1
|
Tam V, Picchetti P, Liu Y, Skripka A, Carofiglio M, Tamboia G, Bresci A, Manetti F, Cerullo G, Polli D, De Cola L, Vetrone F, Cerruti M. Upconverting Nanoparticles Coated with Light-Breakable Mesoporous Silica for NIR-Triggered Release of Hydrophobic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29029-29041. [PMID: 38771192 DOI: 10.1021/acsami.4c03444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Upconverting nanoparticles (UCNPs) doped with Yb3+ and Tm3+ are near-infrared (NIR) to ultraviolet (UV) transducers that can be used for NIR-controlled drug delivery. However, due to the low quantum yield of upconversion, high laser powers and long irradiation times are required to trigger this drug release. In this work, we report the one-step synthesis of a nanocomposite consisting of a LiYbF4:Tm3+@LiYF4 UCNP coated with mesoporous UV-breakable organosilica shells of various thicknesses. We demonstrate that a thin shell accelerates the breakage of the shell at 1 W/cm2 NIR light exposure, a laser power up to 9 times lower than that of conventional systems. When the mesopores are loaded with hydrophobic vitamin D3 precursor 7-dehydrocholesterol (7-DH), shell breakage results in subsequent cargo release. Its minimal toxicity in HeLa cells and successful internalization into the cell cytoplasm demonstrate its biocompatibility and potential application in biological systems. The tunability of this system due to its simple, one-step synthesis process and its ability to operate at low laser powers opens up avenues in UCNP-powered NIR-triggered drug delivery toward a more scalable, flexible, and ultimately translational option.
Collapse
Affiliation(s)
- Vivienne Tam
- Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yiwei Liu
- Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| | - Artiom Skripka
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boul. Lionel Boulet, Varennes, Québec J3X 1P7, Canada
- Nanomaterials for Bioimaging Group, Departamento de Fiśica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marco Carofiglio
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri "IRCCS", Via Mario Negri 2, 20156 Milan, Italy
| | - Giulia Tamboia
- Department of Pharmaceutical Sciences, DISFARM, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri "IRCCS", Via Mario Negri 2, 20156 Milan, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesco Manetti
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Luisa De Cola
- Department of Pharmaceutical Sciences, DISFARM, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri "IRCCS", Via Mario Negri 2, 20156 Milan, Italy
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boul. Lionel Boulet, Varennes, Québec J3X 1P7, Canada
| | - Marta Cerruti
- Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
2
|
Luo YH, Jin XT, Zhang SX, Xue C, Liu M. Dynamic Aggregation Triggering Reversible Spin-State Switching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48365-48374. [PMID: 37793189 DOI: 10.1021/acsami.3c10181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The manipulation of spin-state switching (SSS) under ambient conditions is of significant importance for the construction of molecular switches. Herein, we demonstrate that reversible SSS can be mediated by the aggregation state of a near-infrared (NIR)-sensitive ferrous complex. The ferrous complex was J-aggregated in a DMF suspension and with a low-spin (LS) state; however, with the addition of water, it changed to H-aggregation and reached a high-spin (HS) state, owing to the enhanced intramolecular charge transfer and metal-to-ligand charge transfer. Interestingly, the following NIR irradiation can restore the J-aggregation and LS states owing to the enhanced ligand-to-ligand charge transfer. More interestingly, the ferrous complex can be further incorporated into a hygroscopic sponge that was capable of capturing humidity effectively for all weather conditions, which displayed reversible SSS via alternating atmospheric humidity capture and NIR irradiation under ambient conditions in the sponge state. This study thus opens up a new avenue for the development of novel smart molecular switches at the device level.
Collapse
Affiliation(s)
- Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xue-Ting Jin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shu-Xin Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Cheng Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
3
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
4
|
Sánchez-Molina I, Nieto-Castro D, Moneo-Corcuera A, Martínez-Ferrero E, Galán-Mascarós JR. Synergic Bistability between Spin Transition and Fluorescence in Polyfluorene Composites with Spin Crossover Polymers. J Phys Chem Lett 2021; 12:10479-10485. [PMID: 34677055 DOI: 10.1021/acs.jpclett.1c02811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, several examples of materials combining the molecular bistability of spin crossover (SC) and fluorescent moieties have flourished in the literature. Fluorescence is a sensitive probe, and SC may provide modulation of the signal, thus affording systems in which physicochemical changes in the environment of the SC centers could be effectively detected. On the contrary, organic semiconductor polymers are of great interest and, furthermore, have been successfully applied in different optoelectronic devices, such as transistors, solar cells, and light-emitting devices. Herein, we report on the fabrication of composites comprising a fluorescent, organic semiconductor polymer (polyfluorene) and a spin crossover compound, an Fe(II)-triazole coordination polymer. A strong synergy was observed between the spin transition of the Fe(II) compound and variations in the fluorescence of the organic polymer. The fluorescence modulation was shown to be reversible, with an increase of ≤20% with respect to the original value.
Collapse
Affiliation(s)
- Irene Sánchez-Molina
- Institut Catalá d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - David Nieto-Castro
- Institut Catalá d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo, 43007 Tarragona, Spain
| | - Andrea Moneo-Corcuera
- Institut Catalá d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Eugenia Martínez-Ferrero
- Institut Catalá d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - José Ramon Galán-Mascarós
- Institut Catalá d'Investigació Química (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Zhao Q, Xue JP, Liu ZK, Yao ZS, Tao J. Spin-crossover iron(ii) long-chain complex with slow spin equilibrium at low temperatures. Dalton Trans 2021; 50:11106-11112. [PMID: 34318840 DOI: 10.1039/d1dt01378e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A mononuclear complex with long alkyl chains, [FeII(H2Bpz2)2(C9bpy)] (1; H2Bpz2 = dihydrobis(1-pyrazolyl)borate, C9bpy = 4,4'-dinonyl-2,2'-bipyridine), was synthesized. Single-crystal X-ray crystallographic studies revealed that the Δ- and Λ-forms of the complex co-crystallized in the lattice asymmetric unit, while magnetic measurements unveiled that this complex underwent incomplete one-step spin crossover (SCO) with the transition completeness and temperature depending on the measurement velocity because of slow spin equilibrium. Multivariable approaches such as varying scan rate, annealing the sample, light irradiation and pressure have been adopted to effectively overcome the slow spin equilibrium and thus improve the SCO completeness.
Collapse
Affiliation(s)
- Qi Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | | | | | | | | |
Collapse
|
6
|
Gayathri P, Pannipara M, Al-Sehemi AG, Anthony SP. Recent advances in excited state intramolecular proton transfer mechanism-based solid state fluorescent materials and stimuli-responsive fluorescence switching. CrystEngComm 2021. [DOI: 10.1039/d1ce00317h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substitutional change and controlling intra and intermolecular interactions of ESIPT molecules resulted in realizing multifunctional fluorescence properties.
Collapse
Affiliation(s)
- Parthasarathy Gayathri
- Department of Chemistry
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Mehboobali Pannipara
- Department of Chemistry
- King Khalid University
- Abha 61413
- Saudi Arabia
- Research center for Advanced Materials Science
| | - Abdullah G. Al-Sehemi
- Department of Chemistry
- King Khalid University
- Abha 61413
- Saudi Arabia
- Research center for Advanced Materials Science
| | | |
Collapse
|
7
|
Anand N, Nag P, Kanaparthi RK, Vennapusa SR. O-H vibrational motions promote sub-50 fs nonadiabatic dynamics in 3-hydroxypyran-4-one: interplay between internal conversion and ESIPT. Phys Chem Chem Phys 2020; 22:8745-8756. [PMID: 32282004 DOI: 10.1039/d0cp00741b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical study is used to explore the involvement of O-H vibrational motions in the S0 → S2 photoinduced dynamics of 3-hydroxypyran-4-one (3-HOX). Two transitions, S0 → S1 and S0 → S2, are attributed to the experimentally observed electronic absorption spectral features in the range of 3.5-5.5 eV. We compute model potential energy surfaces of vibronically coupled S1 (nπ*) and S2 (ππ*) states with the aid of extensive electronic structure calculations. The S1-S2 conical intersection is characterized in the O-H bend and O-H stretch vibrational coordinate space. Quantum wavepacket dynamics simulations reveal an ultrafast S2 → S1 internal conversion decay, where about 90% of the S2 population disappears within the first 50 fs of the propagation time. The participation of O-H vibrational motions in the early events of nonadiabatic dynamics is analyzed based on the time evolution of nuclear densities on S2. We discuss the implications of these observations to provide fundamental insights into the nonadiabatic excited-state intramolecular proton transfer in 3-HOX and its derivatives.
Collapse
Affiliation(s)
- Neethu Anand
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O, Vithura, Thiruvananthapuram-695551, Kerala, India.
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O, Vithura, Thiruvananthapuram-695551, Kerala, India.
| | - Ravi Kumar Kanaparthi
- Department Of Chemistry, School Of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kerala - 671320, India.
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O, Vithura, Thiruvananthapuram-695551, Kerala, India.
| |
Collapse
|
8
|
Wang JY, Luo YH, Xing FH, Jin XW, Guo LH, Zhai LH, Zhang L, Fang WX, Sun BW. Build 3D Nanoparticles by Using Ultrathin 2D MOF Nanosheets for NIR Light-Triggered Molecular Switching. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15573-15578. [PMID: 32155041 DOI: 10.1021/acsami.0c00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The coordination interactions between transition-metal ions (Cu2+, Ag+) and sulfur atoms on ultrathin two-dimensional (2D) nanosheets of spin-crossover (SCO) metal-organic frameworks {[Fe(1,3-bpp)2(NCS)2]2}n (1,3-bpp = 1,3-di(4-pyridyl)propane), which constructed the ultrathin 2D nanosheets into three-dimensional (3D) nanoparticles, have made a profound effect on the SCO performance. Compared with 2D nanosheets, both the intraligand π-π* transition band and the metal-to-ligand charge transition band from the d(Fe) + π(NCS) to π*(1,3-bpp), for the 3D nanoparticles, have shown dramatic blue-shifts; meanwhile, the d-d transition band for the high-spin (HS) state Fe(II) ions has been generated, suggesting significantly the influence of 3D assemble-caused dimensional changes on the solid-state SCO performance of ultrathin 2D nanosheets. More importantly, by loading on the ytterbium ion (Yb3+)-sensitized hexagonal phase upconverting nanoparticles in the aqueous colloidal suspension, the near infrared (NIR) light (980 nm) triggered HS (high spin) to LS (low spin) state transitions have been observed, demonstrating the achievement of challenging target of NIR light-triggered molecular conversion under environment conditions.
Collapse
Affiliation(s)
- Jia-Ying Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Feng-Hao Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiao-Wei Jin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Li-Hong Guo
- Lunan Pharmaceutical Company Ltd., Linyi, 276000 Shandong, China
| | - Li-Hai Zhai
- Lunan Pharmaceutical Company Ltd., Linyi, 276000 Shandong, China
| | - Lan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wen-Xia Fang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
9
|
Cui MR, Chen LX, Li XL, Xu JJ, Chen HY. NIR Remote-Controlled "Lock-Unlock" Nanosystem for Imaging Potassium Ions in Living Cells. Anal Chem 2020; 92:4558-4565. [PMID: 32066238 DOI: 10.1021/acs.analchem.9b05820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite great achievements in sensitive and selective detection of important biomolecules in living cells, it is still challenging to develop smart and controllable sensing nanodevices for cellular studies that can be activated at desired time in target sites. To address this issue, we have constructed a remote-controlled "lock-unlock" nanosystem for visual analysis of endogenous potassium ions (K+), which employed a dual-stranded aptamer precursor (DSAP) as recognition molecules, SiO2 based gold nanoshells (AuNS) as nanocarriers, and near-infrared ray (NIR) as the remotely applied stimulus. With the well-designed and activatable DSAP-AuNS, the deficiencies of traditional aptamer-based sensors have been successfully overcome, and the undesired response during transport has been avoided, especially in complex physiological microenvironments. While triggered by NIR, the increased local temperature of AuNS induced the dehybridiztion of DSAP, realized the "lock-unlock" switch of the DSAP-AuNS nanosystem, activated the binding capability of aptamer, and then monitored intracellular K+ via the change of fluorescence signal. This DSAP-AuNS nanosystem not only allows us to visualize endogenous ions in living cells at a desired time but also paves the way for fabricating temporal controllable nanodevices for cellular studies.
Collapse
Affiliation(s)
- Mei-Rong Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Li-Xian Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China.,College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
10
|
Zhang YA, Yan CM, Chen C, Zhao XQ, Li T, Sun BW. Three new cocrystals derived from liquid pyrazine spices: X-ray structures and Hirshfeld surface analyses. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03932-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Hong DL, Luo YH, He XT, Zheng ZY, Su S, Wang JY, Wang C, Chen C, Sun BW. Unraveling the Mechanisms of the Excited-State Intermolecular Proton Transfer (ESPT) for a D-π-A Molecular Architecture. Chemistry 2019; 25:8805-8812. [PMID: 31054168 DOI: 10.1002/chem.201900856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2019] [Indexed: 11/10/2022]
Abstract
Precise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO4 -H2 O-OH(TIMDP)-N(TIMDP) hydrogen-bonding bridge. At the ground state, the ICT effect is dominant, giving birth to crystals of TIMDP. Upon external stimuli (e.g., UV light irradiation, electro field), the excited state is achieved, which weakens the ICT effect, and significantly promotes the ESPT effect along the hydrogen-bonding bridge, resulting in crystals of [HTIMDP]+ ⋅[H2 O]⋅[ClO4 ]- . As a consequence, the mechanisms of the ESPT can be investigated, which distorted the D-π-A molecular architecture, tuned the emission color with the largest Stokes shift of 242 nm, and finally, high photoluminescence quantum yields (12 %) and long fluorescence lifetimes (8.6 μs) have achieved. These results not only provide new insight into ESPT mechanisms, but also open a new avenue for the design of efficient ESPT emitters.
Collapse
Affiliation(s)
- Dan-Li Hong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Zi-Yue Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Shan Su
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Jia-Ying Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| |
Collapse
|
12
|
Bilayer Thin Films That Combine Luminescent and Spin Crossover Properties for an Efficient and Reversible Fluorescence Switching. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on the vacuum thermal deposition of bilayer thin films of the luminescent complex Ir(ppy)3, tris[2-phenylpyridinato-C2,N]iridium(III), and the spin crossover complex [Fe(HB(tz)3)2], bis[hydrotris(1,2,4-triazol-1-yl)borate]iron(II). Switching the spin state of iron ions from the low spin to the high spin state around 337 K leads to a reversible jump of the luminescence intensity, while the spectrum shape and the luminescence lifetime remain unchanged. The luminescence modulation occurs due to the different UV light absorption properties of the iron complex in the two spin states and its magnitude can therefore be precisely adjusted by varying the film thickness. These multilayer luminescence switches hold potential for micro- and nanoscale thermal sensing and imaging applications.
Collapse
|
13
|
Zhang R, Hong DL, He XT, Chen FH, Jiao J, Zhao XQ, Li X, Luo YH, Sun BW. Protonation-induced ligand distortion of spin-crossover complexes. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Hong DL, Luo YH, He XT, Wang C, Wang JY, Chen FH, Wu HS, Chen C, Sun BW. Ultralarge Dielectric Relaxation and Self-Recovery Triggered by Hydrogen-Bonded Polar Components. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7272-7279. [PMID: 30696243 DOI: 10.1021/acsami.8b18883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Subtle integration of rotatable polar components into dielectric crystals can contribute significantly to adjustable switching temperatures ( Ts) and dielectric relaxation behaviors. Currently, one of the biggest challenges lies in the design of optimal polar components with moderate motion resistance in a crystalline system. In this work, we demonstrate that under refrigerator conditions, rotatable hydrogen-bonded one-dimensional (1D) cationic chains, {[C2H6N5]+} n (C2H6N5 = 3,5-diamino-1,2,4-triazolinium), and two-dimensional (2D) anionic layers, {[(H2O)2·SO4]2-} n, can be generated in an organic salt, 3 ([C2H6N5]2·[(H2O)2·SO4]). Compared with the nonhydrated precursor, 2 ([C2H7N5]·[SO4]), the rotation of these 1D and 2D ionic species triggers a reversible phase transition and dielectric switching in 3. In addition, the significantly sluggish rotation of the 1D cationic chains from parallel to unparallel stacking and the counter-clockwise rotation of the 2D anionic layers, compared with their reverse processes, induce a frequency-dependent dielectric response with a more highly adjustable heating Ts↑ than the cooling Ts↓. More importantly, 3 possesses excellent self-recovery ability attributed to the highly dynamic character of the hydrogen-bonded ionic species. The strategy here can provide a fairly good model for designing dielectric crystals with desired rotatable polar components.
Collapse
Affiliation(s)
- Dan-Li Hong
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Jia-Ying Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Fang-Hui Chen
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Hong-Shuai Wu
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Chen Chen
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| |
Collapse
|
15
|
Wang C, Luo YH, He XT, Hong DL, Wang JY, Chen FH, Chen C, Sun BW. Porous High-Valence Metal–Organic Framework Featuring Open Coordination Sites for Effective Water Adsorption. Inorg Chem 2019; 58:3058-3064. [DOI: 10.1021/acs.inorgchem.8b03042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Dan-Li Hong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jia-Ying Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Fang-Hui Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
16
|
Luo YH, Chen C, Lu GW, Hong DL, He XT, Wang C, Wang JY, Sun BW. Atomically Thin Two-Dimensional Nanosheets with Tunable Spin-Crossover Properties. J Phys Chem Lett 2018; 9:7052-7058. [PMID: 30509071 DOI: 10.1021/acs.jpclett.8b03298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Combining the fascinating advantages of ultrathin two-dimensional (2D) nanosheets with the nanostructuration of spin-crossover (SCO) materials represents an attractive target of controlled fabrication of SCO nano-objects at the device level. Here, we demonstrate that through facile-operating ultrasonic force-assisted liquid exfoliation technology the three-dimensional (3D) van der Waals SCO bulk precursor {[Fe(1,3-bpp)2(NCS)2]2 (1, 1,3-bpp = 1,3-di(4-pyridyl)-propane)} can be exfoliated into single-layered 2D nanosheets (NS-1). As a consequence, the magnetism has been tuned from complete paramagnetic (bulk precursors) to SCO transition at around 250 K (2D nanosheets). In addition, the metal-to-ligand charge transition (MLCT), the intraligand π-π* transition and the color display also have been altered both in colloidal suspension and in the solid state. These dramatic changes of physical-chemical properties at different forms and states can be attributed to the efficient cooperativity derived from the interlayer van der Waals interactions within the curly or vertically stacked 2D building blocks.
Collapse
Affiliation(s)
- Yang-Hui Luo
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| | - Chen Chen
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| | - Guo-Wei Lu
- Institute of Innovative Science and Technology , Tokai University , Kanagawa 259-1292 , Japan
| | - Dan-Li Hong
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| | - Cong Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| | - Jia-Ying Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , People's Republic of China
| |
Collapse
|
17
|
Magenetic field induced proton transfer of 18-crown-6-ether/fluoroboric acid/water system: Crystal structure and Hirshfeld surfaces. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Luo YH, Chen C, He C, Zhu YY, Hong DL, He XT, An PJ, Wu HS, Sun BW. Single-Layered Two-Dimensional Metal-Organic Framework Nanosheets as an in Situ Visual Test Paper for Solvents. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28860-28867. [PMID: 30047267 DOI: 10.1021/acsami.8b08739] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Through a facile-operating ultrasonic force-assisted liquid exfoliation technology, the single-layered two-dimensional (2D) [Co(CNS)2(pyz)2] n (pyz = pyrazine) nanosheets, with a thickness of sub-1.0 nm, have been prepared from the bulk precursors. The atomically thickness and the presence of abundant sulfur atoms with high electronegativity arrayed on the double surfaces of the sheets are making this kind of 2D MOF (metal-organic framework) nanosheets highly sensitive to intermolecular interactions. As a result, it can be well dispersed in all kinds of solvents to give a stable colloidal suspension that can be maintained for at least one month, accompanied by significant solvatochromic behavior and various optical properties, which thus have shown the potential to be practically applicated as in situ visual test paper for solvent identification and solvent polarity measurements. More importantly, combined with a smartphone, this kind of 2D-MOF nanosheets can be developed into in situ visual test paper to identify isomers and determine the polarity of mixed solvents quantitatively and qualitatively, suggesting the promising application of a portable, economical, and in situ visual test strategy in real world.
Collapse
Affiliation(s)
- Yang-Hui Luo
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Chen Chen
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Chang He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Ying-Yu Zhu
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Dan-Li Hong
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Pei-Jing An
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Hong-Shuai Wu
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| |
Collapse
|
19
|
Dhifaoui S, Hajji M, Nasri S, Guerfel T, Daran JC, Nasri H. A new high-spin iron(III) bis(aqua) complex with the meso-tetra(para-chlorophenyl)porphyrin: X-ray crystallography, Hirshfeld surface analysis, magnetic, EPR and electrochemical properties. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chen C, He XT, Hong DL, Wang JW, Luo YH, Sun BW. Tuning the crystal structures of metal-tetraphenylporphines via a magnetic field. NEW J CHEM 2018. [DOI: 10.1039/c8nj01882k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, two new single crystals of copper-tetraphenylporphine (Cu-TPP) (crystals 2 and 3), which were induced by external magnetic fields with strengths of 0.5 and 0.8 T, respectively, have been prepared and characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 211189
- P. R. China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 211189
- P. R. China
| | - Dan-Li Hong
- School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 211189
- P. R. China
| | - Jing-Wen Wang
- School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 211189
- P. R. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 211189
- P. R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 211189
- P. R. China
| |
Collapse
|