1
|
Dar MA, Xie R, Liu J, Ali S, Pawar KD, Sudiana IM, Sun J. Current Paradigms and Future Challenges in Harnessing Nanocellulose for Advanced Applications in Tissue Engineering: A Critical State-of-the-Art Review for Biomedicine. Int J Mol Sci 2025; 26:1449. [PMID: 40003914 PMCID: PMC11855852 DOI: 10.3390/ijms26041449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Nanocellulose-based biomaterials are at the forefront of biomedicine, presenting innovative solutions to longstanding challenges in tissue engineering and wound repair. These advanced materials demonstrate enhanced mechanical properties and improved biocompatibility while allowing for precise tuning of drug release profiles. Recent progress in the design, fabrication, and characterization of these biomaterials underscores their transformative potential in biomedicine. Researchers are employing strategic methodologies to investigate and characterize the structure and functionality of nanocellulose in tissue engineering and wound repair. In tissue engineering, nanocellulose-based scaffolds offer transformative opportunities to replicate the complexities of native tissues, facilitating the study of drug effects on the metabolism, vascularization, and cellular behavior in engineered liver, adipose, and tumor models. Concurrently, nanocellulose has gained recognition as an advanced wound dressing material, leveraging its ability to deliver therapeutic agents via precise topical, transdermal, and systemic pathways while simultaneously promoting cellular proliferation and tissue regeneration. The inherent transparency of nanocellulose provides a unique advantage, enabling real-time monitoring of wound healing progress. Despite these advancements, significant challenges remain in the large-scale production, reproducibility, and commercial viability of nanocellulose-based biomaterials. This review not only underscores these hurdles but also outlines strategic directions for future research, including the need for bioengineering of nanocellulose-based wound dressings with scalable production and the incorporation of novel functionalities for clinical translation. By addressing these key challenges, nanocellulose has the potential to redefine biomedical material design and offer transformative solutions for unmet clinical needs in tissue engineering and beyond.
Collapse
Affiliation(s)
- Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Shehbaz Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Kiran D. Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur 416004, India;
| | - I Made Sudiana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM. 46, KST Soekarno, Cibinong, Bogor 16911, Indonesia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| |
Collapse
|
2
|
Rao S, Jia C, Lu X, Yu Y, Wang Z, Yang Z. Acid-Heat-Induced Fabrication of Nisin-Loaded Egg White Protein Nanoparticles: Enhanced Structural and Antibacterial Stability. Foods 2024; 13:1741. [PMID: 38890971 PMCID: PMC11172011 DOI: 10.3390/foods13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.
Collapse
Affiliation(s)
- Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Caochen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Xiangning Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Yisheng Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
3
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
4
|
Benselfelt T, Kummer N, Nordenström M, Fall AB, Nyström G, Wågberg L. The Colloidal Properties of Nanocellulose. CHEMSUSCHEM 2023; 16:e202201955. [PMID: 36650954 DOI: 10.1002/cssc.202201955] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Malin Nordenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | | | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| |
Collapse
|
5
|
Kummer N, Giacomin CE, Fischer P, Campioni S, Nyström G. Amyloid fibril-nanocellulose interactions and self-assembly. J Colloid Interface Sci 2023; 641:338-347. [PMID: 36934581 DOI: 10.1016/j.jcis.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Amyloid fibrils from inexpensive food proteins and nanocellulose are renewable and biodegradable materials with broad ranging applications, such as water purification, bioplastics and biomaterials. To improve the mechanical properties of hybrid amyloid-nanocellulose materials, their colloidal interactions need to be understood and tuned. A combination of turbidity and zeta potential measurements, rheology and atomic force microscopy point to the importance of electrostatic interactions. These interactions lead to entropy-driven polyelectrolyte complexation for positively charged hen egg white lysozyme (HEWL) amyloids with negatively charged nanocellulose. The complexation increased the elasticity of the amyloid network by cross-linking individual fibrils. Scaling laws suggest different contributions to elasticity depending on nanocellulose morphology: cellulose nanocrystals induce amyloid bundling and network formation, while cellulose nanofibrils contribute to a second network. The contribution of the amyloids to the elasticity of the entire network structure is independent of nanocellulose morphology and agrees with theoretical scaling laws. Finally, strong and almost transparent hybrid amyloid-nanocellulose gels were prepared in a slow self-assembly started from repulsive co-dispersions above the isoelectric point of the amyloids, followed by dialysis to decrease the pH and induce amyloid-nanocellulose attraction and cross-linking. In summary, the gained knowledge on colloidal interactions provides an important basis for the design of functional biohybrid materials based on these two biopolymers.
Collapse
Affiliation(s)
- Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland; Institute of Food Nutrition and Health, Schmelzbergstrasse 9, ETH Zurich, 8092 Zurich, Switzerland.
| | - Caroline E Giacomin
- Institute of Food Nutrition and Health, Schmelzbergstrasse 9, ETH Zurich, 8092 Zurich, Switzerland.
| | - Peter Fischer
- Institute of Food Nutrition and Health, Schmelzbergstrasse 9, ETH Zurich, 8092 Zurich, Switzerland.
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland; Institute of Food Nutrition and Health, Schmelzbergstrasse 9, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
6
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
7
|
Thermal insulation and antibacterial foam templated from bagasse nanocellulose /nisin complex stabilized Pickering emulsion. Colloids Surf B Biointerfaces 2022; 220:112881. [PMID: 36179610 DOI: 10.1016/j.colsurfb.2022.112881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022]
Abstract
Foam packaging with good thermal insulation and antibacterial properties is promising for cold chain delivery to strengthen food safety. This study reports a novel antibacterial foam with thermal insulation templated from bagasse nanocellulose complex particle-stabilised acrylate epoxy soybean oil (AESO) Pickering emulsions. Nanocellulose/nisin complex particles (N-CNFs) were prepared by loading positively charged nisin onto negatively charged cellulose nanofibrils via electrostatic interactions, that highly enhanced the stability of nanocellulose at the AESO/water interface and imparted the corresponding foam with good antibacterial properties. The results show that the porosity of the foam prepared with N-CNFs increased from 10.9% to 29.9% compared with that of the foam corresponding with bare nanocellulose; the thermal conductivity of the N-CNF foam decreased substantially from 0.431 W/m·K to 0.197 W/m·K. Moreover, the prepared foam exhibited good antibacterial activity, and its bacteriostatic rate against Listeria monocytogenes was 91.33%. The incorporation of antibacterial peptides into nanocellulose has enriched the study of the Pickering emulsion templating method for preparing multifunctional foam materials and is expected to broaden the application of nanocellulose in the field of food packaging.
Collapse
|
8
|
Bangar SP, Harussani M, Ilyas R, Ashogbon AO, Singh A, Trif M, Jafari SM. Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Wu C, Jiang H, Zhao J, Humayun M, Wu S, Wang C, Zhi Z, Pang J. A novel strategy to formulate edible active-intelligent packaging films for achieving dynamic visualization of product freshness. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Shi Y, Jiao H, Sun J, Lu X, Yu S, Cheng L, Wang Q, Liu H, Biranje S, Wang J, Liu J. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydr Polym 2022; 285:119208. [DOI: 10.1016/j.carbpol.2022.119208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
|
11
|
Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Res Int 2022; 155:111096. [DOI: 10.1016/j.foodres.2022.111096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
12
|
Liyanage S, Acharya S, Parajuli P, Shamshina JL, Abidi N. Production and Surface Modification of Cellulose Bioproducts. Polymers (Basel) 2021; 13:3433. [PMID: 34641248 PMCID: PMC8512298 DOI: 10.3390/polym13193433] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Petroleum-based synthetic plastics play an important role in our life. As the detrimental health and environmental effects of synthetic plastics continue to increase, the renewable, degradable and recyclable properties of cellulose make subsequent products the "preferred environmentally friendly" alternatives, with a small carbon footprint. Despite the fact that the bioplastic industry is growing rapidly with many innovative discoveries, cellulose-based bioproducts in their natural state face challenges in replacing synthetic plastics. These challenges include scalability issues, high cost of production, and most importantly, limited functionality of cellulosic materials. However, in order for cellulosic materials to be able to compete with synthetic plastics, they must possess properties adequate for the end use and meet performance expectations. In this regard, surface modification of pre-made cellulosic materials preserves the chemical profile of cellulose, its mechanical properties, and biodegradability, while diversifying its possible applications. The review covers numerous techniques for surface functionalization of materials prepared from cellulose such as plasma treatment, surface grafting (including RDRP methods), and chemical vapor and atomic layer deposition techniques. The review also highlights purposeful development of new cellulosic architectures and their utilization, with a specific focus on cellulosic hydrogels, aerogels, beads, membranes, and nanomaterials. The judicious choice of material architecture combined with a specific surface functionalization method will allow us to take full advantage of the polymer's biocompatibility and biodegradability and improve existing and target novel applications of cellulose, such as proteins and antibodies immobilization, enantiomers separation, and composites preparation.
Collapse
Affiliation(s)
| | | | | | | | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409-5019, USA; (S.L.); (S.A.); (P.P.); (J.L.S.)
| |
Collapse
|
13
|
Chinga-Carrasco G, Johansson J, Heggset EB, Leirset I, Björn C, Agrenius K, Stevanic JS, Håkansson J. Characterization and Antibacterial Properties of Autoclaved Carboxylated Wood Nanocellulose. Biomacromolecules 2021; 22:2779-2789. [PMID: 34185505 DOI: 10.1021/acs.biomac.1c00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose nanofibrils (CNFs) were obtained by applying a chemical pretreatment consisting of autoclaving the pulp fibers in sodium hydroxide, combined with 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation. Three levels of sodium hypochlorite were applied (2.5, 3.8, and 6.0 mmol/g) to obtain CNF qualities (CNF_2.5, CNF_3.8, and CNF_6.0) with varying content of carboxyl groups, that is, 1036, 1285, and 1593 μmol/g cellulose. The cytotoxicity and skin irritation potential (indirect tests) of the CNFs were determined according to standardized in vitro testing for medical devices. We here demonstrate that autoclaving (121 °C, 20 min), which was used to sterilize the gels, caused a modification of the CNF characteristics. This was confirmed by a reduction in the viscosity of the gels, a morphological change of the nanofibrils, by an increase of the ultraviolet-visible absorbance maxima at 250 nm, reduction of the absolute zeta potential, and by an increase in aldehyde content and reducing sugars after autoclaving. Fourier-transform infrared spectroscopy and wide-angle X-ray scattering complemented an extensive characterization of the CNF gels, before and after autoclaving. The antibacterial properties of autoclaved carboxylated CNFs were demonstrated in vitro (bacterial survival and swimming assays) on Pseudomonas aeruginosa and Staphylococcus aureus. Importantly, a mouse in vivo surgical-site infection model on S. aureus revealed that CNF_3.8 showed pronounced antibacterial effect and performed as good as the antiseptic Prontosan wound gel.
Collapse
Affiliation(s)
| | - Jenny Johansson
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, P.O. Box 857, 501 15 Borås, Sweden
| | | | | | - Camilla Björn
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, P.O. Box 857, 501 15 Borås, Sweden
| | - Karin Agrenius
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, P.O. Box 857, 501 15 Borås, Sweden
| | - Jasna S Stevanic
- Material and Surface Design, RISE Research Institutes of Sweden, P.O. Box 5604, 114 86 Stockholm, Sweden
| | - Joakim Håkansson
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, P.O. Box 857, 501 15 Borås, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, 405 30 Gothenburg, Sweden
| |
Collapse
|
14
|
Ergin M, Özer N. Comparison of hemostatic efficacy of topical Ankaferd Blood Stopper on heparinized and nonheparinized rats in bleeding related to liver injury. Acta Cir Bras 2021; 36:e360106. [PMID: 33533829 PMCID: PMC7853696 DOI: 10.1590/acb360106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE In this study, hemostatic efficacy of Ankaferd Blood Stopper (ABS), a new generation hemostatic agent, was compared in the presence of heparin effect. METHODS Forty-eight Wistar albino rats were divided into two main groups as heparinized and nonheparinized, and these two main groupswere divided into six subgroups as control, Surgicel and ABS (n = 8). Grade 2 liver injury was performed on rats as standard. All groups were compared in terms of weight, laceration surface area, prothrombin time (PT), activated partial thromboplastin time (aPTT), international normalized ratio (INR), bleeding time, bleeding amount, hemoglobin (Hb) levels, macroscopic and microscopic reactions to the agent used. RESULTS Whereas there was no statistically significant difference between weight, laceration surface area, PT, INR and preoperative Hb values in the heparinized and nonheparinized groups, postoperative Hb, bleeding time, bleeding amount and aPTT values were statistically different (p < 0.05). In the heparin-hemostat interaction, the ABS group had the lowest bleeding in the heparinized group in terms of the amount of bleeding compared to the control and Surgicel groups (F = 0.764; p = 0.047). In macroscopic and microscopic comparison, there was no difference between the groups in terms of cell necrosis andfresh bleeding (p > 0.05), it was found that the Surgicel group had statistical significantly higher reaction scores (p < 0.05) than the other groups in terms of other parameters. CONCLUSIONS Ankaferd Blood Stopper can be safely and effectively used in surgical practice and in patients with additional diseases requiring heparinization, since it causes minimal reaction in the liver and decreases the amount of bleeding especially in the heparinized group.
Collapse
Affiliation(s)
- Metin Ergin
- MD. Fatih Unıversıty – Faculty of Medicine – Ankara, Turkey
| | - Nazmi Özer
- Associate Professor. University of Health Sciences – Adana City
Training and Research Hospital – Department of General Surgery – Adana,
Turkey
| |
Collapse
|
15
|
Effective adsorption of nisin on the surface of polystyrene using hydrophobin HGFI. Int J Biol Macromol 2021; 173:399-408. [PMID: 33454334 DOI: 10.1016/j.ijbiomac.2021.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Herein, a new method was demonstrated for effective immobilization of the antibacterial peptide nisin on Grifola frondosa hydrophobin (HGFI), without the need of any additional complex reaction. Hydrophobin can self-assemble as a monolayer to form continuous negative-charged surfaces with enhanced wettability and biocompatibility. Adding nisin solution to such hydrophobin surface created antibacterial surfaces. The quantification analysis revealed that more nisin could be adsorbed on the HGFI-coated than to control polystyrene surfaces at different pH values. This suggested that electronic attraction and wettability may play important roles in this process. The transmission electron microscopy, atomic force microscopy and fourier transform infrared (FTIR) analysis indicated the adsorption mode of nisin on the HGFI film, i.e., hydrophobins served as an adhesive layer for binding charged peptides to interfaces. The antibacterial activity of the treated surface was investigated via counting, a nucleic acid release test, scanning electron microscopy, and biofilm detection. These results indicated the excellent antibacterial activity of nisin adsorbed on the HGFI-coated surfaces. The activity retention of adsorbed nisin was demonstrated by immersing the modified substrates in a flowed liquid condition.
Collapse
|
16
|
Naskar A, Kim KS. Potential Novel Food-Related and Biomedical Applications of Nanomaterials Combined with Bacteriocins. Pharmaceutics 2021; 13:86. [PMID: 33440722 PMCID: PMC7826801 DOI: 10.3390/pharmaceutics13010086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
Bacteriocins are antimicrobial peptides or proteinaceous materials produced by bacteria against pathogens. These molecules have high efficiency and specificity and are equipped with many properties useful in food-related applications, such as food preservatives and additives, as well as biomedical applications, such as serving as alternatives to current antibacterial, antiviral, anticancer, and antibiofilm agents. Despite their advantages as alternative therapeutics over existing strategies, several limitations of bacteriocins, such as the high cost of isolation and purification, narrow spectrum of activity, low stability and solubility, and easy enzymatic degradation, need to be improved. Nanomaterials are promising agents in many biological applications. They are widely used in the conjugation or decoration of bacteriocins to augment the activity of bacteriocins or reduce problems related to their use in biomedical applications. Therefore, bacteriocins combined with nanomaterials have emerged as promising molecules that can be used in various biomedical applications. This review highlights the features of bacteriocins and their limitations in biomedical applications and provides a detailed overview of the uses of different nanomaterials in improving the limitations. Our review focuses on the potential applications of nanomaterials combined with bacteriocins as new designer molecules for use in future therapeutic strategies.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
17
|
Tortorella S, Vetri Buratti V, Maturi M, Sambri L, Comes Franchini M, Locatelli E. Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. Int J Nanomedicine 2020; 15:9909-9937. [PMID: 33335392 PMCID: PMC7737557 DOI: 10.2147/ijn.s266103] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023] Open
Abstract
Presently, a plenty of concerns related to the environment are due to the overuse of petroleum-based chemicals and products; the synthesis of functional materials, starting from the natural sources, is the current trend in research. The interest for nanocellulose has recently increased in a huge range of fields, from the material science to the biomedical engineering. Nanocellulose gained this leading role because of several reasons: its natural abundance on this planet, the excellent mechanical and optical features, the good biocompatibility and the attractive capability of undergoing surface chemical modifications. Nanocellulose surface tuning techniques are adopted by the high reactivity of the hydroxyl groups available; the chemical modifications are mainly performed to introduce either charged or hydrophobic moieties that include amination, esterification, oxidation, silylation, carboxymethylation, epoxidation, sulfonation, thiol- and azido-functional capability. Despite the several already published papers regarding nanocellulose, the aim of this review involves discussing the surface chemical functional capability of nanocellulose and the subsequent applications in the main areas of nanocellulose research, such as drug delivery, biosensing/bioimaging, tissue regeneration and bioprinting, according to these modifications. The final goal of this review is to provide a novel and unusual overview on this topic that is continuously under expansion for its intrinsic sophisticated properties.
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| |
Collapse
|
18
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
19
|
Weishaupt R, Zünd JN, Heuberger L, Zuber F, Faccio G, Robotti F, Ferrari A, Fortunato G, Ren Q, Maniura‐Weber K, Guex AG. Antibacterial, Cytocompatible, Sustainably Sourced: Cellulose Membranes with Bifunctional Peptides for Advanced Wound Dressings. Adv Healthc Mater 2020; 9:e1901850. [PMID: 32159927 DOI: 10.1002/adhm.201901850] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Progressive antibiotic resistance is a serious condition adding to the challenges associated with skin wound treatment, and antibacterial wound dressings with alternatives to antibiotics are urgently needed. Cellulose-based membranes are increasingly considered as wound dressings, necessitating further functionalization steps. A bifunctional peptide, combining an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), is designed. AMPs affect bacteria via multiple modes of action, thereby reducing the evolutionary pressure selecting for antibiotic resistance. The bifunctional peptide is successfully immobilized on cellulose membranes of bacterial origin or electrospun fibers of plant-derived cellulose, with tight control over peptide concentrations (0.2 ± 0.1 to 4.6 ± 1.6 µg mm-2 ). With this approach, new materials with antibacterial activity against Staphylococcus aureus (log4 reduction) and Pseudomonas aeruginosa (log1 reduction) are developed. Furthermore, membranes are cytocompatible in cultures of human fibroblasts. Additionally, a cell adhesive CBP-RGD peptide is designed and immobilized on membranes, inducing a 2.2-fold increased cell spreading compared to pristine cellulose. The versatile concept provides a toolbox for the functionalization of cellulose membranes of different origins and architectures with a broad choice in peptides. Functionalization in tris-buffered saline avoids further purification steps, allowing for translational research and multiple applications outside the field of wound dressings.
Collapse
Affiliation(s)
- Ramon Weishaupt
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Janina N. Zünd
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Lukas Heuberger
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Flavia Zuber
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Greta Faccio
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging TechnologiesDepartment of Mechanical and Process EngineeringETH Zurich Sonneggstrasse 3 Zurich 8092 Switzerland
| | - Aldo Ferrari
- EmpaSwiss Federal Laboratories for Material Science and TechnologiesLaboratory for Experimental Continuum Mechanics Überlandstrasse 129 Dübendorf 8600 Switzerland
| | - Giuseppino Fortunato
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Qun Ren
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Katharina Maniura‐Weber
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Anne Géraldine Guex
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| |
Collapse
|
20
|
Zeng Z, Wu T, Han D, Ren Q, Siqueira G, Nyström G. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS NANO 2020; 14:2927-2938. [PMID: 32109050 DOI: 10.1021/acsnano.9b07452] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultralight and highly flexible biopolymer aerogels, composed of biomimetic cellular microstructures formed from cellulose nanofibers and silver nanowires, are assembled via a convenient and facile freeze-casting method. The lamellar, honeycomb-like, and random porous scaffolds are successfully achieved by adjusting freezing approaches to modulate the relationships between microstructures and macroscopic mechanical and electromagnetic interference (EMI) shielding performances. Combining the shielding transformation arising from in situ compression and the controlled content of building units, the optimized lamellar porous biopolymer aerogels can show a very high EMI shielding effectiveness (SE), which exceeds 70 or 40 dB in the X-band while the density is merely 6.2 or 1.7 mg/cm3, respectively. The corresponding normalized surface specific SE (defined as the SE divided by the material density and thickness) is up to 178235 dB·cm2/g, far surpassing that of the so-far reported shielding materials. Antibacterial properties and hydrophobicity are also demonstrated extending the versatility and application potential of the biopolymer hybrid aerogels.
Collapse
Affiliation(s)
- Zhihui Zeng
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Tingting Wu
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Daxin Han
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology in Zurich (ETH Zürich), 8092 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9041 St. Gallen, Switzerland
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
21
|
Le S, Li W, Wang Y, Jiang X, Yang X, Wang X. Carbon dots sensitized 2D-2D heterojunction of BiVO 4/Bi 3TaO 7 for visible light photocatalytic removal towards the broad-spectrum antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:1-11. [PMID: 31096108 DOI: 10.1016/j.jhazmat.2019.04.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Focused on the removal of the complicated residual antibiotic in aqueous environment, in this work, a novel carbon dots (C-dots) sensitized 2D-2D heterojunction of BiVO4/Bi3TaO7 were assembled through a simple hydrothermal process. The characteristic by TEM, SEM, and XPS confirmed C-dots evenly anchored on the surface of BiVO4/Bi3TaO7 heterojunction. The as-prepared C-dots/BiVO4/Bi3TaO7 showed superior performance for the degradation of the various antibiotics under visible light illumination. When the concentration of C-dots in the composite is 3 wt.%, the photodegraded rates are obtained to be 91.7%, 89.3%, 87.1%, for tetracycline (TC), amoxicillin (AMX) and ciprofloxacin (CIP), respectively, without significant deactivation during consecutive ten recycle experiments. Furthermore, by assessing the antibiotics mixture solution of TC, AMX and CIP, it is proposed that the prepared samples are potentially effective for the wastewater effluents. A probable mechanism was reasonably proposed. The improved photocatalytic activities could be attributed to the unique construction of the C-dots mediated heterojunction, which could expedite electron migration, improve light harvesting capacity and enhance charge separation efficiency. The present investigation may provide a new perspective to design C-dots mediated heterojunction which could be a potential visible-light-driven photocatalysts for the better practical applications in remediation of broad-spectrum antibiotic residues.
Collapse
Affiliation(s)
- Shukun Le
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, Inner Mongolia, China
| | - Wenjing Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, Inner Mongolia, China
| | - Yuanjiang Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, Inner Mongolia, China
| | - Xue Jiang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, Inner Mongolia, China
| | - Xiaoxue Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, Inner Mongolia, China
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, Inner Mongolia, China.
| |
Collapse
|
22
|
Hu L, Hou A, Xie K, Gao A. Light-Induced Production of Reactive Oxygen Species by a Novel Water-Soluble Benzophenone Derivative Containing Quaternary Ammonium Groups and Its Assembly on the Protein Fiber Surface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26500-26506. [PMID: 31241311 DOI: 10.1021/acsami.9b07992] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Developing an efficient antimicrobial surface has important significance in the field of advanced biomaterials. A novel water-soluble benzophenone tetracarboxylamine derivative containing two quaternary ammonium groups, 3,3'-[4,4'-carbonyl-diphthalimide-]-bis(N-benzyl-N,N-dimethyl-N-propyl-1-aminium)dichloride (BPTCA-N), as a photoactive antibacterial agent was designed and synthesized. The ability of BPTCA-N to generate reactive oxygen species (ROS) in solution was investigated by light-induced activity. Its antibacterial activity in a dark environment or UV exposure was tested on Staphylococcus aureus and Escherichia coli. The influences of different solvents and the pH values on the ability of BPTCA-N to generate ROS were also discussed. BPTCA-N possessed high photoactivity and efficient ROS generation ability. The generation of hydroxyl radicals could be greatly affected by addition of other solvents and H+ or OH-. For the BPTCA-N solution at a concentration of 0.2 mmol/L, the reduction of S. aureus and E. coli could all reach 99.99%. The BPTCA-N compound was assembled onto wool protein fibers. The modified protein fabrics also showed excellent photoactivity and antibacterial property against S. aureus and E. coli. For the wool fabric modified with 30 g/L of BPTCA-N, the reduction of S. aureus could reach 99.91% and that of E. coli was 91.23%. BPTCA-N had the synergistic antibacterial effect of quaternary ammonium salt and benzophenones. It has potential application in the biomedical field as highly effective antimicrobial agent or antimicrobial biomaterial.
Collapse
|
23
|
Otoni CG, Figueiredo JSL, Capeletti LB, Cardoso MB, Bernardes JS, Loh W. Tailoring the Antimicrobial Response of Cationic Nanocellulose-Based Foams through Cryo-Templating. ACS APPLIED BIO MATERIALS 2019; 2:1975-1986. [DOI: 10.1021/acsabm.9b00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Caio G. Otoni
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo Brazil
| | - Juliana S. L. Figueiredo
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo Brazil
| | - Larissa B. Capeletti
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-861 Campinas, Sao Paulo, Brazil
| | - Mateus B. Cardoso
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-861 Campinas, Sao Paulo, Brazil
| | - Juliana S. Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-861 Campinas, Sao Paulo, Brazil
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo Brazil
| |
Collapse
|
24
|
Bagde P, Vigneshwaran N. Improving the stability of bacteriocin extracted from Enterococcus faecium by immobilization onto cellulose nanocrystals. Carbohydr Polym 2019; 209:172-180. [DOI: 10.1016/j.carbpol.2019.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
25
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
26
|
Abstract
The need to transition to more sustainable and renewable technology has resulted in a focus on cellulose nanofibrils (CNFs) and nanocrystals (CNCs) as one of the materials of the future with potential for replacing currently used synthetic materials. Its abundance and bio-derived source make it attractive and sought after as well. CNFs and CNCs are naturally hydrophilic due to the abundance of -OH group on their surface which makes them an excellent recipient for applications in the medical industry. However, the hydrophilicity is a deterrent to many other industries, subsequently limiting their application scope. In either light, the increased rate of progress using CNCs in advanced materials applications are well underway and is becoming applicable on an industrial scale. Therefore, this review explores the current modification platforms and processes of nanocellulose directly as functional materials and as carriers/substrates of other functional materials for advanced materials applications. Niche functional attributes such as superhydrophobicity, barrier, electrical, and antimicrobial properties are reviewed due to the focus and significance of such attributes in industrial applications.
Collapse
|