1
|
Zhao S, Han Y, Lian S, Zhang J. Research progress on the design and regulation of Eu 2+/Ce 3+-activated anti-/zero thermal quenching phosphors. Dalton Trans 2025. [PMID: 40227890 DOI: 10.1039/d4dt02968b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Luminescent materials have played a vital role in human society, with phosphor-converted light-emitting diodes (pc-LEDs) representing the cutting-edge in lighting solutions. As societal demands for improved material quality continue to rise, the quest for materials with enhanced performance has become paramount. Eu2+/Ce3+-activated inorganic luminescent materials have garnered significant attention due to their high luminescence efficiency and tunable properties. Recent research has focused on developing Eu2+/Ce3+-activated inorganic luminescent materials with anti-/zero thermal quenching behavior, leveraging the benefits of host structures and activator ions. To facilitate their commercial viability, a comprehensive understanding of their properties, mechanisms, and current status is essential. This study delves into the luminescence mechanisms of Eu2+/Ce3+ activator ions, provides a detailed analysis of the typical thermal behaviors of Eu2+/Ce3+-activated inorganic phosphors, outlines strategies for enhancing thermal stability from both intrinsic and extrinsic perspectives, and categorizes the reported instances of anti-/zero thermal quenching in Eu2+/Ce3+-activated phosphors. Lastly, drawing on the present landscape, this paper offers insights into the future development and prospects of similar phosphors, aiming to serve as a valuable reference for the advancement of Eu2+/Ce3+-activated inorganic luminescent materials.
Collapse
Affiliation(s)
- Shujuan Zhao
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yue Han
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shixun Lian
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Jilin Zhang
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Devi K, Anand V, Barot Y, Mishra R, Kumar P, Mutreja V. Natural Pigments-Based Two-Component White Light Emitting Systems. J Fluoresc 2025; 35:2071-2085. [PMID: 38492176 DOI: 10.1007/s10895-024-03624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
In this paper, a new class of two component white light emitting systems viz, JaB (java plum + beetroot) {I}, and CaB (carrot + beetroot) {II} were developed through resonance energy transfer (RET) phenomenon by using a fruit (java plum) and two vegetable (carrot and beetroot) extracts. In these white light emitting systems, java plum and carrot are the donors while beetroot is the acceptor. The primary fluorescent pigments present in the natural extracts (i.e., anthocyanin in java plum, β-carotene in carrot, and betanin in beetroot) were responsible for the white light emission. The CIE (Commission Internationale d'Eclairage) coordinates for I and II were {0.32, 0.34} and {0.33, 0.33}, respectively, in solution phase. Interestingly, the white light emission (WLE) was also achieved in agar-agar gel medium. In gel medium, the CIE values were {0.31, 0.34} and {0.33, 0.32} for I and II, respectively. The donor-acceptor distance (r) for I and II were found to be 0.5 and 0.4 nm, respectively. Furthermore, the rate of energy transfer was also quantified with the values of 2.78 × 109 s-1 for JaB (I) and 1.02 × 108 s-1 for CaB (II) systems. The mechanistic investigation of the two white light systems was further supported by DFT studies.
Collapse
Affiliation(s)
- Kailash Devi
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Vivek Anand
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Yash Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| | - Prashant Kumar
- Department of Chemistry, Government Model Degree College, Kapoori Govindpur, Saharanpur, 247665, Uttar Pradesh, India.
| | - Vishal Mutreja
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
3
|
Suzuki Y, Imanishi I, Shiba K, Furuichi S, Takata M, Sugaya T, Ishihara K. pH- and Saccharide-Responsive Cyclometalated Iridium(III) Complexes with Boronic Acid Moieties Displaying a Wide Range of Phosphorescence Colors. Chemistry 2025; 31:e202404010. [PMID: 39738988 DOI: 10.1002/chem.202404010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Single compounds displaying a wide range of luminescent colors are attractive optical materials for sensor applications. In this study, we present the beneficial combination of a cyclometalated iridium(III) complex scaffold and boronic acid units for designing stimulus-responsive luminescent materials with various emission colors. Five iridium(III) complexes bearing a diboronic acid ligand (bpyB2) were synthesized: Ir(C^N)bpyB2 (C^N=2-phenylpyridine (1), 2-(2,4-difluorophenyl)pyridine (2), 2-(4-methoxyphenyl)pyridine (3), benzo[h]quinoline (4), 1-phenylisoquinoline (5)). The luminescence color of Complexes 1-4 changed in response to the solution pH or saccharide concentration. Complex 1 exhibited a color change from orange to green-blue due to structural alteration of the boronic acid moiety from trigonal to tetrahedral. Furthermore, the luminescence color of Complex 1 changed reversibly due to repetitive changes in the solution pH between 5 and 10, enabling tuning of the luminescence color and pH tracking. Furthermore, the color range was tuned by selecting an appropriate C^N ligand. Time-dependent density functional theory investigations revealed that the dramatic and reversible color changes could be ascribed to a switch in the electronic distribution in the lowest excited state from bpyB2 to C^N. The stimulus-responsive iridium(III) complexes provide a prospective scaffold for future applications in color-tunable optical devices and chemosensing systems.
Collapse
Affiliation(s)
- Yota Suzuki
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ikumi Imanishi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Koki Shiba
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Shino Furuichi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Mari Takata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Tomoaki Sugaya
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Education Center, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba, 275-0023, Japan
| | - Koji Ishihara
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
4
|
Ahlawat D, Pachisia S, Aashish, Gupta R. Lanthanide-Based Metal-Organic Frameworks Offering Hydrogen Bonding Cavities: Luminescent Characteristics and Sensing Applications. Chem Asian J 2025; 20:e202401213. [PMID: 39749415 DOI: 10.1002/asia.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
This work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln3+=Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics. The mixed-metal strategy affords a series of Ln-MOFs exhibiting color-tunable emissions. The Eu-MOF was utilized for the nanomolar sensing of both nitrobenzene and 4-nitrophenol. The critical role of H-bonding in detecting these analytes is validated through multiple spectroscopic, ξ potential, and molecular docking studies. The Eu-MOF illustrated notable anticounterfeiting as well as practical sensing applications.
Collapse
Affiliation(s)
- Deepti Ahlawat
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Sanya Pachisia
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Aashish
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| |
Collapse
|
5
|
Oguzlar S, Zeyrek Ongun M, Köse Yaman P, Erol M. Improved Optical Performance Analysis of YAG:Ce, NCS:Sm, and CAO:Mn Phosphors Physically Integrated with Metal-Organic Frameworks. ACS OMEGA 2024; 9:43219-43232. [PMID: 39464436 PMCID: PMC11500154 DOI: 10.1021/acsomega.4c07786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
This research presents a thorough examination of the optical properties and performance enhancement strategies of synthesized phosphors, namely, yttrium aluminum garnet doped with cerium (YAG:Ce), sodium calcium silicate with samarium (NCS:Sm), and calcium aluminate oxide doped with manganese (CAO:Mn). The study delves into the synthesis processes of the phosphors, illumination of the crystal structures, and enhancement of luminescent characteristics. Additionally, the paper extends to the synthesis and analysis of {[Cu(μ3-dmg)(im)2]·3H2O} n (PKY159), and the coordination polymer (CP) was added the phosphors to explore a novel approach for enhanced optical performance. When the phosphor composites YAG:Ce, CAO:Mn, and NCS:Sm were made as poly(methyl methacrylate) (PMMA; for homogenization, stabilization) thin films with the coordination polymer PKY159 included, the intensity values increased by 97%, 96%, and 79%, respectively, in comparison to their pristine form. Also, all phosphors along with the PKY159 additive were examined for their decay time kinetics, thermal stabilities, CIE chromaticity coordinates, and quantum efficiencies. The YAG:Ce, NCS:Sm, and CAO:Mn mixes exhibit good thermal stability in addition to internal quantum efficiency (IQE) values that are much higher than the phosphors' additive-free form (95.6%, 66.3%, and 84.6%, respectively). This increase is correlated to an increase in steady-state measurements. These comprehensive analyses contribute valuable insights into the design and optimization of phosphor and coordination polymer blends for improved optical functionality.
Collapse
Affiliation(s)
- Sibel Oguzlar
- Dokuz
Eylul University, Center for Fabrication
and Application of Electronic Materials, 35390 Izmir, Turkey
| | - Merve Zeyrek Ongun
- Dokuz
Eylul University, Izmir Vocational High
School, Chemistry and Chemical Processing Technologies Department,
Chemical Technology Program, 35380 Izmir, Turkey
| | - Pelin Köse Yaman
- Dokuz
Eylul University, Department of Chemistry,
Faculty of Science, 35390 Izmir, Turkey
| | - Mustafa Erol
- Dokuz
Eylul University, Department of Metallurgical
and Materials Engineering, 35390 Izmir, Turkey
| |
Collapse
|
6
|
Wang Q, Wu Q, Guo J, Yang X, Fang M, Wang J, Tai M, Cheng Y, Jin D, Wang L. Synthesis and Characterizations of Novel bi-ligand TbEu(cpioa)phen Phosphors with High Quantum Efficiency for WLED Applications. J Fluoresc 2024:10.1007/s10895-024-03927-y. [PMID: 39320630 DOI: 10.1007/s10895-024-03927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
The hydrothermal method was employed to synthesize a novel bi-ligands LnMOF: Ln(cpioa)phen. The secondary ligand 1, 10-phen serves as a bridging agent to further facilitate energy transfer between Ln ions and the primary ligand H3cpioa. A comparison between Ln(cpioa) MOFs (Ln: Tb3+, Eu3+) and Ln(cpioa)phen MOFs (Ln: Tb3+, Eu3+) reveals that addition of the secondary ligand significantly improves the emission intensity by as high as almost 34 times. After detailed structural study, it is found that different Ln ions have the similar coordination in the Ln(cpioa)phen MOF. In addition, the chromaticity of Ln(cpioa)phen MOFs can be easily tuned by the amounts of doping Ln ions. La0.974Tb0.0255Eu0.0005(cpioa)phen MOF has a white emission with a CIE coordinate of (0.323, 0.343). Characterizations of corresponding LED devices show that device based on Ln(cpioa)phen MOF has better photoluminescence performances, which indicates that Ln(cpioa)phen MOF has great potential of for WLED applications.
Collapse
Affiliation(s)
- Qianwei Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Qi Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Jinhu Guo
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Xinyu Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Mengxuan Fang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Jiaoying Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Minghui Tai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Yichong Cheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Dalai Jin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China
| | - Longcheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha Town, Hangzhou, 310018, PR China.
| |
Collapse
|
7
|
Ficarra G, Sciortino A, Barbata LG, Ettlinger R, De Michele V, Marin E, Cannas M, Morris RE, Buscarino G. Unveiling MOF-808 photocycle and its interaction with luminescent guests. Phys Chem Chem Phys 2024; 26:22269-22277. [PMID: 39136117 DOI: 10.1039/d4cp02279c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The world of metal-organic frameworks (MOFs) has become a hot topic in recent years due to the extreme variety and tunability of their structures. There is evidence of MOFs that exhibit intrinsic luminescence properties that arise directly from their organic components or from the interaction between them and metallic counterparts. A new perspective is to exploit the porous nature of MOFs by encapsulating luminescent guests, such as organic dyes, in order to explore possible changes in the luminescence activity of the combined systems. This work is focused on the optical study of zirconium-based MOF-808 and its interaction with encapsulated rhodamine B molecules. Using a plethora of different techniques, we were able to unravel its photocycle. MOF-808 displays intrinsic luminescence activity that derives from an energy transfer process from the linker to the metal sites occurring in 300 ps. The emission is a singlet-singlet transition in aqueous solution, and it is a triplet transition in powdered form. After exploring the bare MOF, we combined it with rhodamine B molecules, following an easy post-synthetic process. Rhodamine B molecules were found to be encapsulated in MOF pores and interact with the MOF's matrix through nanosecond energy transfer. We created a totally new dual-emitting system and suggested a way, based on the time-resolved studies, to clearly unravel the photocycle of MOFs from the very first photoexcitation.
Collapse
Affiliation(s)
- G Ficarra
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - A Sciortino
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - L G Barbata
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - R Ettlinger
- TUM School of Natural Sciences, Technical University of Munich Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - V De Michele
- Université Jean Monnet, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, 42000 Saint-Etienne, France
| | - E Marin
- Université Jean Monnet, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, 42000 Saint-Etienne, France
| | - M Cannas
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - R E Morris
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, UK
| | - G Buscarino
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| |
Collapse
|
8
|
Kaur G, Sharma S, Bhardwaj N, Nayak MK, Deep A. Simple fluorochromic detection of chromium with ascorbic acid functionalized luminescent Bio-MOF-1. NANOSCALE 2024; 16:12523-12533. [PMID: 38888214 DOI: 10.1039/d4nr00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The bioaccumulation of various heavy metals in the environment and agriculture is posing serious hazards to human health. Hexavalent chromium is one of the most encountered heavy metal pollutants. The routine monitoring of Cr(VI) via simple methods assumes great analytical significance in sectors like environmental safety, food quality, etc. This study reports a novel biocompatible and luminescent metal-organic framework (ascorbic acid functionalized Bio-MOF-1) based "Turn-on" nanoprobe for rapid and sensitive optical detection of Cr(VI). Bio-MOF-1 has been synthesized, functionalized with ascorbic acid (AA), and then comprehensively characterized for its key material properties. The presence of Cr(VI) results in the photoluminescence recovery of Bio-MOF-1/AA. Using the above approach, Cr(VI) is detected over a wide concentration range of 0.02 to 20 ng mL-1, with the limit of detection being 0.01 ng mL-1. The nanoprobe is capable of detecting Cr(VI) in real water as well as in some spiked food samples. Hence, the ascorbic acid functionalized Bio-MOF-1 nanoprobe is established as a potential on-field detection tool for Cr(VI).
Collapse
Affiliation(s)
- Gurjeet Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Saloni Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Neha Bhardwaj
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| | - Manoj K Nayak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India.
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India
- Institute of Nano Science and Technology (INST), Sector 81, S.A.S. Nagar (Mohali), Punjab-140306, India.
| |
Collapse
|
9
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
10
|
Hussain Shah J, Sharif S, Şahin O, Shahbaz M, Azeem W, Ahmad S. A dual-emitting Rhodamine B-encapsulated Zn-based MOF for the selective sensing of Chromium(VI). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123899. [PMID: 38266598 DOI: 10.1016/j.saa.2024.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
A Rhodamine B-Zn-MOF composite (RhB-Zn-MOF) with dual emission intensity was synthesized through one pot synthesis by in-situ encapsulation of Rhodamine-B dye on a new Zn-MOF metal-organic framework [(Zn(OAc)2(4-BrIPh) (1,10-phenonthroline)(H2O)].H2O, (4-BrIPh = 4-Bromoisophthalic acid). The synthesized encapsulated material was characterized by elemental analysis, FTIR, UV-Visible spectroscopy, TGA, single crystal and powder X-ray diffraction and photoluminescence spectroscopy. The results showed that the synthesized composite, RhB-Zn-MOF could be used as an efficient probe for the selective sensing of Cr(VI) in the presence of Cr(III) as well as other metal ions.
Collapse
Affiliation(s)
- Javed Hussain Shah
- Institute of Chemical Sciences, Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore, 54000 Pakistan
| | - Shahzad Sharif
- Institute of Chemical Sciences, Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore, 54000 Pakistan.
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000 Sinop, Turkey
| | - Muhammad Shahbaz
- Institute of Chemical Sciences, Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore, 54000 Pakistan
| | - Waqar Azeem
- Lahore Chemical & Pharmaceutical Works Pvt. Limited, Lahore, Pakistan
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Oliden-Sánchez A, Sola-Llano R, Pérez-Pariente J, Gómez-Hortigüela L, Martínez-Martínez V. Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer. Phys Chem Chem Phys 2024; 26:1225-1233. [PMID: 38099816 DOI: 10.1039/d3cp02625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Rebeca Sola-Llano
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | - Luis Gómez-Hortigüela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
12
|
Guo X, Zhou L, Liu X, Tan G, Yuan F, Nezamzadeh-Ejhieh A, Qi N, Liu J, Peng Y. Fluorescence detection platform of metal-organic frameworks for biomarkers. Colloids Surf B Biointerfaces 2023; 229:113455. [PMID: 37473653 DOI: 10.1016/j.colsurfb.2023.113455] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sensitive and selective detection of biomarkers is crucial in the study and early diagnosis of diseases. With the continuous development of biosensing technologies, fluorescent biosensors based on metal-organic frameworks have attracted increasing attention in the field of biomarker detection due to the combination of the advantages of MOFs, such as high specific surface area, large porosity, and structure with tunable functionality and the technical simplicity, sensitivity and efficiency and good applicability of fluorescent detection techniques. Therefore, researchers must understand the fluorescence response mechanism of such fluorescent biosensors and their specific applications in this field. Of all biomarkers applicable to such sensors, the chemical essence of nucleic acids, proteins, amino acids, dopamine, and other small molecules account for about a quarter of the total number of studies. This review systematically elaborates on four fluorescence response mechanisms: metal-centered emission (MC), ligand-centered emission (LC), charge transfer (CT), and guest-induced luminescence change (GI), presenting their applications in the detection of nucleic acids, proteins, amino acids, dopamine, and other small molecule biomarkers. In addition, the current challenges of MOFs-based fluorescent biosensors are also discussed, and their further development prospects are concerned.
Collapse
Affiliation(s)
- Xuanran Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Luyi Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xuezhang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guijian Tan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Fei Yuan
- College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | | | - Na Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
13
|
Liu H, Li QQ, Zhou L, Deng B, Pan PH, Zhao SY, Liu P, Wang YY, Li JL. Confinement of Organic Dyes in UiO-66-Type Metal-Organic Frameworks for the Enhanced Synthesis of [1,2,5]Thiadiazole[3,4- g]benzoimidazoles. J Am Chem Soc 2023; 145:17588-17596. [PMID: 37454391 DOI: 10.1021/jacs.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Organic dyes as non-noble metal photosensitizers have attracted increasing attention due to their environmental friendliness and sustainability but suffer from fast deactivation and low stability. Here, we reported a fruitful strategy by the confinement and stabilization of visible light-active signal unit organic dyes within the metal-organic frameworks (MOFs) and developed a series of heterogeneous photocatalysts dye@UiO-66s [dye = fluorescein (FL)/rhodamine B (RhB)/eosin Y (EY), UiO-66s = UiO-66, and Bim-UiO-66]. It has been demonstrated that the encapsulated dyes can effectively sensitize MOF hosts and dominate the band structures and photocatalytic activities of dye@UiO-66s regardless of the ligand functionalization of MOFs. Photocatalytic experiments showed that these dye@UiO-66s exhibit enhanced activities relative to free dyes and among them, FL@Bim-UiO-66 displays excellent efficiencies toward the green synthesis of new carbon-bridged annulations, [1,2,5]thiadiazole[3,4-g]benzoimidazoles in the yield of up to 98% at room temperature with outstanding stability and reusability. Furthermore, the intramolecular cyclization intermediate was captured and characterized by the single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hua Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Quan-Quan Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, P. R. China
| | - Li Zhou
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Bing Deng
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Peng-Hui Pan
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Shu-Ya Zhao
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Ping Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Jian-Li Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
14
|
Kobaisy AM, Elkady MF, Abdel-Moneim AA, El-Khouly ME. Surface-decorated porphyrinic zirconium-based metal-organic frameworks (MOFs) using post-synthetic self-assembly for photodegradation of methyl orange dye. RSC Adv 2023; 13:23050-23060. [PMID: 37529362 PMCID: PMC10388159 DOI: 10.1039/d3ra02656f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
We report herein the surface decoration of a water-soluble free-base porphyrin, namely, 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin-tetra(p-toluenesulfonate) (H2TMPyP), over three different zirconium-based metal-organic frameworks of different linker structure and functionality; namely UiO66, UiO66-NH2, and MIP-202, via self-assembly. The synthesized MOFs along with the resulting complexes have been characterized via spectroscopic and analytical techniques (XRD, FT-IR, TEM, N2 adsorption/desorption, and laser scanning confocal microscopy). The self-assembly of H2TMPyP with the examined three MOFs was observed by using the steady-state absorption and fluorescence, as well as the fluorescence lifetime studies. It was evident that the highest complex interaction was recorded between porphyrin and UiO-66-NH2 compared with the lowest interactions between porphyrin and MIP-202. This is in good agreement with the high surface area and pore volume of UiO-66 (1100 m2 g-1 and 0.68 cm3 g-1) and compared to that of MIP-202 (94 m2 g-1 and 0.26 cm3 g-1). The photocatalytic activities of the three porphyrin entities immobilized zirconium-based MOFs were compared toward methyl orange dye degradation from aqueous solution under visible light irradiation (λex = 430 nm). The photocatalytic studies render the fabrication of the self-assembled H2TMPyP@UiO-66-NH2 composite as a promising material for dye degradation from polluted wastewater.
Collapse
Affiliation(s)
- Ahmed M Kobaisy
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Marwa F Elkady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Ahmed A Abdel-Moneim
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
15
|
Xiang H, Zhao S, Wang Y, Wang R, Li X, Wang H, Laigao Y, Liu J, Wu F, Xie A, Li W, Zeng H. Bionic electroluminescent perovskite light-emitting device. Chem Commun (Camb) 2023. [PMID: 37161581 DOI: 10.1039/d3cc01533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A perovskite light-emitting-diode (PeLED) displaying green color is combined with a brown fluorescent coating (FC) layer to form a hybrid FC-PeLED system. The FC-PeLED system can simulate the natural process of bionics of plant colors from green to brown through a low energy (<0.6 mW) input, promoting the development of future low-cost and low-power consumption bionics technology.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Saichao Zhao
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Yifei Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Run Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Xinxin Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Hao Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Yuquan Laigao
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering, Nanjing 210094, Jiangsu, China
| | - Fan Wu
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Aming Xie
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Weijin Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
16
|
Wu S, Xiong P, Jiang D, Liu Q, Zhang K, Xiao B, Chen Y, Wang Y. Anionic Regulation toward Bi 3+ Selective Occupation for Full-Spectrum White Light Emission. Inorg Chem 2023; 62:4894-4902. [PMID: 36917791 DOI: 10.1021/acs.inorgchem.2c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An activator's selective occupation of a host is of great significance for designing high-quality white light-emitting diode phosphors, while achieving a full-spectrum single-phase white light emission phosphor is challenging. In this study, a boron phosphate solid-solution Na2Y2(BO3)2-x(PO4)xO:0.005 Bi3+ (NYB2-xPxO:0.005 Bi3+) white phosphor was designed by selectively occupying Bi3+ activators in the mixed anionic groups. The substitutes of the anionic unit (BO3)3- by the (PO4)3- unit are supposed to force part of the Bi3+ ion to enter the Na lattice site, which produces an intense orange-red emission peaked at 590 nm. In parallel, spectral tuning from blue to white light and an internal quantum efficiency of 56.42% was obtained, and the thermal stabile luminescence intensity remains at 94.2% of the initial intensity after four heating-cooling cycles from 30 to 210 °C (luminescent intensity is 83.6% of room temperature (RT) at 150 °C, with excellent thermal stability and recovery performance). Finally, an excellent color rendering index (Ra = 90.8 and R9 = 85) was demonstrated for white light-emitting diode devices using only an NYB1.5P0.5O:0.005 Bi3+ phosphor and a near-ultraviolet (n-UV) 365 nm LED chip. This work delves into the different selective occupancy of Bi3+ ions and explores a new avenue for the design of phosphors for full-spectrum white light emission.
Collapse
Affiliation(s)
- Sheng Wu
- School of Physics and Telecommunication Engineering, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Puxian Xiong
- School of Physics and Optoelectronics, School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Dongliang Jiang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529000, China
| | - Quan Liu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529000, China
| | - Ke Zhang
- School of Physics and Optoelectronics, School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Binli Xiao
- School of Physics and Telecommunication Engineering, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Yan Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529000, China
| | - Yinzhen Wang
- School of Physics and Telecommunication Engineering, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu Q, Chen X, Wu J, Zhang L, He G, Tian S, Zhao X. Enhanced Luminescence of Dye-Decorated ZIF-8 Composite Films via Controllable D-A Interactions for White Light Emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3656-3667. [PMID: 36856700 DOI: 10.1021/acs.langmuir.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) constructed by metal ions/clusters and organic linkers are used to encapsulate fluorescent guest species with aggregation-caused quenching (ACQ) effects to enhance fluorescence properties due to their porous structures and high specific surface areas. However, there would be a problem of matching between MOF pores and guest molecules' sizes. In this paper, amorphous ZIF-8 was modified by carboxyl functional groups (H3BTC-ZIF-8) via introducing the 1,2,4-benzenetricarbonic acid (H3BTC) ligand into the ZIF-8 sol system. Moreover, H3BTC-ZIF-8 was used for the loading of organic fluorescent dyes rhodamine 6G (R6G) and coumarin 151 (C151) to prepare R6G/C151/H3BTC-ZIF-8 composite films. A white-light-emitting composite film (R6G/C151/H3BTC-ZIF-8) with CIE coordinates of (0.323, 0.347) was successfully prepared by compounding fluorescent dyes (R6G and C151) with H3BTC-modified ZIF-8, whose photoluminescence quantum yield (PLQY) can reach 64.0%. It was higher than the PLQY of the composite films prepared by crystalline ZIF-8 (40.2%) or amorphous ZIF-8 without H3BTC (48.0%) compounded with the same concentrations of dyes. The fluorescence enhancement was probably attributed to an increased amount of active sites of H3BTC-modified ZIF-8 interacting with dyes C151 and R6G. This can form hydrogen bonds between H3BTC-ZIF-8 and C151, and weak electron donor-acceptor (D-A) interactions between H3BTC-ZIF-8 and R6G molecules, respectively, thus enhancing the interactions between dyes and ZIF-8 and reducing the ACQ effect existing between dye molecules. Therefore, this strategy could provide an important guidance to develop white-light-emissive materials.
Collapse
Affiliation(s)
- Qiufen Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Xuelei Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Jiahao Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Liming Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Guanjie He
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Shouqin Tian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
18
|
Tan B, Li ZW, Wu ZF, Huang XY. A Cerium Organic Framework with {Cu 2I 2} Cluster and {Cu 2I 2} n Chain Modules: Structure and Fluorescence Sensing Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:2420. [PMID: 36904625 PMCID: PMC10007347 DOI: 10.3390/s23052420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this work, a copper iodine module bearing a coordination polymer (CP) with a formula of [(Cu2I2)2Ce2(INA)6(DMF)3]·DMF (1, HINA = isonicotinic acid, DMF = N,N'-dimethyl formamide) is presented. The title compound features a three dimensional (3D) structure, in which the {Cu2I2} cluster and {Cu2I2}n chain modules are coordinated by N atoms from a pyridine ring in INA- ligands, while the Ce3+ ions are bridged by the carboxylic groups of INA- ligands. More importantly, compound 1 exhibits an uncommon red fluorescence (FL) with a single emission band maximized at 650 nm belonging to near infrared (NIR) luminescence. The temperature dependent FL measurement was applied to investigate the FL mechanism. Remarkably, 1 could be used as a FL sensor to cysteine and the nitro-bearing explosive molecule of trinitropheno (TNP) with high sensitivity, demonstrating its potential FL sensing applications for biothiol and explosive molecules.
Collapse
Affiliation(s)
- Bin Tan
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Wei Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhao-Feng Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao-Ying Huang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
19
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Wan Y, Li Y, Yue D. Dye-Encapsulated Metal-Organic Frameworks for the Multi-Parameter Detection of Temperature. Molecules 2023; 28:molecules28020729. [PMID: 36677785 PMCID: PMC9861431 DOI: 10.3390/molecules28020729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Temperature is an important physical parameter and plays a significant role in scientific research, the detection of which cannot be too crucial to study. In order to reduce the interference of the external environment on the detection of temperature and improve the accuracy of the detection results, a multi-parameter detection method using several optical signals was proposed. Here, a novel porous metal-organic framework (MOF), Zn-CYMPN, was synthesized and structurally characterized. Then, fluorescent organic dyes, either DPEE or DPEM, were encapsulated into the pores of Zn-CYMPN independently. The successful synthesis of the composites Zn-CYMPN⊃DPEE or Zn-CYMPN⊃DPEM could easily introduce other fluorescent centers into the original material and made it more convenient to realize multi-parameter temperature detection. More specifically, when the temperature changed, the maximum fluorescent emission wavelength (W) and the maximum optical intensity (I) of the Zn-CYMPN⊃DPEE/DPEM both showed good linear responses with temperature over a wide range, indicating that the composites were highly sensitive thermometers with multi-parameter temperature readouts. In addition, the quantum efficiency and thermal stability of the organic dyes, which bother every researcher, were improved as well.
Collapse
Affiliation(s)
- Yating Wan
- Intelligent Manufacturing College, Hangzhou Polytechnic, Hangzhou 311402, China
- Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
- Correspondence: (Y.W.); (D.Y.)
| | - Yanping Li
- College of Information Science and Engineering, Changsha Normal University, Changsha 410100, China
| | - Dan Yue
- Henan International Joint Laboratory of Rare Earth Composite Materials, College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, China
- Correspondence: (Y.W.); (D.Y.)
| |
Collapse
|
21
|
Xu DD, Dong WW, Li MK, Han HM, Zhao J, Li DS, Zhang Q. Encapsulating Organic Dyes in Metal-Organic Frameworks for Color-Tunable and High-Efficiency White-Light-Emitting Properties. Inorg Chem 2022; 61:21107-21114. [PMID: 36524898 DOI: 10.1021/acs.inorgchem.2c03736] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of white-light phosphor is highly desirable for practical applications in SSL (solid-state lighting) and its related fields. Dye-loaded metal-organic frameworks (MOFs) have been widely demonstrated as one type of promising down conversion materials for WLEDs (white-light-emitting diodes), but two issues (dye leakage and inadequate quantum efficiency) require to be addressed before possible applications. Here, a series of single-phase dyes@In-MOF phosphors have been prepared in two different ways: the in-situ process and soaking method. The study of these dyes@In-MOF phosphors confirms the importance of this in-situ process that could effectively increase dye loading and quantum efficiency and greatly decrease dye leakage. As a result, a perfect WLED, fabricated using the in-situ-synthesized (AF/RhB@In-MOF)-3 (AF: Acriflavine; RhB: Rhodamine B) and 450 nm blue LED chip, exhibited a very high quantum yield (QY, up to 42.27%), a high luminous efficacy (LE) of 50.75 lm/W, a high color rendering index (CRI) of 91.2, and nearly identical Commission International ed'Eclairage (CIE) coordinates (0.33,0.31), indicating the potential application of the dye-loaded MOFs with good color quality in smart white LEDs.
Collapse
Affiliation(s)
- Dong-Dong Xu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Wen-Wen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Meng-Ke Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Hui-Min Han
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jun Zhao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
22
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
23
|
Ma T, Li K, Hu J, Xin Y, Cao J, He J, Xu Z. Carbazole-Equipped Metal-Organic Framework for Stability, Photocatalysis, and Fluorescence Detection. Inorg Chem 2022; 61:14352-14360. [PMID: 36026539 DOI: 10.1021/acs.inorgchem.2c02135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The useful yet underutilized backfolded design is invoked here for functionalizing porous solids with the versatile carbazole function. Specifically, we attach carbazole groups as backfolded side arms onto the backbone of a linear dicarboxyl linker molecule. The bulky carbazole side arms point away from the carboxyl links and do not disrupt the Zr-carboxyl framework formation; namely, the resultant MOF solid ZrL1 features the same net as that of the unfunctionalized dicarboxyl linker, also known as the PCN-111 net or UiO-66 net. The ZrL1 structure features only half linker occupancy (about 6 out of the 12 linkers around the Zr6O8 cluster being missing) and partially collapses upon activation (acetone exchange and evacuation). Notably, the stability improves after heating in diphenyl oxide at 260 °C (POP-260 treatment; to form ZrL1-260), as indicated by the higher crystallinity and surface area of the activated ZrL1-260 sample. The ZrL1-260 samples achieve 72% yield in photocatalyzing reductive dehalogenation of phenacyl bromide; ZrL1 can detect nitro-aromatic compounds via fluorescence quenching, with selectivity and sensitivity toward 4-nitroaniline, featuring a limit of detection of 96 ppb.
Collapse
Affiliation(s)
- Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jialin Cao
- College of Engineering and Applied Sciences, Nanjing University, Science Park of Nanjing University, Qixia District, 210008 Nanjing, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
24
|
Xia QQ, Wang XH, Yu JL, Xue ZY, Chai J, Wu MX, Liu X. Tunable fluorescence emission based on multi-layered MOF-on-MOF. Dalton Trans 2022; 51:9397-9403. [PMID: 35674199 DOI: 10.1039/d2dt00714b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent metal-organic frameworks (MOFs) have garnered considerable attention in various fields. Herein, we proposed a hierarchical confinement strategy based on MOF-on-MOF to tune luminescence emission ranging from blue to red including white light in a flexible way. The easily available ZIF-8 MOF was used as a host for the confinement of two kinds of size-matching dyes (perylene and rhodamine B) to obtain a layered ZIF-8@dye@ZIF-8@dye via in situ encapsulation and seed-mediated synthesis. ZIF-8@dye@ZIF-8@dye materials with different fluorescence emission in dispersed and solid states were both obtained by tuning the initial encapsulation concentration of dye and changing the structure of the inner and outer ZIF-8@dye layers. To our delight, ZIF-8@0.125perylene@ZIF-8@25RhB with white light emission in the dispersed state was obtained; meanwhile, ZIF-8@0.125perylene + 25RhB and mechanically mixed ZIF-8@0.125perylene + ZIF-8@25RhB could not realize white light emission under the same conditions, indicating that the proposed hierarchical confinement strategy facilitated white light regulation. Similarly, the emission of ZIF-8@dye@ZIF-8@dye in the solid state has also been investigated; ZIF-8@perylene@ZIF-8@3RhB with white light emission was obtained, while white light emission could not be achieved in ZIF-8@perylene + 3RhB and ZIF-8@perylene + ZIF-8@3RhB, which further indicated the importance of the hierarchical confinement strategy based on MOF-on-MOF. The proposed hierarchical confinement strategy may also inspire the development of other functional optical MOF materials.
Collapse
Affiliation(s)
- Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Jia-Lin Yu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Zhi-Yuan Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| |
Collapse
|
25
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
26
|
Chiu NC, Smith KT, Stylianou KC. Metal-organic frameworks for white light emission: From synthesis to device fabrication. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Zhou YY, Xu Y, Yu M, Xiong Y, Liu XG, Zhao Z. A biological luminescent metal-organic framework with high fluorescence quantum yield for the selective detection of amino acids and monosaccharides. Dalton Trans 2022; 51:2883-2889. [PMID: 35100329 DOI: 10.1039/d1dt03249f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The biological luminescent metal-organic framework (bio-LMOF), (Me2NH2)2[Zn6O(Ade)4(TCPPE)2] (1) {H4TCPPE = tetrakis[4-(4-carboxyphenyl)phenyl]ethene, Ade = adenine} was successfully designed and synthesized under hydrothermal conditions, with two channels of different sizes. The absolute fluorescence quantum yields of complex 1 and activated 1 are up to 77.6% and 85.9%, respectively. Activated 1 exhibits outstanding water stability and excellent selective luminescence sensing for amino acids and monosaccharides. The fluorescence quenching efficiencies of activated 1 towards L-Nph and D-Nga are 86.35% and 91.60%, respectively. Besides, activated 1 also displays highly quenching responses to L-Nph and D-Nga at fairly low concentrations, and the limits of detection for L-Nph and D-Nga are estimated to be 0.149 ppm and 1.612 ppm, respectively. Meanwhile, in multiple cycling experiments, activated 1 still has excellent cycling stability. These phenomena indicate that activated 1 can be utilized as a fast responsive biological luminescent sensor, which is a rare example for bio-LMOFs.
Collapse
Affiliation(s)
- Ying-Ying Zhou
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Yuan Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Maoxing Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Yi Xiong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| | - Xun-Gao Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
28
|
Yu S, Li JX, Zeng G, Xing YH, Bai FY, Shi Z. Construction of Large-Scale Conjugated Functionalized Cyclotriphosphazene Lanthanide Framework for Selective Sensing of Volatile Organic Compounds and Assembly of Color-Tunable Dye-Encapsulated Composites. Inorg Chem 2022; 61:3111-3120. [PMID: 35142510 DOI: 10.1021/acs.inorgchem.1c03405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A flexible functionalized cyclotriphosphazene hexacarboxylic acid, hexakis(4-carboxylatephenoxy) cyclotriphosphazene (HCPCP), is used for the synthesis of a family of fluorescent Ln-HCPCP frameworks (Ln = La, Pr, Nd, Gd, and Ho). Structural analysis shows that the compounds exhibit 3D structures with [Ln3(COO)10], secondary building units formed by Ln-O-C-O-Ln connection. Then the molecules are connected to each other through HCPCP, forming rectangular channels along the c-direction. Interestingly, the fluorescence sensing studies show that compound 1 could be used as a multifunctional fluorescence sensor toward volatile organic compounds via different fluorescence emission behaviors. Moreover, a series of Dye@La-HCPCP composites (Dye = rhodamine B, safranine T, crystal violet, and malachite green) are successfully prepared with different quantum yields by the solvothermal reaction followed by cation exchanges.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jin Xiao Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
29
|
Yu H, Zhou L, Ye R, Deng D, Xu S. Tunable emission of Li4SrCaSi2O4-yN2y/3: Eu2+ phosphors based on anion substitution induction for WLEDs and optical thermometry. Dalton Trans 2022; 51:7333-7342. [DOI: 10.1039/d2dt00485b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polychromatic emission can be achieved by controlling the distribution of rare earth activator in multi-cation lattices, which can be used in the fields of white light LED and fluorescent temperature...
Collapse
|
30
|
Jia Y, Yin J, Li N, Zhang Y, Feng R, Yao Z, Bu X. Crystalline‐State
Solvent:
Metal‐Organic
Frameworks as a Platform for Intercepting
Aggregation‐Caused
Quenching. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Yuan Jia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jia‐Cheng Yin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Ying‐Hui Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Rui Feng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zhao‐Quan Yao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Xian‐He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
- State Key Laboratory of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Encapsulation of Dyes in Luminescent Metal-Organic Frameworks for White Light Emitting Diodes. NANOMATERIALS 2021; 11:nano11102761. [PMID: 34685201 PMCID: PMC8537442 DOI: 10.3390/nano11102761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
The development of white light emitting diodes (WLEDs) holds great promise for replacing traditional lighting devices due to high efficiency, low energy consumption and long lifetime. Metal-organic frameworks (MOFs) with a wide range of luminescent behaviors are ideal candidates to produce white light emission in the phosphor-converted WLEDs. Encapsulation of emissive organic dyes is a simple way to obtain luminescent MOFs. In this review, we summarize the recent progress on the design and constructions of dye encapsulated luminescent MOFs phosphors. Different strategies are highlighted where white light emitting phosphors were obtained by combining fluorescent dyes with metal ions and linkers.
Collapse
|
33
|
Yuan J, Feng G, Dong J, Lei S, Hu W. Dual-functional porous MOFs with hierarchical guest encapsulation for room-temperature phosphorescence and white-light-emission. NANOSCALE 2021; 13:12466-12474. [PMID: 34477611 DOI: 10.1039/d1nr03006j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of optical materials with room temperature phosphorescence (RTP) and white light emission (WLEDs) is highly desirable and remains a challenging task. Herein, a porous metal-organic framework PCN-921 with a high quantum yield (ΦF = 93.6%) was achieved. To make full use of the advantages of the high porosity of PCN-921, we hierarchically encapsulated different guest molecules coronene and rhodamine B (RhB) into the framework. Unsurprisingly, the hybrid material coronene@PCN-921 was obtained after in situ encapsulation of the guest coronene into the framework, and it exhibits obvious RTP behavior with a long phosphorescence lifetime of 62.5 ns. Subsequently, second guest RhB molecules were introduced after soaking in RhB solution and the material RhB@coronene@PCN-921 was achieved. Interestingly, it exhibits white light emission with the CIE coordinates of (0.29, 0.34), and can be used as a high performance WLED lamp. This is the first work on dual-functional hybrid dyes@MOFs with hierarchical guest encapsulation for RTP and white light emission, which suggests the potential applications of MOFs in multifunctional optical devices.
Collapse
Affiliation(s)
- Jiangyan Yuan
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | | | | | | | | |
Collapse
|
34
|
Xing W, Zhou H, Han J, Zhou Y, Gan N, Cuan J. Dye encapsulation engineering in a tetraphenylethylene-based MOF for tunable white-light emission. J Colloid Interface Sci 2021; 604:568-574. [PMID: 34274718 DOI: 10.1016/j.jcis.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
The development of efficient and stable white-light emissive materials is highly desirable in displays and solid-state lighting. Here we present a high-quality white-light emitter based a dual-emitting MOF hybrid, which is achieved by dye encapsulation engineering within a robust Zr-MOF (PCN-128W) containing a highly luminescent tetraphenylethylene-based ligand. The pore confinement effect well isolates the incorporated dye molecules (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide (DSM)) and therefore suppress the aggregation caused luminescence quenching. The dye emission is mainly sensitized by PCN-128W host through Förster resonance energy transfer (FRET), and the FRET process is incomplete, thus enabling the hybrid to feature dual emissions upon a single excitation. The emission color of DSM@PCN-128W hybrid can be systematically tuned from blue to white, and to orange by regulating the dye encapsulation content. A broad white-light emission with a considerably high quantum yield (21.2%) is obtained in the case of dye contents of 0.15 wt%. The luminescence of DSM@PCN-128W hybrid is stable in ambient air for over 1 month, and show good resistance to continuous UV light irradiation, owing to the protective MOF Matrix that largely inhibits the UV exposure to dye molecules. What's more, by combining DSM@PCN-128W with a commercial UV LED chip, we fabricate a white-light emitting prototype device showing CIE chromaticity coordinates of (0.34, 0.33), a CRI of 79.1, and a CCT of 5525 K.
Collapse
Affiliation(s)
- Wenzhe Xing
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hui Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jingjing Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jing Cuan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
35
|
Zhou X, Li J, Tan LL, Li Q, Shang L. Novel perylene probe-encapsulated metal-organic framework nanocomposites for ratiometric fluorescence detection of ATP. J Mater Chem B 2021; 8:3661-3666. [PMID: 31999287 DOI: 10.1039/c9tb02319d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, a novel ratiometric fluorescence assay for ATP was developed based on the excimer-monomer transfer of a perylene probe. By encapsulating a perylene probe, N,N'-bis(6-caproic acid)-3,4:9,10-perylenediimide (PDI), into zeolitic imidazolate framework-8 (ZIF-8) nanocrystals, fluorescent nanocomposites (PDI@ZIF-8) with significant excimer emission of the perylene probe were prepared for the first time. The presence of ATP will trigger the decomposition of PDI@ZIF-8 due to much stronger coordination between ATP and Zn2+ than that of 2-methylimidazole and Zn2+. As a result, the encapsulated PDI probes were released, leading to significantly increased monomer emission accompanying the decrease in the excimer emission. The excimer-monomer transition signal was utilized for ratiometric ATP sensing and its potential application for detecting ATP in cell lysates was also successfully demonstrated.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | | | | | | | | |
Collapse
|
36
|
Li M, Ren G, Yang W, Yang Y, Yang W, Gao Y, Qiu P, Pan Q. Dual-emitting piezofluorochromic dye@MOF for white-light generation. Chem Commun (Camb) 2021; 57:1340-1343. [PMID: 33428698 DOI: 10.1039/d0cc06478e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An tetraphenylethylene-based MOF (HNU-49) has been synthesized, which exhibits interesting piezofluorochromic behavior. Additionally, rhodamine B (RhB) can be successful encapsulated in HNU-49, to emit the characteristic dual-emission of RhB and the framework. The combination of host-guest interaction and piezofluorochromism can precisely modulate the luminescence to achieve near white-light.
Collapse
Affiliation(s)
- Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou, 570228, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yin JC, Chang Z, Li N, He J, Fu ZX, Bu XH. Efficient Regulation of Energy Transfer in a Multicomponent Dye-Loaded MOF for White-Light Emission Tuning. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51589-51597. [PMID: 33141562 DOI: 10.1021/acsami.0c12867] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their rich porosity and structural diversity, metal-organic frameworks (MOFs) offer substantial advantages over other emission sources for the precise design and color regulation of white-light phosphors. However, achieving efficient white-light emission remains a considerable challenge. Herein, we report a strategy to achieve tunable and efficient white-light emission by regulating energy transfer in a multicomponent dye-loaded MOF. An anionic MOF NKU-114 featuring appropriate confined spaces is designed as a host to deliberately encapsulate three red-, green-, and blue-emissive dyes with adaptive spectral overlap, DSM, AF, and 9-AA, respectively, yielding the NKU-114@dyes composites. Integrating the suitable spectral overlap and efficient energy transfer between the dyes and the framework produced a white-light emission material containing the multicomponent dyes NKU-114@DSM/AF/9-AA. The obtained material has a broadband white emission with a high quantum yield (up to 42.07%) and nearly identical CIE coordinates of (0.34, 0.32), and the moderate correlated color temperature and color-rendering index value can reach up to 5101 K and 81, respectively, suggesting the potential of the multicomponent dye-loaded MOF for white-light-emitting phosphors with good color quality.
Collapse
Affiliation(s)
- Jia-Cheng Yin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Jie He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Zi-Xuan Fu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Akram MA, Ye J, Wang G, Shi L, Liu Z, Lu H, Zhang S, Ning G. Bifunctional chemosensor based on a dye-encapsulated metal-organic framework for highly selective and sensitive detection of Cr2O72− and Fe3+ ions. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Mitra M, Mahapatra M, Dutta A, Deb M, Dutta S, Chattopadhyay PK, Roy S, Banerjee S, Sil PC, Singha NR. Fluorescent Guar Gum- g-Terpolymer via In Situ Acrylamido-Acid Fluorophore-Monomer in Cell Imaging, Pb(II) Sensor, and Security Ink. ACS APPLIED BIO MATERIALS 2020; 3:1995-2006. [PMID: 35025321 DOI: 10.1021/acsabm.9b01146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nonconventional purely aliphatic scalable and reusable fluorescent guar gum (GRGM)-grafted-acrylic acid-co-3-(N-isopropylacrylamido)propanoic acid (NIPAPA)-co-N-isopropylacrylamide (GRGM-grafted-1, i.e., 2), was synthesized via grafting of the optimum amount of GRGM and N-H functionalized in situ protrusion of acrylamido-acid fluorophore-monomer, i.e., NIPAPA, in multi C-C/N-C/O-C coupled solution polymerization of two non-emissive monomers in water. The intrinsically fluorescent noncytotoxic 2 envisaged the excellent potentials in sensing and removal of Pb(II), security ink, logic function, and imaging of both cancer and normal cells. The emission intensities of 2 elevated in concentrated solutions and solid state because of concentration-enhanced emission and aggregation-induced enhanced emission (AIEE) characteristics of 2. Additionally, the emission efficiency of 2 elevated considerably with increasing GRGM contents and temperatures. The structure of 2, in situ attached fluorophore-monomer, AIEE, cell-imaging ability, and the superadsorption mechanism were studied employing 1H/13C NMR, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic absorption spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, dynamic light scattering, high-resolution transmission electron microscopy, fluorescence imaging, and fluorescence lifetime, along with measuring isotherms, kinetics, and thermodynamic parameters. The location, geometries, and electronic-structures of fluorophore, along with absorption and emission properties, of 2 were explored via density functional theory (DFT), time-dependent DFT, and natural transition orbital analyses. In solution, cyan light-emitting 2 envisaged an average 1.22 ns lifetime in CHCl3. The limit of detection and the maximum adsorption capacity were 2.94 × 10-7 M and 1100.25 mg g-1 at pH 7.0, 303 K, and 1000 ppm, respectively.
Collapse
Affiliation(s)
- Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal,India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
40
|
Tsai MJ, Li CY, Wu JY. A highly stable luminescent coordination polymer for sensing of volatile iodine and its metal-ion exchange properties with Cu2+ ions. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Li JX, Guan QL, Wang Y, You ZX, Xing YH, Bai FY, Sun LX. A lanthanide–organic crystalline framework material encapsulating 1,3,6,8-tetrakis(p-benzoic acid)pyrene: selective sensing of Fe3+, Cr2O72−and colchicine and white-light emission. NEW J CHEM 2020. [DOI: 10.1039/c9nj05175a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A facile strategy was used to construct a series of composite materials with color-tunable and white light emission by encapsulating 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4TBAPy) into framework material [Eu(MCTCA)1.5(H2O)2]·1.75H2O.
Collapse
Affiliation(s)
- Jin Xiao Li
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Qing Lin Guan
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Yu Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Zi Xin You
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials
- Guilin University of Electronic Technology
- Guilin City
- P. R. China
| |
Collapse
|
42
|
Bao W, Yu XY, Dong WW, Zhao J, Tian ZF, Li DS. Novel Composites of Graphitic-phase Nitrogen Carbon/Lanthanide Coordination Polymers as White Light-emitting Phosphor. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Bao
- College of Materials and Chemical Engineering; Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University; 443002 Yichang P. R. China
| | - Xiao-Yan Yu
- College of Materials and Chemical Engineering; Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University; 443002 Yichang P. R. China
| | - Wen-Wen Dong
- College of Materials and Chemical Engineering; Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University; 443002 Yichang P. R. China
| | - Jun Zhao
- College of Materials and Chemical Engineering; Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University; 443002 Yichang P. R. China
| | - Zheng-Fang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials; Huanggang Normal University; 438000 Huanggang P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering; Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials; China Three Gorges University; 443002 Yichang P. R. China
| |
Collapse
|
43
|
Zhao SN, Zhang Y, Song SY, Zhang HJ. Design strategies and applications of charged metal organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Liu XY, Xing K, Li Y, Tsung CK, Li J. Three Models To Encapsulate Multicomponent Dyes into Nanocrystal Pores: A New Strategy for Generating High-Quality White Light. J Am Chem Soc 2019; 141:14807-14813. [PMID: 31424923 DOI: 10.1021/jacs.9b07236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly luminescent metal-organic frameworks (LMOFs) have received great attention for their potential use in energy-efficient general lighting devices such as white-light-emitting diodes (WLEDs); however, achieving strong emission with controllable color, especially high-quality white light, remains a considerable challenge. Herein, we present a new strategy to encapsulate in situ multiple dyes into nanocrystalline ZIF-8 pores to form an efficient dyes@MOF system. Using this strategy, we build three models, namely, multiphase single-shell dye@ZIF-8, single-phase single-shell dyes@ZIF-8, and single-phase multishell dyes@ZIF-8, to systematically and fine-tune the white emission color by varying the components and concentration of encapsulated dyes. The study of these three models demonstrates the importance of the multishell structure, which can effectively reduce the interactions such as Förster resonance energy transfer (FRET) between encapsulated dyes. This energy transfer would otherwise be unavoidable in a single-shell setting, which often reduces the efficiency of white-light emission in the dyes@MOF system. This approach offers a new perspective not only for fine-tuning the emission color within nanoporous dyes@MOFs but also for fabricating MOF nanocrystals that are easily solution-processable. The strategy may also facilitate the development of other types of MOF-guest nanocomposite systems.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic , 7098 Liuxian Boulevard, Nanshan District , Shenzhen 518055 , P.R. China.,Department of Chemistry and Chemical Biology , Rutgers University , 123 Bevier Road , Piscataway , New Jersey 08854 , United States
| | - Kai Xing
- Department of Chemistry and Chemical Biology , Rutgers University , 123 Bevier Road , Piscataway , New Jersey 08854 , United States
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center , Boston College , 2609 Beacon Street , Chestnut Hill , Massachusetts 02467 , United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center , Boston College , 2609 Beacon Street , Chestnut Hill , Massachusetts 02467 , United States
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic , 7098 Liuxian Boulevard, Nanshan District , Shenzhen 518055 , P.R. China.,Department of Chemistry and Chemical Biology , Rutgers University , 123 Bevier Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
45
|
Wang Z, Zhu C, Mo J, Fu P, Zhao Y, Yin S, Jiang J, Pan M, Su C. White‐Light Emission from Dual‐Way Photon Energy Conversion in a Dye‐Encapsulated Metal–Organic Framework. Angew Chem Int Ed Engl 2019; 58:9752-9757. [DOI: 10.1002/anie.201905186] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yi Zhu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jun‐Ting Mo
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Peng‐Yan Fu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Wu Zhao
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- hanxi Normal UnivSch Chem Mat Sci Linfen 041004 China
| | - Shao‐Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
46
|
Wang Z, Zhu C, Mo J, Fu P, Zhao Y, Yin S, Jiang J, Pan M, Su C. White‐Light Emission from Dual‐Way Photon Energy Conversion in a Dye‐Encapsulated Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yi Zhu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jun‐Ting Mo
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Peng‐Yan Fu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Wu Zhao
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- hanxi Normal UnivSch Chem Mat Sci Linfen 041004 China
| | - Shao‐Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
47
|
Qiu L, Yu C, Wang X, Xie Y, Kirillov AM, Huang W, Li J, Gao P, Wu T, Gu X, Nie Q, Wu D. Tuning the Solid-State White Light Emission of Postsynthetic Lanthanide-Encapsulated Double-Layer MOFs for Three-Color Luminescent Thermometry Applications. Inorg Chem 2019; 58:4524-4533. [DOI: 10.1021/acs.inorgchem.9b00084] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Liya Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Chengfeng Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Yangbin Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Alexander M. Kirillov
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russian Federation
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Jipeng Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Peng Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Ting Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Xiangwei Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Qi Nie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| |
Collapse
|
48
|
do Nascimento Neto JA, Valdo AKSM, da Silva CC, Guimarães FF, Queiroz Júnior LHK, Maia LJQ, de Santana RC, Martins FT. A Blue-Light-Emitting Cadmium Coordination Polymer with 75.4% Photoluminescence Quantum Yield. J Am Chem Soc 2019; 141:3400-3403. [DOI: 10.1021/jacs.8b13561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Felipe Terra Martins
- Instituto de Química, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia-GO, Brazil
| |
Collapse
|
49
|
Zhang D, Zhao J, Liu Q, Xia Z. Synthesis and Luminescence Properties of CsPbX 3@Uio-67 Composites toward Stable Photoluminescence Convertors. Inorg Chem 2019; 58:1690-1696. [PMID: 30600989 DOI: 10.1021/acs.inorgchem.8b03295] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
All-inorganic halide perovskite (CsPbX3, X = Cl, Br, or I) nanocrystals (NCs) have been widely studied due to their outstanding optoelectronic properties. However, some inevitable factors like light, heat, and moisture affected the stability of CsPbX3 NCs and further limited their practical application. In this work, the stability of all-inorganic halide perovskite NCs can be improved by integrating them in the stable Zr-based metal-organic frameworks (Uio-67). Compared to pristine perovskite NCs, typical CsPbBr3@Uio-67 composites display a stable photoluminescence property that can be maintained for 30 days under ambient atmospheric conditions. Due to the proposed confinement effects of CsPbX3 NCs coordinated with the pore structures of Uio-67, the related structural model of CsPbX3@Uio-67 composites was elucidated. White LED device was further fabricated by combining CsPbBr3@Uio-67 composites and commercial K2SiF6:Mn4+ red phosphors with a blue-emitting chip, which demonstrated a wide color gamut (138% of National Television Standards Committee color space). The strategy on encapsulation of CsPbX3 NCs into Uio-67 will open up a stable platform for optoelectronic applications.
Collapse
Affiliation(s)
- Diwei Zhang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| | - Zhiguo Xia
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering , University of Science and Technology Beijing , Beijing 100083 , P.R. China
| |
Collapse
|
50
|
Huang WH, Ren J, Yang YH, Li XM, Wang Q, Jiang N, Yu JQ, Wang F, Zhang J. Water-Stable Metal–Organic Frameworks with Selective Sensing on Fe3+ and Nitroaromatic Explosives, and Stimuli-Responsive Luminescence on Lanthanide Encapsulation. Inorg Chem 2019; 58:1481-1491. [DOI: 10.1021/acs.inorgchem.8b02994] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wen-Huan Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, China
| | - Juan Ren
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
| | - Yu-Hao Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
| | - Xi-Ming Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
| | - Qi Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
| | - Nan Jiang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
| | - Jia-Qi Yu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, China
| |
Collapse
|