaCl Micro-Crystal as a Molecular Mold for Enhanced Synthesis of Planar Phenazines and Their Applications on Chemosensing and a Full-Color Fluorescent Material. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39441-39450. [PMID: 35993697 DOI: 10.1021/acsami.2c03602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
NaCl has been successfully used as a template for the synthesis of 2D nanomaterials, but it is seldom used for the construction of flat small organic molecules. Herein, a simple, low-cost, and highly efficient synthesis of phenazines with planar main frames, such as 5-phenyl-5,14-dihydro-5,7,12,14-tetraazapentacene, in the presence of NaCl micro-crystal as a kind of molecular mold is described. The reactants were mixed with NaCl powder and heated to 320 °C for 5 min. Yields >90% were readily achieved after a simple precipitation in water. The effectiveness of NaCl crystal as a mold with HCl was confirmed by comparison with common inorganic salts, SiO2, and γ-Al2O3 with HCl together with combinations including NaNO3 + HNO3, Na2SO4 + H2SO4, NaH2PO4 + H3PO4, and NaH2PO4 + polyphosphoric acid. The mechanism was deduced with the aid of computer simulation, which confirms the stabilization of 5,14-dihydro-5,7,12,14-tetraazapentacene by the NaCl surface. DMSO solution of a product, 1,3-dihydro-imidazo[4,5-b]phenazin-2-one, showed enhanced fluorescence in H2O, and it was used as a fluorescent probe for pH and Hg2+. A full-color material was prepared by mixing precursors of epoxy resin and phenazines, and its fluorescent color could be adjusted by the ratio of phenazines.
Collapse
Affiliation(s)
- Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Jiebing Ai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Naiyu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Kang KN, Kim SI, Yoon JC, Kim J, Cahoon C, Jang JH. Bi-functional 3D-NiCu-Double Hydroxide@Partially Etched 3D-NiCu Catalysts for Non-Enzymatic Glucose Detection and the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33013-33023. [PMID: 35839325 DOI: 10.1021/acsami.2c04471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen production, which is in the spotlight as a promising eco-friendly fuel, and the need for inexpensive and accurate electronic devices in the biochemistry field are important emerging technologies. However, the use of electrocatalytic devices based on expensive noble metal catalysts limits commercial applications. In recent years, to improve performance and reduce cost, electrocatalysts based on cheaper copper or nickel materials have been investigated for the non-enzymatic glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). In this study, we demonstrate a facile and easy electrochemical method of forming a cheap nickel copper double hydroxide (NiCu-DH) electrocatalyst deposited onto a three-dimensional (3D) CuNi current collector, which can effectively handle two different reactions due to its high activity for both the GOR and the HER. The as-prepared electrode has a structure comprising abundant 3D-interconnected porous dendritic walls for easy access of the electrolyte ions and highly conductive networks for fast electron transfer; additionally, it provides numerous electroactive sites. The synergistic combination of the dendritic 3D-CuNi with its abundant active sites and the self-made NiCu-DH with its excellent electrocatalytic activity toward the oxidation of glucose and HER enables use of the catalyst for both reactions. The as-prepared electrode as a glucose sensor exhibits an outstanding glucose detection limit value (0.4 μM) and a wide detection range (from 0.4 μM to 1.4 mM) with an excellent sensitivity of 1452.5 μA/cm2/mM. The electrode is independent of the oxygen content and free from chloride poisoning. Furthermore, the as-prepared electrode also requires a low overpotential of -180 mV versus reversible hydrogen electrode to yield a current density of 10 mA/cm2 with a Tafel slope of 73 mV/dec for the HER. Based on this performance, this work introduces a new paradigm for exploring cost-effective bi-functional catalysts for the GOR and HER.
Collapse
Affiliation(s)
- Kyeong-Nam Kang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun-I Kim
- Green Materials & Processes Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea
| | - Jong-Chul Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinho Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Collin Cahoon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
13
|
Zhang L, Wang Z, Li J, Yang W. Electrochemical Preparation of Nano-silver/Nickel Materials and Their Application in Glucose Nonenzymatic Sensors. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Chang HW, Chen SC, Chen PW, Liu FJ, Tsai YC. Constructing Morphologically Tunable Copper Oxide-Based Nanomaterials on Cu Wire with/without the Deposition of Manganese Oxide as Bifunctional Materials for Glucose Sensing and Supercapacitors. Int J Mol Sci 2022; 23:3299. [PMID: 35328716 PMCID: PMC8955748 DOI: 10.3390/ijms23063299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/30/2023] Open
Abstract
Morphologically tunable copper oxide-based nanomaterials on Cu wire have been synthesized through a one-step alkali-assisted surface oxidation process for non-enzymatic glucose sensing. Subsequently, copper oxide-based nanomaterials on Cu wire as a supporting matrix to deposit manganese oxide for the construction of heterostructured Mn-Cu bimetallic oxide architectures through spontaneous redox reaction in the KMnO4 solution for supercapacitors. Field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed that morphological and phase transformation from Cu(OH)2 to CuO occurred in copper oxide-based nanomaterials on Cu wire with different degrees of growth reaction. In non-enzymatic glucose sensing, morphologically tunable copper oxide-based nanomaterials owned the high tunability of electrocatalytically active sites and intrinsic catalytic activity to meet efficient glucose electrooxidation for obtaining promoted non-enzymatic glucose sensing performances (sensitivity of 2331 μA mM-1 cm-2 and the limit of detection of 0.02 mM). In the supercapacitor, heterostructured Mn-Cu bimetallic oxide-based nanomaterials delivered abundant redox-active sites and continuous conductive network to optimize the synergistic effect of Mn and Cu redox species for boosting the pseudo-capacitance performance (areal capacitance value of 79.4 mF cm-2 at 0.2 mA cm-2 current density and capacitance retention of 74.9% after 1000 cycles). It concluded that morphologically tunable copper oxide-based nanomaterials on Cu wire with/without deposition of manganese oxide could be good candidates for the future design of synergistic multifunctional materials in electrochemical techniques.
Collapse
Affiliation(s)
- Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Song-Chi Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
| | - Pei-Wei Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
| | - Feng-Jiin Liu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
15
|
Yhobu Z, K. N. B, Achar G, Małecki JG, Keri RS, D. H. N, Budagumpi S. Glucose electrocatalysts derived from mono‐ or dicarbene coordinated nickel(II) complexes and their mesoporous carbon composites. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhoveta Yhobu
- Centre for Nano and Material Sciences Jain University Bangalore India
- Department of Chemistry, School of Applied Sciences REVA University Bangalore India
| | - Brinda K. N.
- Centre for Nano and Material Sciences Jain University Bangalore India
| | - Gautam Achar
- Centre for Nano and Material Sciences Jain University Bangalore India
| | | | - Rangappa S. Keri
- Centre for Nano and Material Sciences Jain University Bangalore India
| | - Nagaraju D. H.
- Department of Chemistry, School of Applied Sciences REVA University Bangalore India
| | | |
Collapse
|
16
|
Jiang K, Liu W, Lai W, Wang M, Li Q, Wang Z, Yuan J, Deng Y, Bao J, Ji H. NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorg Chem 2021; 60:17371-17378. [PMID: 34705457 DOI: 10.1021/acs.inorgchem.1c02903] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrolysis of seawater can not only desalinate seawater but also produce high-purity hydrogen. Nevertheless, the presence of chloride ions in seawater will cause electrode corrosion and also undergo a chlorine oxidation reaction (ClOR) that competes with the oxygen evolution reaction (OER). Therefore, highly efficient and long-term stable electrocatalysts are needed in this field. In this work, an advanced bifunctional electrocatalyst based on NiFe layered double hydroxide (LDH)/FeOOH heterostructure nanosheets (NiFe LDH/FeOOH) was synthesized on nickel-iron foam (INF) via a simple electrodeposition method. The NiFe LDH/FeOOH electrode demonstrates excellent electrocatalytic activity and stability, which results from the strong interaction between FeOOH and NiFe LDH. Furthermore, ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman spectroscopy revealed the catalytic process and also demonstrated that the NiFe LDH/FeOOH heterostructure could facilitate the formation of active NiOOH species in the reaction. The obtained NiFe LDH/FeOOH catalyst displays low overpotentials of 181.8 mV at 10 mA·cm-2 for hydrogen evolution reaction (HER) and 286.2 mV at 100 mA·cm-2 for OER in the 1.0 M KOH + 0.5 M NaCl electrolyte. Furthermore, it also exhibits a low voltage of 1.55 V to achieve the current density of 10 mA·cm-2 and works steadily for 105 h at 100 mA·cm-2 for overall alkaline simulated seawater splitting. This work will afford a valid strategy for designing a non-noble metal catalyst for seawater splitting.
Collapse
Affiliation(s)
- Kun Jiang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Wenjun Liu
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Wei Lai
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Menglian Wang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Qian Li
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Zhaolong Wang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Junjie Yuan
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Yilin Deng
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Jian Bao
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
17
|
Jiang S, Li S, Xu Y, Liu Z, Weng S, Lin M, Xu Y, Jiao Y, Chen J. An iron based organic framework coated with nickel hydroxide for energy storage, conversion and detection. J Colloid Interface Sci 2021; 600:150-160. [PMID: 34010772 DOI: 10.1016/j.jcis.2021.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022]
Abstract
Although electrode materials based on metal organic frameworks (MOFs) were widely studied in the electrochemistry field, the origin of poor conductivity is still a bottleneck restricting their development. Herein, we constructed a conductive circuit by growing a layer of hydroxide on the surface of the Fe-MOF, and composite materials (Fe-MOF@Ni(OH)2) are applied in the fields of supercapacitor, OER, and electrochemical sensing. Fe-MOF@Ni(OH)2 not only maintains the intrinsic advantages of Fe-MOF, but also improves the electrical conductivity. Fe-MOF@Ni(OH)2 exhibits a high specific capacity of 188 mAh g-1 at 1 A g-1 . The energy density of the asymmetric supercapacitor (Fe-MOF@Ni(OH)2-20//AC) reaches 67.1 Wh kg-1. During the oxygen evolution reaction, the overpotential of the material is 280 mV at 10 mA cm-2, and the Tafel slope is 37.6 mV dec-1. The electrochemical sensing tests showed the detection limit of BPA is 5 μM. Hence, these results provide key insights into the design of multifunctional electrode materials.
Collapse
Affiliation(s)
- Shuyao Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shasha Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanqiu Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhejun Liu
- Zhejiang Anke Environmental Protection Technology Co., Ltd, China
| | - Shuting Weng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mengxian Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
18
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
19
|
Wang C, Han B, Li J, Gao Q, Xia K, Zhou C. Direct epitaxial growth of nickel phosphide nanosheets on nickel foam as self-support electrode for efficient non-enzymatic glucose sensing. NANOTECHNOLOGY 2021; 32:435501. [PMID: 34284357 DOI: 10.1088/1361-6528/ac162f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Design and develop of cost-effective non-enzymatic electrode materials is of great importance for next generation of glucose sensors. In this work, we report a high-performance self-supporting electrode fabricated via direct epitaxial growth of nickel phosphide on Ni foam (Ni2P/NF) for nonenzymatic glucose sensors in alkaline solution. Under the optimal conditions, the uniform Ni2P nanosheets could be obtained with an average thickness of 80 nm, which provides sufficient active sites for glucose molecules. As a consequence, the Ni2P/NF electrode displays superior electrochemistry performances with a high sensitivity of 6375.1μA mM-1cm-2, a quick response about 1 s, a low detection limit of 0.14μM (S/N = 3), and good selectivity and specificity. Benefit from the strong interaction between Ni2P and NF, the Ni2P/NF electrode is also highly stable for long-term applications. Furthermore, the Ni2P/NF electrode is capable of analyzing glucose in human blood serum with satisfactory results, indicating that the Ni2P/NF is a potential candidate for glucose sensing in real life.
Collapse
Affiliation(s)
- Chunhua Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430074, People's Republic of China
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430074, People's Republic of China
| | - Jia Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430074, People's Republic of China
| | - Qiang Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430074, People's Republic of China
| | - Kaisheng Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430074, People's Republic of China
| | - Chenggang Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430074, People's Republic of China
| |
Collapse
|
20
|
Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63639-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Mohamed Azharudeen A, Karthiga R, Rajarajan M, Suganthi A. Selective enhancement of non-enzymatic glucose sensor by used PVP modified on α-MoO3 nanomaterials. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Zhang L, Liu T, Ren R, Zhang J, He D, Zhao C, Suo H. In situ synthesis of hierarchical platinum nanosheets-polyaniline array on carbon cloth for electrochemical detection of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122342. [PMID: 32109797 DOI: 10.1016/j.jhazmat.2020.122342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 05/25/2023]
Abstract
In this work, a self-supported electrode has been designed and fabricated based on carbon cloth-supported polyaniline array and Pt nanosheets (Pt-PANI-CC). PANI array was firstly loaded on the surface of CC via chronoamperometry technique, and then, Pt nanosheets were deposited on the per-grown PANI array through amperometric measurement. The hierarchical structure of Pt-PANI-CC electrode and unique sheet-like Pt nanoparticles offered large specific surface and response centers. The electrochemical sensor based on Pt-PANI-CC electrode has been successfully constructed for detection of ammonia. The experiment results demonstrated that Pt-PANI-CC displayed great catalytic activity for electro-oxidation of ammonia and exhibited acceptable performances for sensing ammonia with low detection limit of 77.2 nM and wide linear range from 0.5 μM to 550 μM. Moreover, the anti-interference ability, reusability, reproducibility and stability of sensor have been investigated and showed great performances. This work provides a promising way for designing self-supported sensing electrode toward a wide electrochemical detection.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Tianyu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Runhua Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Jingwen Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Dong He
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China.
| | - Hui Suo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China.
| |
Collapse
|
23
|
Li H, Guo C, Liu C, Ge L, Li F. Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 2020; 145:4041-4049. [PMID: 32367085 DOI: 10.1039/d0an00252f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of an electrocatalyst with a semiconductor light absorber is of great importance to increase the efficiency of photoelectrochemical (PEC) glucose detection. Here, in situ and synchronous fabrication of a Ni-based electrocatalyst (NiEC) and CdS semiconductor in laser-induced graphene (LIG) on indium-tin oxide glass is demonstrated via a one-step laser-induced solid phase transition. A series of component and structural characterization experiments suggest that the laser-induced NiEC uniformly disperses in the hybrid nanocomposite and exists mainly in the Ni0 and NiO states. Moreover, both electrochemical and PEC investigations confirm that the as-prepared hybrid photoelectrode exhibits excellent photoelectrocatalytic ability towards glucose, which is not only attributed to the strong synergistic interaction between CdS and NiEC, but also benefited from the high conductivity as well as 3D macroporous configuration of the simultaneously formed LIG, providing the key factor to achieve sensitive non-enzymatic PEC glucose sensors. Therefore, the laser-induced hybrid photoelectrode is then applied to the PEC detection of glucose, and a low detection limit of 0.4 μM is obtained with good stability, reproducibility, and selectivity. This study provides a promising paradigm for the facile and binder-free fabrication of an electrocatalyst-semiconductor-graphene hybrid photoelectrode, which will find potential applications in sensitive PEC biosensing for a broad range of analytes.
Collapse
Affiliation(s)
- Hui Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | | | | | | | | |
Collapse
|
24
|
Ren Z, Mao H, Luo H, Deng X, Liu Y. One-step formation of a hybrid material of graphene and porous Ni with highly active Ni(OH) 2 used for glucose detection. NANOTECHNOLOGY 2020; 31:185501. [PMID: 31931499 DOI: 10.1088/1361-6528/ab6ab7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hybrid material of graphene and porous Ni with highly active Ni(OH)2 was formed through a one-step electrochemical exfoliation assisted method. The porous Ni with a pore size of 2-10 micrometers obtained by a hydrogen bubble template method was used as the cathode while the graphite foil was used as the anode with only (NH4)2SO4 as the electrolyte. Both the high surface areas of porous Ni and the oxygen radicals in graphene favored the formation of the Ni(OH)2. It is confirmed by energy dispersion spectrum, transmission electron microscope, Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy analysis. Both the active area and the glucose sensing property of the as-prepared hybrid material were estimated by electrochemical methods of cyclic voltammetry with current-voltage (C-V) curve, chronoamperometry with current-time (I-t) curve and electrochemical impedance spectroscopy analysis, respectively. It shows an extraordinary active area as well as a low charge transfer resistance and absorption resistance. As a result, a high sensitivity of 6504 μA/mM-1 cm-2 within a linear range of 4 μM-1.0 mM was obtained for glucose detection.
Collapse
Affiliation(s)
- Zhaodi Ren
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Guo S, Zhang C, Yang M, Zhou Y, Bi C, Lv Q, Ma N. A facile and sensitive electrochemical sensor for non-enzymatic glucose detection based on three-dimensional flexible polyurethane sponge decorated with nickel hydroxide. Anal Chim Acta 2020; 1109:130-139. [PMID: 32252896 DOI: 10.1016/j.aca.2020.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
A novel three-dimensional nickel hydroxide/polyurethane (Ni(OH)2/PU) electrode was prepared by a simple and environmentally friendly method and used for non-enzymatic detection of glucose. The Ni(OH)2/PU electrode was obtained by one-pot hydrothermal method of loading nickel hydroxide on a cheap, easily available and flexible polyurethane sponge, which is facile and energy-saving. The porous structure of the polyurethane sponge provides a large surface area and a rich electrochemical active site for the electrode, which is beneficial to the oxidation reaction of glucose on the surface of the electrode with Ni(OH)2. The Ni(OH)2/PU electrode structure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The cyclic voltammetry test was used to study the catalytic performance of Ni(OH)2/PU electrode for oxidation of glucose and the chronoamperometry was used to investigate the detection performance of Ni(OH)2/PU electrode on glucose. The results indicate that this non-enzymatic glucose sensor had a high sensitivity of 2845 μA mM-1 cm-2, a low detection limit of 0.32 μM (S/N = 3), a detection range of 0.01-2.06 mM and response time of less than 5 s. In addition, the Ni(OH)2/PU electrode had excellent selectivity, reproducibility and stability and also exhibited effective detection of glucose in fetal bovine serum (FBS). In summary, Ni(OH)2/PU electrode had broad prospects as an excellent candidate for non-enzymatic glucose sensors. The study also opens up a facile and energy-saving approach for preparing three-dimensional (3D) functionalized polymer electrode via hydrothermal method as electrochemical sensors.
Collapse
Affiliation(s)
- Shixi Guo
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China.
| | - Ming Yang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Yanli Zhou
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Changlong Bi
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Qingtao Lv
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| |
Collapse
|
26
|
Gao X, Du X, Liu D, Gao H, Wang P, Yang J. Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci Rep 2020; 10:1365. [PMID: 31992829 PMCID: PMC6987199 DOI: 10.1038/s41598-020-58403-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Non-enzymatic electrodes based on noble metals have excellent selectivity and high sensitivity in glucose detection but no such shortcomings as easy to be affected by pH, temperature, and toxic chemicals. Herein, spherical gold-nickel nanoparticles with a core-shell construction (Au@Ni) are prepared by oleylamine reduction of their metal precursors. At an appropriate Au/Ni ratio, the core-shell Au@Ni nanoparticles as a sensor for glucose detection combine the high electrocatalytic activity, good selectivity and biological compatibility of Au with the remarkable tolerance of Ni for chlorine ions (Cl-) and poisoning intermediates in catalytic oxidation of glucose. This electrode exhibits a low operating voltage of 0.10 V vs. SCE for glucose oxidation, leading to higher selectivity compared with other Au- and Ni-based sensors. The linear range for the glucose detection is from 0.5 mmol L-1 to 10 mmol L-1 with a rapid response time of ca. 3 s, good stability, sensitivity estimated to be 23.17 μA cm-2 mM-1, and a detection limit of 0.0157 mM. The sensor displays high anti-toxicity, and is not easily poisoned by the adsorption of Cl- in solution.
Collapse
Affiliation(s)
- Xuejin Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xinzhao Du
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Danye Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Pu Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
27
|
Subash VS, Alagumalai K, Chen SM, Shanmugam R, Shiuan HJ. Ultrasonication assisted synthesis of NiO nanoparticles anchored on graphene oxide: an enzyme-free glucose sensor with ultrahigh sensitivity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02127j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, the cost-effective fabrication of inorganic materials has received considerable attention from researchers working in various fields.
Collapse
Affiliation(s)
- Vetri Selvi Subash
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Krishnapandi Alagumalai
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Huang Ji Shiuan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
28
|
Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X. Rational Construction of 3D-Networked Carbon Nanowalls/Diamond Supporting CuO Architecture for High-Performance Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901527. [PMID: 31074930 DOI: 10.1002/smll.201901527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Indexed: 05/27/2023]
Abstract
Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D-networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10-6 -4 × 10-3 m), high sensitivity (1650 µA cm-2 mm-1 ), and low detection limit (0.5 × 10-6 m), together with high selectivity, great long-term stability, and good reproducibility in glucose determination. The outstanding performance of the CuO@C/D electrode can be ascribed to the synergistic effect coming from high-electrocatalytic-activity CuO nanoparticles and 3D-networked conductive C/D film. The C/D film is composed of carbon nanowalls and diamond nanoplatelets; and owing to the large surface area, accessible open surfaces, and high electrical conduction, it works as an excellent transducer, greatly accelerating the mass- and charge-transport kinetics of electrocatalytic reaction on the CuO biorecognition element. Besides, the vertical aligned diamond nanoplatelet scaffolds could improve structural and mechanical stability of the designed electrode in long-term performance. The excellent CuO@C/D electrode promises potential application in practical glucose detection, and the strategy proposed here can also be extended to construct other biorecognition elements on the 3D-networked conductive C/D transducer for various high-performance nonenzymatic electrochemical biosensors.
Collapse
Affiliation(s)
- Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, No.72 Wenhua Road, Shenyang, 110016, China
| | - Bing Leng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| | - Bing Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Nan Huang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| |
Collapse
|
29
|
Wu X, Chen F, Huang M, Dan Z, Qin F. Ni-decorated ZrAlCo-O nanotube arrays with ultrahigh sensitivity for non-enzymatic glucose sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Tao Y, Chang Q, Liu Q, Guan H, Yang G, Lang R, Chen G, Dong C. In situ fabrication of Ni(OH)2 nanoflakes/K-Ti-O nanowires on NiTi foil for high performance non-enzymatic hydrogen peroxide sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Significantly enhanced activity of ZIF-67-supported nickel phosphate for electrocatalytic glucose oxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Zhu T, Zhang Y, Luo L, Zhao X. Facile Fabrication of NiO-Decorated Double-Layer Single-Walled Carbon Nanotube Buckypaper for Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10856-10861. [PMID: 30802407 DOI: 10.1021/acsami.9b00803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel NiO-decorated flexible buckypaper (NiO-BP) was fabricated by a simple and scalable vacuum filtration method for electrochemical detection of glucose. The NiO-BP consists of two layers: one side is composed of purified single-walled carbon nanotubes, serving as the supporting layer, whereas the other side comprises NiO-loaded single-walled carbon nanotubes, serving as the catalyst layer. The morphology and structure of NiO-BP were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The fabricated NiO-BP was applied to the electrochemical detection of glucose. Under optimized conditions, the sensor exhibited a wide linear range of 0.1-9 mM for the determination of glucose with high sensitivity (2701 μA mM-1 cm-2) and a short response time (<2.5 s). The present work reveals that the buckypaper with a unique double-layer structure is promising for wearable biosensors.
Collapse
|
33
|
Mao W, He H, Ye Z, Huang J. Three-dimensional graphene foam integrated with Ni(OH)2 nanosheets as a hierarchical structure for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Zheng D, Li M, Li Y, Qin C, Wang Y, Wang Z. A Ni(OH) 2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:281-293. [PMID: 30746322 PMCID: PMC6350860 DOI: 10.3762/bjnano.10.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/09/2019] [Indexed: 05/09/2023]
Abstract
Developing a facile and environmentally friendly approach to the synthesis of nanostructured Ni(OH)2 electrodes for high-performance supercapacitor applications is a great challenge. In this work, we report an extremely simple route to prepare a Ni(OH)2 nanopetals network by immersing Ni nanofoam in water. A binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were characterized. It is found that the Ni(OH)2 nanopetals interweave with each other and grow vertically on the surface of Ni nanofoam to form an "ion reservoir", which facilitates the ion diffusion in the electrode reaction. Electrochemical measurements show that the Ni(OH)2/Ni-NF/MG electrode, after immersion in water for seven days, reveals a high volumetric capacitance of 966.4 F/cm3 at a current density of 0.5 A/cm3. The electrode immersed for five days exhibits an excellent cycling stability (83.7% of the initial capacity after 3000 cycles at a current density of 1 A/cm3). Furthermore, symmetric supercapacitor (SC) devices were assembled using ribbons immersed for seven days and showed a maximum volumetric energy density of ca. 32.7 mWh/cm3 at a power density of 0.8 W/cm3, and of 13.7 mWh/cm3 when the power density was increased to 2 W/cm3. The fully charged SC devices could light up a red LED. The work provides a new idea for the synthesis of nanostructured Ni(OH)2 by a simple approach and ultra-low cost, which largely extends the prospect of commercial application in flexible or wearable devices.
Collapse
Affiliation(s)
- Donghui Zheng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Man Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yongyan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunling Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yichao Wang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Zhifeng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|