1
|
Liu L, Xie K, Wang Y, Wang H, Wang J, Zhuang Y, Zhang Y. Polyhedral oligomeric silsesquioxane-modulated mesoporous amorphous bimetallic organic frameworks for the efficient isolation of immunoglobulin G. Talanta 2025; 282:126949. [PMID: 39341058 DOI: 10.1016/j.talanta.2024.126949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The efficient and accurate separation of immunoglobulin G (IgG) plays a vital role for disease diagnosis and therapy, but it is always hampered by the huge geometric size and complex structure of IgG. In this work, an amorphous Fe/Co bimetallic organic framework (denoted as PMOF-Fe/Co) is fabricated for IgG separation, with octa-carboxyl polyhedral oligomeric silsesquioxane (OCPOSS) as modulator for the first time. Benefiting from the rigid nanostructure and competitive coordination of OCPOSS, the aperture of PMOF-Fe/Co is enlarged to ∼20 nm along with the generation of enormous structural defects, which enables the accommodation of protein species with high molecular weights and large sizes. OCPOSS is also found exerting a positive impact on mediating the specific recognition and adsorption ability of PMOF-Fe/Co towards IgG through metal affinity, hydrophilic and hydrophobic interactions. Consequently, the multimode and multivalent affinity of PMOF-Fe/Co gives rise to an extraordinary adsorption capacity (2691.7 mg g-1) and satisfactory practical application performance. This study is convinced to provide a simple avenue for the efficient separation of specific large-sized proteins, as well as the engineering of abiotic affinity reagents with compositional and architectural complexity.
Collapse
Affiliation(s)
- Lan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kai Xie
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuheng Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoran Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Deng J, Wang H, Gao R, Ma X, Chen M, Xu D, Cai A. Enhanced sludge solid-liquid separation based on Fe 2+/periodate conditioning coupled with polyoxometalates: Cell destruction and protein adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123552. [PMID: 39632306 DOI: 10.1016/j.jenvman.2024.123552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Dewatering of waste activated sludge is a necessary step for achieving subsequent reduction, stabilization, and resource utilization. In this study, Fe2+/periodate (PI) coupled with polyoxometalates (POMs) conditioning was tested for realizing sludge deep dewatering. After the addition of POMs (0.20 mmol g-1 VSS), Fe2+/PI/POMs conditioning enhanced the efficiency of sludge dewatering by 42.93% compared to Fe2+/PI conditioning. It was found that the electrostatic repulsion posed a significant influence on the interaction between POMs and proteins. The reduction of electrostatic repulsion facilitated the proximity of POMs to the sludge flocs and promoted its reaction. The strong acidity and interaction with cells of POMs could induce the damage or apoptosis in sludge cells, resulting in the release of intracellular substances. The active radicals generated by Fe2+/PI process attacked TB-EPS, causing the dissolution of EPS and the decomposition of hydrophilic substances. With the assistance of Fe2+/PI process, POMs exhibited an enhanced cell-disruptive effect, thereby inducing the liberation of a greater quantity of intracellular substances. Moreover, Fe2+/PI/POMs conditioning effectively lowered the zeta potential of sludge system, facilitating the interaction between negatively charged POMs anions and the positively charged regions of proteins. This interaction tended to favor adsorption and precipitation rather than destruction. The adsorption and sedimentation of proteins by POMs further reduced the hydrophilicity of sludge system, thereby enhancing sludge dewaterability. Furthermore, POMs could enhance the electron transfer capacity of sludge system, which was beneficial for subsequent filtrate denitrification treatment.
Collapse
Affiliation(s)
- Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Hui Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ruhao Gao
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xin Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Minjie Chen
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dong Xu
- College of Environmental Science and Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Anhong Cai
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Wang K, Zhang H, Jin N, Zhou Y, Guo X, Zhong W, Li X, Li X, Zhang Y. Interfacial modification of recombinant protein for immunoglobulin G adsorption with spindle-shaped MOF as nano molecular containers. Talanta 2024; 280:126535. [PMID: 39121618 DOI: 10.1016/j.talanta.2024.126535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Development of fresh solid phase extractant is critical for selective separation and purification of special proteins. Herein, we demonstrated a recombinant Staphylococcal Protein G (rSPG) with a His-tag modified the novel single-metal organic framework (rSPG@Ni-MOF-74). The proposed solid-phase extraction material possessed a uniform spindle-shaped structure, large surface area (709.60 m2 g-1) and pore volume (0.08 m3 g-1), high metal content (22.57 wt%), which facilitated the interaction between host and guest. As results, the composite displayed outstanding selective recognition and adsorption of IgG, due to synergistic effect of the binding ability of rSPG with the Fc region of IgG, maintained through hydrogen bonding and electrostatic attraction, as well as hydrophobic interaction. The adsorption performance and mechanism of rSPG@Ni-MOF-74 have been fully investigated. Additionally, the rSPG@Ni-MOF-74 composite could effectively separate IgG from serum obtained from healthy humans, with the purity of the separated IgG verified through SDS-PAGE analysis. Furthermore, LC-MS/MS analysis identified a high content of IgG (55.3 %) in the eluate from rSPG@Ni-MOF-74, suggesting the great potential of rSPG@Ni-MOF-74 in IgG separation and enrichment from complex matrix.
Collapse
Affiliation(s)
- Kai Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Hongjin Zhang
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Nishan Jin
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Yutian Zhou
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xinli Guo
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xin Li
- Department of Science and Technology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xuwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yang Zhang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| |
Collapse
|
4
|
Zhao Q, Cheng X, Hu S, Zhao M, Chen J, Mu M, Yang Y, Liu H, Hu L, Zhao B, Song W. Bilateral efforts to improve SERS detection efficiency of exosomes by Au/Na 7PMo 11O 39 Combined with Phospholipid Epitope Imprinting. Biosens Bioelectron 2024; 258:116349. [PMID: 38705072 DOI: 10.1016/j.bios.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.
Collapse
Affiliation(s)
- Qingnan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Harbin Medical University, Department Organic Chemistry, College of Pharmacy, Baojian Rd 157, Harbin, 150081, Heilongjiang, PR China
| | - Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Saizhen Hu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Menghan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Wang C, Song Y, Cong W, Yan Y, Wang M, Zhou J. From surface loading to precise confinement of polyoxometalates for electrochemical energy storage. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Zhang J, Tian X, Cui X, Zheng A, Li J, Bai Y, Zheng Y. Facile synthesis of hyperbranched magnetic nanomaterials for selective adsorption of proteins. Talanta 2023; 252:123895. [DOI: 10.1016/j.talanta.2022.123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
|
7
|
Chi Z, Wu X, Zhang Q, Zhai F, Xu Z, Zhang D, Chen Q. Titanium-based metal-organic framework MIL-125(Ti) for the highly selective isolation and purification of immunoglobulin G from human serum. J Sep Sci 2022; 45:3754-3762. [PMID: 35933591 DOI: 10.1002/jssc.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Titanium-based metal-organic framework MIL-125(Ti) was synthesized by the hydrothermal method of terephthalic acid and tetra butyl titanate in N-N dimethylformamide and methanol. MIL-125(Ti) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption-desorption, energy-dispersive X-ray spectroscopy, zeta potential, scanning electron microscope and transmission electron microscopy. The results showed MIL-125(Ti) could be used as a potential adsorbent for protein separation and purification due to the high specific surface area, high stability and strong hydrophobicity. As a result, MIL-125(Ti) had adsorption selectivity for immunoglobulin G, which was due to hydrogen bond between MIL-125(Ti) and protein. At pH 8.0, the maximum adsorption efficiency of 0.25 mg MIL-125(Ti) for 300 μL 100 μg mL-1 immunoglobulin G was 98.3%, and its maximum adsorption capacity was 232.56 mg g-1 . The elution efficiency of immunoglobulin G was 92.4% by 0.1% SDS. SDS-PAGE result demonstrated the successful isolation of highly purified immunoglobulin G from the human serum. Therefore, a new method of separation and purification of immunoglobulin G in human serum using titanium-based metal-organic framework MIL-125(Ti) as a solid-phase adsorbent was established, which broadened the application scope of metal-organic frameworks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zixin Chi
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xi Wu
- Liaoning University, Shenyang, 110036, People's Republic of China
| | - Qiqi Zhang
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Fengyang Zhai
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zesheng Xu
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Dandan Zhang
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Qing Chen
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| |
Collapse
|
8
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Xu W, Cao JF, Zhang XP, Shu Y, Wang JH. The concurrent enrichment of glycoproteins and phosphoproteins with polyoxometalate-covalent organic framework conjugate as the adsorbent. J Chromatogr A 2022; 1675:463183. [DOI: 10.1016/j.chroma.2022.463183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
10
|
Wang Y, Wei Y, Xu Q, Shao S, Man H, Nie Y, Wang Z, Jiang Y. Fabrication of Yolk-Shell Fe 3O 4@NiSiO 3/Ni Microspheres for Efficient Purification of Histidine-Rich Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14167-14176. [PMID: 34839664 DOI: 10.1021/acs.langmuir.1c02433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic materials perform well in the purification of histidine-rich proteins (His-proteins). In this work, a facile fabrication of yolk-shell magnetic Fe3O4@NiSiO3/Ni microspheres for the efficient purification of His-proteins has been reported. Yolk-shell Fe3O4@NiSiO3 microspheres were prepared via hydrothermal reaction. Then Ni nanoparticles (NPs) were loaded on Fe3O4@NiSiO3 microspheres after the adsorption and in situ reduction of nickel acetylacetonate. The yolk-shell Fe3O4@NiSiO3/Ni microspheres had a hierarchical flower-like structure and large cavities. The size of the cavity depended on the reaction time. This indicated that the microspheres had a large specific surface area for loading of more Ni NPs, which was crucial to the high His-protein adsorption capacity of Fe3O4@NiSiO3/Ni microspheres. Fe3O4@NiSiO3/Ni microspheres had a high adsorption capacity for bovine hemoglobin (BHb, 2822 mg/g), which was better than the values of other His-protein adsorbents. Fe3O4@NiSiO3/Ni microspheres still had a high BHb separation efficiency after seven separation cycles, indicating its good reusability and stability. Therefore, the as-prepared bifunctional yolk-shell Fe3O4@NiSiO3/Ni microspheres exhibited great practical application value for His-protein purification.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingying Wei
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Qianrui Xu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Shimin Shao
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Hong Man
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yingrui Nie
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
11
|
Xu W, Cao JF, Lin YN, Shu Y, Wang JH. Functionalized polyoxometalate microspheres ensure selective adsorption of phosphoproteins and glycoproteins. Chem Commun (Camb) 2021; 57:3367-3370. [PMID: 33683273 DOI: 10.1039/d1cc00325a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lacunary polyoxometalate (POM), [PW9O34]9-, grafts with a boronic acid group attached via an organosilane bridge assemble into microspheres, PW9-Si-APBA. The oxygen-rich and hydrophilic surface of POM facilitates the binding of phosphate groups in phosphoproteins and glycans in glycoproteins. While the metal-oxo in POM provides π-π interactions with the phosphate groups of phosphoproteins, the boronic acid group specifically binds to glycoproteins via the cis-diols of glycans. Therefore, these multi-driving forces ensure the selective adsorption of phosphoproteins and glycoproteins by PW9-Si-APBA microspheres in biological sample matrixes, even in the presence of very high protein abundance, i.e., BSA, at mass ratio of β-ca/IgG/OVA/BSA = 1 : 1 : 1 : 200.
Collapse
Affiliation(s)
- Wang Xu
- Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
12
|
Kuntamung K, Sangthong P, Jakmunee J, Ounnunkad K. A label-free immunosensor for the detection of a new lung cancer biomarker, GM2 activator protein, using a phosphomolybdic acid/polyethyleneimine coated gold nanoparticle composite. Analyst 2021; 146:2203-2211. [DOI: 10.1039/d0an02149k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel electrochemical immunosensor for the detection of a new lung cancer biomarker based on a polyoxometalate-adsorbed poly(ethylenimine)-coated gold nanoparticle modified electrode.
Collapse
Affiliation(s)
- Kulrisa Kuntamung
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Padchanee Sangthong
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Jaroon Jakmunee
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Kontad Ounnunkad
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| |
Collapse
|
13
|
Wang MM, Chen S, Yu YL, Wang JH. Polyoxometalate-functionalized macroporous microspheres for selective separation/enrichment of glycoproteins. Chem Commun (Camb) 2020; 56:9870-9873. [PMID: 32840531 DOI: 10.1039/d0cc04244g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycoproteins always participate in various biological processes. Selective separation and enrichment of glycoproteins are of great significance for the research of pathogenesis. Herein, macroporous polymer microspheres were fabricated, and further functionalized by polyoxometalate. Thus, a simple, efficient and highly selective approach was constructed for glycoprotein enrichment from a complex matrix. The as-prepared material shows promise as a potential adsorbent in bio-separation and downstream clinical applications.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
14
|
Meyer RL, Anjass MH, Petel BE, Brennessel WW, Streb C, Matson EM. Electronic Consequences of Ligand Substitution at Heterometal Centers in Polyoxovanadium Clusters: Controlling the Redox Properties through Heterometal Coordination Number. Chemistry 2020; 26:9905-9914. [PMID: 32196127 PMCID: PMC7496301 DOI: 10.1002/chem.201905624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Indexed: 02/01/2023]
Abstract
The rational control of the electrochemical properties of polyoxovanadate-alkoxide clusters is dependent on understanding the influence of various synthetic modifications on the overall redox processes of these systems. In this work, the electronic consequences of ligand substitution at the heteroion in a heterometal-functionalized cluster was examined. The redox properties of [V5 O6 (OCH3 )12 FeCl] (1-[V5 FeCl]) and [V5 O6 (OCH3 )12 Fe]X (2-[V5 Fe]X; X=ClO4 , OTf) were compared in order to assess the effects of changing the coordination environment around the iron center on the electrochemical properties of the cluster. Coordination of a chloride anion to iron leads to an anodic shift in redox events. Theoretical modelling of the electronic structure of these heterometal-functionalized clusters reveals that differences in the redox profiles of 1-[V5 FeCl] and 2-[V5 Fe]X arise from changes in the number of ligands surrounding the iron center (e.g., 6-coordinate vs. 5-coordinate). Specifically, binding of the chloride to the sixth coordination site appears to change the orbital interaction between the iron and the delocalized electronic structure of the mixed-valent polyoxovanadate core. Tuning the heterometal coordination environment can therefore be used to modulate the redox properties of the whole cluster.
Collapse
Affiliation(s)
- Rachel L. Meyer
- Department of ChemistryUniversity of RochesterRochesterNY14627USA
| | - Montaha H. Anjass
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstrasse 1189081UlmGermany
| | | | | | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstrasse 1189081UlmGermany
| | - Ellen M. Matson
- Department of ChemistryUniversity of RochesterRochesterNY14627USA
| |
Collapse
|
15
|
Xu W, Cao JF, Zhang YY, Shu Y, Wang JH. Boronic acid modified polyoxometalate-alginate hybrid for the isolation of glycoproteins at neutral environment. Talanta 2020; 210:120620. [DOI: 10.1016/j.talanta.2019.120620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023]
|
16
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Wang XM, Guo PF, Hu ZJ, Chen ML, Wang JH. DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36286-36295. [PMID: 31491081 DOI: 10.1021/acsami.9b13718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel dimercaptosuccinic acid-functionalized mesoporous alumina (DMSA-MA) is synthesized by the dicarboxylic acid groups of dimercaptosuccinic acid molecules coordinating to the Al3+ ions located in the mesostructure. The as-prepared DMSA-MA composites possess a large surface area of 91.17 m2/g as well as a uniform pore size and a high pore volume of 17.22 nm and 0.23 cm3/g, respectively. DMSA coating of mesostructures significantly enhanced their selectivity for glycoprotein adsorption through a powerful hydrophilic binding force, and the maximum adsorption capacity of immunoglobulin G (IgG) can reach 2298.6 mg g-1. The captured IgG could be lightly stripped from the DMSA-MA composites with an elution rate of 98.3% by using 0.5 wt % CTAB solution as the elution reagent. DMSA-MA is further employed as a sorbent for the enrichment of IgG heavy chain and light chain from human serum sample. SDS-PAGE assay results showed the obtained IgG with high purity compared to that of the standard solution of IgG.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
18
|
Guo PF, Wang XM, Wang MM, Yang T, Chen ML, Wang JH. Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Anal Chim Acta 2019; 1088:72-78. [PMID: 31623718 DOI: 10.1016/j.aca.2019.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023]
Abstract
The selective adsorption towards glycoproteins from complex biosamples is of vital importance in life science studies. A new zwitterionic hydrophilic material, i.e., a functionalized titanate nanosheet, is prepared by assembling well-dispersed gold nanoparticles (AuNPs) on the surface of ultrathin titanate nanosheets via an ion-exchange approach, followed through immobilizing l-cysteine (L-Cys) by Au-S bonding. This 2D-titanate-based zwitterionic hydrophilic material is shortly termed as L-Cys/Au/TiNSs and it exhibits transverse several hundred nanometers with an ultrathin nanosheet structure. The zwitterionic hydrophilic titanate nanosheets have strong adsorption affinity to glycoproteins, offering a large binding capacity towards immunoglobulin G (1098.9 mg g-1), which could be readily stripped into an ammonium hydroxide (NH4OH) solution (0.5%, m/v) with a recovery of 82.4%. The practical applications of L-Cys/Au/TiNSs are further proved by successful specific adsorption of IgG from human serum.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
19
|
Guo PF, Wang XM, Wang MM, Yang T, Chen ML, Wang JH. Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. NANOSCALE 2019; 11:9362-9368. [PMID: 31038517 DOI: 10.1039/c9nr01111k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Boron-titanate monolayer nanosheets were prepared through a scalable step by step intercalation approach for anchoring 3-mercaptopropyltriethoxysilane (MPTS) on the surface. MPTS provides clickable sites with 4-vinylphenylboronic acid (VPBA) via a thiol-ene (TE) click reaction to obtain monolayer titanate nanosheets with boronic acid ligands immobilized on the surface. The nanosheets obtained are denoted as VPBA-MPTS-TiNSs, with a lateral dimension of a few dozen nanometers and with a thickness of ca. 3.5 nm. The nanosheets exhibit a superior adsorption capacity of 1669.7 mg g-1 and favorable selectivity for the adsorption of glycoproteins by employing immunoglobulin G (IgG) as the protein model. The adsorbed IgG is thereafter readily collected by using 0.1% (m/v) cetane trimethyl ammonium bromide (CTAB) as the eluent. The practical applications of VPBA-MPTS-TiNSs are further demonstrated by the selective adsorption/purification of IgG from human serum.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
20
|
Feng SL, Lu Y, Zhang YX, Su F, Sang XJ, Zhang LC, You WS, Zhu ZM. Three new Strandberg-type phenylphosphomolybdate supports for immobilizing horseradish peroxidase and their catalytic oxidation performances. Dalton Trans 2018; 47:14060-14069. [DOI: 10.1039/c8dt03102a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three new Strandberg-type polyoxometalate TM-(PhP)2Mo5 supports for immobilizing HRP showed high adsorption capacity and good catalytic oxidation activity.
Collapse
Affiliation(s)
- Shu-Li Feng
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Ying Lu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Yue-Xian Zhang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Fang Su
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Xiao-Jing Sang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Lan-Cui Zhang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Wan-Sheng You
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Zai-Ming Zhu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| |
Collapse
|