1
|
Kim BSY, Ngo TD, Hassan Y, Chae SH, Yoon SG, Choi MS. Advances and Applications of Oxidized van der Waals Transition Metal Dichalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407175. [PMID: 39308273 DOI: 10.1002/advs.202407175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Indexed: 11/22/2024]
Abstract
The surface oxidation of 2D transition metal dichalcogenides (TMDs) has recently gained tremendous technological and fundamental interest owing to the multi-functional properties that the surface oxidized layer opens up. In particular, when integrated into other 2D materials in the form of van der Waals heterostructures, oxidized TMDs enable designer properties, including novel electronic states, engineered light-matter interactions, and exceptional-point singularities, among many others. Here, the evolving landscapes of the state-of-the-art surface engineering technologies that enable controlled oxidation of TMDs down to the monolayer-by-monolayer limit are reviewed. Next, the use of oxidized TMDs in van der Waals heterostructures for different electronic and photonic device platforms, materials growth processes, engineering concepts, and synthesizing new condensed matter phenomena is discussed. Finally, challenges and outlook for future impact of oxidized TMDs in driving rapid advancements across various application fronts is discussed.
Collapse
Affiliation(s)
- Brian S Y Kim
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Yasir Hassan
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Hoon Chae
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Sup Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
2
|
Pinto de Sousa B, Fateixa S, Trindade T. Surface-Enhanced Raman Scattering Using 2D Materials. Chemistry 2024; 30:e202303658. [PMID: 38530022 DOI: 10.1002/chem.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The use of surface-enhanced Raman scattering (SERS) as a technique for detecting small amounts of (bio)chemical analytes has become increasingly popular in various fields. While gold and silver nanostructures have been extensively studied as SERS substrates, the availability of other types of substrates is currently expanding the applications of this spectroscopic method. Recently, researchers have begun exploring two-dimensional (2D) materials (e. g., graphene-like nanostructures) as substrates for SERS analysis. These materials offer unique optical properties, a well-defined structure, and the ability to modify their surface chemistry. As a contribution to advance this field, this concept article highlights the significance of understanding the chemical mechanism that underlies the experimental Raman spectra of chemisorbed molecules onto 2D materials' surfaces. Therefore, the article discusses recent advancements in fabricating substrates using 2D layered materials and the synergic effects of using their metallic composites for SERS applications. Additionally, it provides a new perspective on using Raman imaging in developing 2D materials as analytical platforms for Raman spectroscopy, an exciting emerging research area with significant potential.
Collapse
Affiliation(s)
- Beatriz Pinto de Sousa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Tran TH, Rodriguez RD, Villa NE, Shchadenko S, Averkiev A, Hou Y, Zhang T, Matkovic A, Sheremet E. Laser-Induced photothermal activation of multilayer MoS 2 with spatially controlled catalytic activity. J Colloid Interface Sci 2024; 654:114-123. [PMID: 37837848 DOI: 10.1016/j.jcis.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
This study investigates the effects of high-power laser irradiation on multilayer MoS2, a promising material for catalysis, optoelectronics, and energy applications. In addition to previously reported sculpting of MoS2 layers, we discovered a novel effect of laser-induced photothermal heating that drives the chemical activation of MoS2. The photothermal effect was confirmed by temperature-dependent experiments, in situ temperature measurements with nanolocalized probes, and simulations. Remarkably, we observed the reduction of Ag+ ions on laser-irradiated MoS2 layers, forming plasmonic nanostructures without external stimuli such as photons or chemical reducing agents. We attribute this phenomenon to the significant defect density within the laser-carved region and the surrounding area induced by photothermal effects. Further functionalization of the laser-modified MoS2 with 4-nitrobenzenethiol self-assembled monolayers demonstrated a significant increase in photocatalytic activity, close to 100% yield compared to the negligible activity of pristine material. Our findings contribute to a deeper understanding of the light-induced modification of MoS2 properties and introduce a novel method for spatially controlling the chemical activation of MoS2. This advancement holds significant potential in developing high-performance 2D semiconductors as nano-engineered catalytic materials.
Collapse
Affiliation(s)
- Tuan-Hoang Tran
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia.
| | - Nelson E Villa
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia
| | | | - Andrey Averkiev
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk 634050, Russia
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aleksandar Matkovic
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | | |
Collapse
|
4
|
Alsulami A, Alharbi M, Alsaffar F, Alolaiyan O, Aljalham G, Albawardi S, Alsaggaf S, Alamri F, Tabbakh TA, Amer MR. Lattice Transformation from 2D to Quasi 1D and Phonon Properties of Exfoliated ZrS 2 and ZrSe 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205763. [PMID: 36585385 DOI: 10.1002/smll.202205763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Recent reports on thermal and thermoelectric properties of emerging 2D materials have shown promising results. Among these materials are Zirconium-based chalcogenides such as zirconium disulfide (ZrS2 ), zirconium diselenide (ZrSe2 ), zirconium trisulfide (ZrS3 ), and zirconium triselenide (ZrSe3 ). Here, the thermal properties of these materials are investigated using confocal Raman spectroscopy. Two different and distinctive Raman signatures of exfoliated ZrX2 (where X = S or Se) are observed. For 2D-ZrX2 , Raman modes are in alignment with those reported in literature. However, for quasi 1D-ZrX2 , Raman modes are identical to exfoliated ZrX3 nanosheets, indicating a major lattice transformation from 2D to quasi-1D. Raman temperature dependence for ZrX2 are also measured. Most Raman modes exhibit a linear downshift dependence with increasing temperature. However, for 2D-ZrS2 , a blueshift for A1g mode is detected with increasing temperature. Finally, phonon dynamics under optical heating for ZrX2 are measured. Based on these measurements, the calculated thermal conductivity and the interfacial thermal conductance indicate lower interfacial thermal conductance for quasi 1D-ZrX2 compared to 2D-ZrX2 , which can be attributed to the phonon confinement in 1D. The results demonstrate exceptional thermal properties for Zirconium-based materials, making them ideal for thermoelectric device applications and future thermal management strategies.
Collapse
Affiliation(s)
- Awsaf Alsulami
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Majed Alharbi
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Fadhel Alsaffar
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Olaiyan Alolaiyan
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ghadeer Aljalham
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Shahad Albawardi
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Sarah Alsaggaf
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Faisal Alamri
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Thamer A Tabbakh
- National Center for Nanotechnology, Materials Science Institute, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Moh R Amer
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Pollmann E, Sleziona S, Foller T, Hagemann U, Gorynski C, Petri O, Madauß L, Breuer L, Schleberger M. Large-Area, Two-Dimensional MoS 2 Exfoliated on Gold: Direct Experimental Access to the Metal-Semiconductor Interface. ACS OMEGA 2021; 6:15929-15939. [PMID: 34179637 PMCID: PMC8223410 DOI: 10.1021/acsomega.1c01570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional semiconductors such as MoS2 are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics. The fact that the metal-semiconductor interface is typically embedded, further complicates the investigation of the underlying physical mechanisms at the interface. Here, we present a method to provide access to a realistic metal-semiconductor interface by large-area exfoliation of single-layer MoS2 on clean polycrystalline gold surfaces. This approach allows us to measure the relative charge neutrality level at the MoS2-gold interface and its spatial variation almost directly using Kelvin probe force microscopy even under ambient conditions. By bringing together hitherto unconnected findings about the MoS2-gold interface, we can explain the anomalous Raman signature of MoS2 in contact to metals [ACS Nano. 7, 2013, 11350] which has been the subject of intense recent discussions. In detail, we identify the unusual Raman mode as the A1g mode with a reduced Raman shift (397 cm-1) due to the weakening of the Mo-S bond. Combined with our X-ray photoelectron spectroscopy data and the measured charge neutrality level, this is in good agreement with a previously predicted mechanism for Fermi level pinning at the MoS2-gold interface [Nano Lett. 14, 2014, 1714]. As a consequence, the strength of the MoS2-gold contact can be determined from the intensity ratio between the reduced A1greduced mode and the unperturbed A1g mode.
Collapse
Affiliation(s)
- Erik Pollmann
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Stephan Sleziona
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Tobias Foller
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Ulrich Hagemann
- ICAN
and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Claudia Gorynski
- Faculty
of Engineering and CENIDE, University Duisburg-Essen, D-47057 Duisburg, Germany
| | - Oliver Petri
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Lukas Madauß
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Lars Breuer
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Marika Schleberger
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| |
Collapse
|
6
|
Laser printed two-dimensional transition metal dichalcogenides. Sci Rep 2021; 11:5211. [PMID: 33664284 PMCID: PMC7933426 DOI: 10.1038/s41598-021-81829-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Laser processing is a highly versatile technique for the post-synthesis treatment and modification of transition metal dichalcogenides (TMDCs). However, to date, TMDCs synthesis typically relies on large area CVD growth and lithographic post-processing for nanodevice fabrication, thus relying heavily on complex, capital intensive, vacuum-based processing environments and fabrication tools. This inflexibility necessarily restricts the development of facile, fast, very low-cost synthesis protocols. Here we show that direct, spatially selective synthesis of 2D-TMDCs devices that exhibit excellent electrical, Raman and photoluminescence properties can be realized using laser printing under ambient conditions with minimal lithographic or thermal overheads. Our simple, elegant process can be scaled via conventional laser printing approaches including spatial light modulation and digital light engines to enable mass production protocols such as roll-to-roll processing.
Collapse
|
7
|
Cheshev D, Rodriguez RD, Matković A, Ruban A, Chen JJ, Sheremet E. Patterning GaSe by High-Powered Laser Beams. ACS OMEGA 2020; 5:10183-10190. [PMID: 32391506 PMCID: PMC7203990 DOI: 10.1021/acsomega.0c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 05/14/2023]
Abstract
We report the high-powered laser modification of the chemical, physical, and structural properties of the two-dimensional (2D) van der Waals material GaSe. Our results show that contrary to expectations and previous reports, GaSe at the periphery of a high-power laser beam does not entirely decompose into Se and Ga2O3. In contrast, we find unexpectedly that the Raman signal from GaSe gets amplified around regions where it was not expected to exist. Atomic force microscopy (AFM), dielectric force microscopy (DFM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) results show that laser irradiation induces the formation of nanoparticles. Our analyses demonstrate that, except for a fraction of Ga2Se3, these nanoparticles still belong to the GaSe phase but possess different electrical and optical properties. These changes are evidenced in the increased Raman intensity attributed to the near-resonance conditions with the Raman excitation laser. The elemental analysis of nanoparticles shows that the relative selenium content increased to as much as 70% from a 50:50 value in stoichiometric GaSe. This elemental change is related to the formation of the Ga2Se3 phase identified by Raman spectroscopy at some locations near the edge. Further, we exploit the localized high-power laser processing of GaSe to induce the formation of Ag-GaSe nanostructures by exposure to a solution of AgNO3. The selective reaction of AgNO3 with laser-irradiated GaSe gives rise to composite nanostructures that display photocatalytic activity originally absent in the pristine 2D material. The photocatalytic activity was investigated by the transformation of 4-nitrobenzenethiol to its amino and dimer forms detected in situ by Raman spectroscopy. This work improves the understanding of light-matter interaction in layered systems, offering an approach to the formation of laser-induced composites with added functionality.
Collapse
Affiliation(s)
- Dmitry Cheshev
- Tomsk
Polytechnic University, Lenina Ave. 30, 634050 Tomsk, Russia
| | | | - Aleksandar Matković
- Institute
of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Alexey Ruban
- Tomsk
Polytechnic University, Lenina Ave. 30, 634050 Tomsk, Russia
| | - Jin-Ju Chen
- School
of Materials and Engineering, University
of Electronic Science and Technology of China, 610054 Chengdu, China
| | | |
Collapse
|
8
|
Moghimian S, Sangpour P. One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01366-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Tran-Khac BC, White RM, DelRio FW, Chung KH. Layer-by-layer thinning of MoS 2 via laser irradiation. NANOTECHNOLOGY 2019; 30:275302. [PMID: 30893654 PMCID: PMC6754314 DOI: 10.1088/1361-6528/ab11ad] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Layer-by-layer thinning of molybdenum disulfide (MoS2) via laser irradiation was examined using Raman spectroscopy and atomic force microscopy. In particular, the effects of number of layers, laser conditions, and substrate were systematically identified. The results demonstrated the presence of nanoparticles on the MoS2 at sufficient laser treatment conditions prior to layer-by-layer thinning. The volume of nanoparticles was found to increase and then decrease as the number of MoS2 layers increased; the non-monotonic trend was ascribed to changes in the thermal conductivity of the film and interfacial thermal conductance between the film and substrate with number of layers. Moreover, the volume of nanoparticles was found to increase as the magnification of the objective lens decreased and as laser power and exposure time increased, which was attributed to changes in the power density with laser conditions. The effect of substrate on nanoparticle formation and layer-by-layer thinning was investigated through a comparison of freestanding and substrate-supported MoS2 subjected to laser irradiation; it was illustrated that freestanding films were thinned at lower laser powers than substrate-supported films, which highlighted the function of the substrate as a heat sink. For conditions that elicited thinning, it was shown that the thinned areas exhibited triangular shapes, which suggested anisotropic etching behavior where the lattice of the basal plane was preferentially thinned along the zigzag direction terminated by an Mo- or S-edge. High-resolution transmission electron microscopy of freestanding MoS2 revealed the presence of a 2 nm thick amorphous region around the laser-treated region, which suggested that the crystalline structure of laser-treated MoS2 remained largely intact after the thinning process. In all, the conclusions from this work provide useful insight into the progression of laser thinning of MoS2, thereby enabling more effective methods for the development of MoS2 devices via laser irradiation.
Collapse
Affiliation(s)
- Bien-Cuong Tran-Khac
- School of Mechanical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Wang L, Schmid M, Nilsson ZN, Tahir M, Chen H, Sambur JB. Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe 2 Photoelectrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19207-19217. [PMID: 31070890 DOI: 10.1021/acsami.9b04785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding light-matter interactions in transition-metal dichalcogenides (TMDs) is critical for optoelectronic device applications. Several studies have shown that high intensity light irradiation can tune the optical and physical properties of pristine TMDs. The enhancement in optoelectronic properties has been attributed to a so-called laser annealing effect that heals chalcogen vacancies. However, it is unknown whether laser annealing improves functional properties such as photocatalytic activity. Here, we show that high intensity supra band gap illumination improves the photoelectrochemical activity of MoSe2 nanosheets for iodide oxidation in indium doped tin oxide/MoSe2/I-, I3-/Pt liquid junction solar cells. Ensemble-level photoelectrochemical measurements show that, on average, illuminating MoSe2 thin films with 1 W/cm2 532 nm excitation increases the photoelectrochemical current by 142% and shifts the photocurrent response to more favorable (negative) potentials. Scanning photoelectrochemical microscopy measurements reveal that pristine bilayer (2L)-MoSe2, trilayer (3L)-MoSe2, and multilayer-thick nanosheets are initially inactive for iodide oxidation. The light treatment activates 2L-MoSe2 and 3L-MoSe2 materials, and the activation process initiates at the edge sites. The photocurrent enhancement is more significant for 2L-MoSe2 than for 1L-MoSe2. Multilayer-thick MoSe2 remains inactive for iodide oxidation even after the laser treatment. Our microscopy measurements reveal that the laser-induced enhancement effect depends critically on MoSe2 layer thickness. X-ray photoelectron spectroscopy measurements further show that the laser treatment oxidizes Mo(IV) species that are initially associated with Se vacancies. Ambient oxygen fills the Se vacancies and removes trap states, thereby increasing the overall photogenerated carrier collection efficiency. To the best of our knowledge, this work represents the first report on using laser to enhance the photoelectrocatalytic properties of few-layer-thick TMDs. The simple and rapid laser annealing procedure is a promising strategy to tune the reactivity of TMD-based photoelectrochemical cells for electricity and chemical fuel production.
Collapse
|
11
|
Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atom-thick two-dimensional materials usually possess unique properties compared to their bulk counterparts. Their properties are significantly affected by defects, which could be uncontrollably introduced by irradiation. The effects of electromagnetic irradiation and particle irradiation on 2H MoS 2 two-dimensional nanolayers are reviewed in this paper, covering heavy ions, protons, electrons, gamma rays, X-rays, ultraviolet light, terahertz, and infrared irradiation. Various defects in MoS 2 layers were created by the defect engineering. Here we focus on their influence on the structural, electronic, catalytic, and magnetic performance of the 2D materials. Additionally, irradiation-induced doping is discussed and involved.
Collapse
|