1
|
Mao Z, Shi H, Yu X, Liu Y, Yang F, Liu H, Wang H. A multifunctional Tb-MOF constructed with triphenylamine-based hexacarboxylate ligands for highly luminescent sensing toward antibiotics and salicylaldehydes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126129. [PMID: 40179768 DOI: 10.1016/j.saa.2025.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Antibiotics and salicylaldehydes are major organic pollutants in the environment, and their efficient selection and sensitive detection are of great significance but also challenging. A multifunctional terbium-organic framework (Tb-MOF) with multiple π-conjugated rings and basic sites decorated nanoporous channels was constructed with triphenylamine-based hexacarboxylate ligands. Structure analysis of Tb-MOF revealed that the six carboxyl groups on the skeleton of ligand exhibit considerable degree of distortion and can be regarded as three triangular nodes, which further combined the binuclear [Tb2(COO)6(H2O)4] nodes to form a new (3,3,3,6)-connected 3D net. Importantly, Tb-MOF provided the first example of luminescent MOFs constructed from triphenylamine-based hexacarboxylate ligands with multi-responsive behavior toward antibiotics and salicylaldehydes. Tb-MOF demonstrated excellent performance on the selection and recognition of two antibiotics, metronidazole (MDZ) and dimetridazole (DTZ), with the detection limit (LOD) of 0.60 and 0.95 μM, respectively. More importantly, Tb-MOF can achieve highly sensitive detection of three aldehydes, salicylaldehyde (SA), 5-methylsalicylaldehyde (5-MeSA) and 5-chlorsalicylaldehyde (5-ClSA), with LODs up to 0.58, 0.59 and 0.48 μM, respectively. Regenerated experiments indicated that Tb-MOF can be employed for the efficient detection of MDZ and SA at least five times. Thus, Tb-MOF can be potentially explored as a promising sensor to simultaneously identify antibiotics and salicylaldehydes in chemical detection and biologic environments with ultra-sensitivity, low LODs and extraordinary recycling capacity.
Collapse
Affiliation(s)
- Zhihan Mao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Han Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xuan Yu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuchen Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Fenglei Yang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
2
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
3
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
4
|
Zheng M, Li L, Tian D, Zhang Z, Zhou W, He M. Tailoring Dye Emissions within Metal-Organic Frameworks for Tunable Luminescence and Ratiometric Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23479-23488. [PMID: 37133289 DOI: 10.1021/acsami.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as powerful platforms for tuning the luminescence characteristics of guests due to their various structures and functions. Tunable and stimuli-responsive luminescence of guests within MOFs can be achieved through a judicious choice of guests and hosts. Herein, we demonstrate a dramatic change in the luminescence of dye excimers encapsulated in MOFs. A polar dye presented largely red-shifted excimer emissions in MOFs with higher polarities, while a nonpolar dye showed very different excimer emissions. Interestingly, the excimer emissions tailored by the MOFs showed strong thermal quenching. Cz-Ant@ZIF-8, containing two luminescent dyes (carbazole (Cz) and anthracene (Ant)), was prepared, and it presented ratiometric temperature sensing properties (1.55% K-1) in the temperature range of 278-353 K. This work sheds light on the luminescence tuning of dyes confined in MOFs and the design of sensitive ratiometric thermometers.
Collapse
Affiliation(s)
- Ming Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Liang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, P. R. China
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Weiyou Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
5
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Xu DD, Dong WW, Li MK, Han HM, Zhao J, Li DS, Zhang Q. Encapsulating Organic Dyes in Metal-Organic Frameworks for Color-Tunable and High-Efficiency White-Light-Emitting Properties. Inorg Chem 2022; 61:21107-21114. [PMID: 36524898 DOI: 10.1021/acs.inorgchem.2c03736] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of white-light phosphor is highly desirable for practical applications in SSL (solid-state lighting) and its related fields. Dye-loaded metal-organic frameworks (MOFs) have been widely demonstrated as one type of promising down conversion materials for WLEDs (white-light-emitting diodes), but two issues (dye leakage and inadequate quantum efficiency) require to be addressed before possible applications. Here, a series of single-phase dyes@In-MOF phosphors have been prepared in two different ways: the in-situ process and soaking method. The study of these dyes@In-MOF phosphors confirms the importance of this in-situ process that could effectively increase dye loading and quantum efficiency and greatly decrease dye leakage. As a result, a perfect WLED, fabricated using the in-situ-synthesized (AF/RhB@In-MOF)-3 (AF: Acriflavine; RhB: Rhodamine B) and 450 nm blue LED chip, exhibited a very high quantum yield (QY, up to 42.27%), a high luminous efficacy (LE) of 50.75 lm/W, a high color rendering index (CRI) of 91.2, and nearly identical Commission International ed'Eclairage (CIE) coordinates (0.33,0.31), indicating the potential application of the dye-loaded MOFs with good color quality in smart white LEDs.
Collapse
Affiliation(s)
- Dong-Dong Xu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Wen-Wen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Meng-Ke Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Hui-Min Han
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jun Zhao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
7
|
A water-stable Eu-MOF as multi-responsive luminescent sensor for high-efficiency detection of Fe3+, MnO4− ions and nicosulfuron in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Incorporation of metal-organic framework MOFs-5 into the polymer monolith via the surface covalent immobilization method for enhanced capillary liquid chromatographic separation of benzene homologues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Li Q, Li D, Wu ZQ, Shi K, Liu TH, Yin HY, Cai XB, Fan ZL, Zhu W, Xue DX. RhB-Embedded Zirconium-Biquinoline-Based MOF Composite for Highly Sensitive Probing Cr(VI) and Photochemical Removal of CrO 42-, Cr 2O 72-, and MO. Inorg Chem 2022; 61:15213-15224. [PMID: 36083838 DOI: 10.1021/acs.inorgchem.2c02459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How to accurately detect and efficiently sweep Cr(VI) from contaminated water has come into focus. Zirconium-based metal-organic frameworks (MOFs) play vital roles in water environmental chemistry due to excellent hydrolysis-resistant stability. However, as photochemical probes and photocatalysts, poor performances in detection sensitivity, selectivity, and photosensitiveness limit sole Zr-MOFs' applications. So, it is urgent to quest valid strategies to break through the dilemmas. Embedding luminous dyes into MOFs has been considered one of the most feasible avenues. Herein, a dual-emissive RhB@Zr-MOF with orange-yellow fluorescence has been assembled by in situ-encapsulating rhodamine B (RhB) into a zirconium-biquinoline-based MOF. Actually, within RhB@Zr-MOF, the aggregation fluorescence quenching (ACQ) effect of RhB molecules was effectively avoided. Notably, RhB@Zr-MOF exhibits a rapid fluorescence quenching response toward Cr(VI) ions with high selectivity, sensitivity, and anti-interference abilities. More interestingly, unlike the most widely reported fluorescence resonance energy transfer (FRET) between MOFs and encapsulated guest modules, photoinduced electron transfer from RhB to Zr-MOF has been confirmed by modeling the ground state and excited states of RhB@Zr-MOF using density functional theory (DFT) and time-dependent DFT (TD-DFT). The effective electron transfer makes RhB@Zr-MOF more sensitive in probing Cr2O72- and CrO42- ions with ultralow detection limit (DL) values of 6.27 and 5.26 ppb, respectively. Prominently, the detection sensitivity based on DL values has been increased about 6 and 9 times, respectively, compared with pristine Zr-MOF. Moreover, rather negative CB and positive VB potentials make RhB@Zr-MOF have excellent photochemical scavenging ability toward Cr(VI) and MO.
Collapse
Affiliation(s)
- Qing Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Dan Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Zhi-Qiang Wu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Ke Shi
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Tian-Hui Liu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Huan-Yu Yin
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Xin-Bin Cai
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Zeng-Lu Fan
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Wei Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shanxi Normal University, Xi'an 710062, Shaanxi, P. R. China
| |
Collapse
|
10
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
11
|
Chang XH. Synthesis and structure of a zinc(II) coordination polymer assembled with 5-(3-carboxybenzyloxy)isophthalic acid and 1,2-bis(4-pyridyl)ethane. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
A zinc(II) coordination polymer [Zn(cyip)(bpe)]
n
(1), (cyipH2 = 5-(3-carboxybenzyloxy)-isophthalic acid, bpe = 1,2-bis(4-pyridyl)ethane), has been synthesized under hydrothermal conditions. Its structure was determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis and IR spectra. Complex 1 crystallizes in the monoclinic space group I2/a. In 1, the [cyip]2– ligand bridges the Zn(II) cations to form infinite chains, which are connected through O–H···O hydrogen bonds into layers in the form of 2-fold interpenetrated nets.
Collapse
Affiliation(s)
- Xin-Hong Chang
- College of Chemistry and Chemical Engineering , Luoyang Normal University , Luoyang 471934 , P. R. China
| |
Collapse
|
12
|
Razavi SAA, Morsali A, Piroozzadeh M. A Dihydrotetrazine-Functionalized Metal-Organic Framework as a Highly Selective Luminescent Host-Guest Sensor for Detection of 2,4,6-Trinitrophenol. Inorg Chem 2022; 61:7820-7834. [PMID: 35544681 DOI: 10.1021/acs.inorgchem.2c00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pore decoration of metal-organic frameworks (MOFs) with functional groups is a useful strategy to attain high selectivity toward specific analytes, especially in the presence of interfering molecules with similar structures and energy levels, through selective host-guest interactions. In this work, we applied a dihydrotetrazine-decorated MOF, TMU-34, with the formula [Zn(OBA)(H2DPT)0.5]n·DMF, where H2OBA is 4,4'-oxybis(benzoic acid) and H2DPT is 3,6-bis(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine, for the highly selective detection of phenolic NACs, especially TNP (94% quenching efficiency, detection limit 8.1 × 10-6 M, KSV = 182663 mol L-1), in the presence of other substituted NACs especially -NH2-substituted NACs. Investigations reveal that the quenching mechanism is dominated by photoinduced MOF-to-TNP electron transfer through possible hydrogen-bonding interactions between the phenolic hydroxyl group of TNP and dihydrotetrazine functions of TMU-34. Despite extensive publications on the detection of TNP in the presence of other NACs, the significance of this work will be elucidated if attention is paid to the fact that TMU-34 is among the rare and highly selective MOF-based TNP sensors in the presence of -NH2-substituted NACs as the serious interferers.
Collapse
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Maryam Piroozzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
13
|
Liu M, Yu X, Zhong K, Chen X, Feng L, Yao S. Dye‐encapsulated nanocage‐based metal‐organic frameworks as luminescent dual‐emitting sensors for selective detection of inorganic ions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mengfan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao China
| | - Xin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao China
| | - Kaixuan Zhong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao China
| | - Xiangyu Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao China
| | - Lijuan Feng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao China
| | - Shuo Yao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao China
| |
Collapse
|
14
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Sun A, Wang C, Li M, Luo J, Liu Y, Yang W, Pan Q. Fluorescent zinc coordination polymer for highly selective and sensitive detection of 2,4,6-trinitrophenol in aqueous media. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Wu T, Gao XJ, Ge F, Zheng HG. Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm 2022. [DOI: 10.1039/d2ce01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review classifies the latest developments of MOF-based fluorescence sensors according to the analytes, and discusses the challenges faced by MOF-based fluorescence sensors and promotes some directions for future research.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiang-jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
- China Fire and Rescue Institute, Beijing 102201, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - He-gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Zhao Y, Wang CA, Li JK, Li QL, Guo Q, Ru J, Ma CL, Han YF. A Eu( iii) metal–organic framework based on anthracenyl and alkynyl conjugation as a fluorescence probe for the selective monitoring of Fe 3+ and TNP. RSC Adv 2022; 12:26945-26952. [PMID: 36320831 PMCID: PMC9490770 DOI: 10.1039/d2ra02892a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/03/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, a luminescent metal–organic framework (Eu-MOF {[Eu6L6(μ3-OH)8(H2O)3]8·H2O}n) was constructed by a solvothermal method with a linear organic ligand L (10-[(2-amino-4-carboxyl-phenyl)ethynyl]anthracene-9-carboxylic acid) based on anthracene and alkyne groups and using Eu3+ as the metal center. The MOF exhibits a stable UiO-66 crystal structure, and a six-core cluster twelve-linked secondary structural unit was successfully synthesized using 2-fluorobenzoic acid as a modulator, forming a classical fcu topology. Moreover, it exhibits good chemical stability. Interestingly, Eu-MOF exhibited high selectivity and sensitive fluorescence burst properties towards Fe3+ ions and 2,4,6-trinitrophenol (TNP) in DMF solution. For Fe3+, the KSV value is 5.06 × 105 M−1 and the LOD value is 5.1 × 10−7 M. For TNP, the KSV value is 1.92 × 104 M−1 and the LOD value is 1.93 × 10−6 M. In addition, Eu-MOF showed good anti-interference ability and fast response. This work provides an excellent fluorescent sensor for the detection of Fe3+ and 2,4,6-trinitrophenol (TNP) residues in contaminants. In this work, Eu-MOF has been synthesized and has excellent luminescence recognition ability for Fe3+ and TNP with good selectivity and high sensitivity via luminescence quenching.![]()
Collapse
Affiliation(s)
- Yue Zhao
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
| | - Chang-An Wang
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
| | - Ji-Kun Li
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Qiang Guo
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jing Ru
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Yin-Feng Han
- Department of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, PR China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China
| |
Collapse
|
18
|
Mahato D, Fajal S, Samanta P, Mandal W, Ghosh SK. Selective and Sensitive Fluorescence Turn-On Detection of Cyanide Ions in Water by Post Metallization of a MOF. Chempluschem 2021; 87:e202100426. [PMID: 34898033 DOI: 10.1002/cplu.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Owing to detrimental impact of cyanide ion (CN- ) towards the entire living system as well as its availability in drinking water, it has become very important developing potential sensory materials for the selective and sensitive recognition of CN- ions in water. In the domain of sensory materials, luminescent metal-organic frameworks (LMOFs) have been considered as a promising candidate owing to their unique host-guest interaction, where MOFs can serve as an ideal scaffold for encapsulating relevant guest molecules rendering specific functionality. In this study, a post-synthetically modified MOF (viz., CuCl2 @MOF-867) was applied to recognize cyanide (CN- ) ions in water via "turn-on" response. The bipyridyl functionalities in MOF-867 were used to perform post-synthetic metalation to infiltrate CuCl2 inside porous architecture of the MOF. Moreover, a CuCl2 @MOF-867 based probe demonstrated highly selective and sensitive aqueous phase recognition of CN- ions even in the presence of other interfering anions such as Br- , NO3 - , I- , SO4 2- , OAc- , SCN- , NO2 - , etc. The selective binding of CN- ions to the copper-metal center has led to the generation of stable Cu(CN)2 species. This phenomenon has further resulted in a fluorescence turn-on response. The aqueous phase cyanide detection by the rationally modified MOF system exhibited very low limit of detection (0.19 μM), which meets the standardized limit stated by World Health Organization (WHO) that is 1.9 μM.
Collapse
Affiliation(s)
- Debanjan Mahato
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
19
|
Fu H, Jiang Y, Wang F, Zhang J. The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2791. [PMID: 34835554 PMCID: PMC8618028 DOI: 10.3390/nano11112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal-organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
Collapse
Affiliation(s)
- Hongru Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Yuying Jiang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| |
Collapse
|
20
|
Highly efficient and bifunctional Cd(II)-Organic Framework platform towards Pb(II), Cr(VI) detection and Cr(VI) photoreduction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
|
22
|
Dutta S, Let S, Shirolkar MM, Desai AV, Samanta P, Fajal S, More YD, Ghosh SK. A luminescent cationic MOF for bimodal recognition of chromium and arsenic based oxo-anions in water. Dalton Trans 2021; 50:10133-10141. [PMID: 34190294 DOI: 10.1039/d1dt01097b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water pollution from heavy metals and their toxic oxo-anionic derivatives such as CrO42-, Cr2O72-, HAsO42-, and HAsO32- has become one of the most critical environmental issues. To address this, herein, we report a new hydrolytically stable luminescent Zn(ii) based cationic metal organic framework (MOF), iMOF-4C, which further successfully exhibited a rare dual "turn off/on" fluorescence response toward Cr(vi), As(v) and As(iii) based oxo-anions respectively in water medium. In addition, iMOF-4C was found to maintain its superior selectivity in the presence of other concurrent anions (e.g. SO42-, Cl-, Br-, ClO4-, NO3-, SCN- and CO32-). More importantly, iMOF-4C exhibited an excellent selective and sensitive luminescence "turn-off" response towards CrO42- and Cr2O72- anions in water medium with the quenching constant (Ksv) values as high as 1.31 × 105 M-1 (CrO42-) and 4.85 × 105 M-1 (Cr2O72-), which are found to be the highest among the values reported in the regime of MOFs. Interestingly, iMOF-4C showed fluorescence "turn-on" response toward HAsO42- and HAsO32- with an enhancement coefficient (Kec) of 1.98 × 104 M-1 and 3.56 × 103 M-1 respectively. The high sensitivity and low detection limits make iMOF-4C more feasible for real-time sensing of such toxic oxo-anions in an aqueous medium. Furthermore, the probable sensing mechanism has been investigated by DFT calculation studies and discussed in detail.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Aamod V Desai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
23
|
Li Q, Cai X, Chen LH, Guan BB, Fan ZL, Zhu W, Xue DX. Hydrolytically Stable and Trifunctional Zirconium-Based Organic Frameworks toward Cr 2O 72- Detection, Capture, and Photoreduction. Inorg Chem 2021; 60:8143-8153. [PMID: 34027670 DOI: 10.1021/acs.inorgchem.1c00794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromium Cr(VI) is frequently used in many fields and has been intensively researched for detection and/or removal from contaminated water. However, the existing approaches are still of low efficiency, high cost, and cumbersome in operation. It is thus highly imperative to hunt for alternative avenues to get out of the predicament. In this work, two bcu topological and highly stable zirconium-metal-organic frameworks (Zr-MOFs) of 1 and 2 have been deliberately prepared, displaying channel-type interior spaces replete with free bipyridine/biquinoline matrices and Zr-O defect sites. Because of their unique intrinsic features of high porosity and photosensitivity, 1 and 2 were deployed as versatile platforms to sense, adsorb, and catalytically reduce Cr(VI) ions. Indeed, the Zr-MOF of 1 performs excellently in fluorescence sensing and adsorption trapping of Cr(VI), with an ultralow detection limit of 0.0176 ppm and a fairly high saturated adsorption capacity of 145.77 mg/g, while 2 is more powerful than 1 in photochemical removal of Cr(VI), exhibiting a remarkable reduction efficiency of 98.05% just within 70 min and still up to 92.21% even after five consecutive photocatalytic cycles. Furthermore, possible photoluminescence, quenching, and reduction mechanisms were also tentatively proposed. This study may open up a new avenue for addressing some unresolved environmental issues, that is, the decontamination of highly toxic Cr(VI) from water.
Collapse
Affiliation(s)
- Qing Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Xinbin Cai
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Ling-Hui Chen
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Bin-Bin Guan
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Zeng-Lu Fan
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Wei Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
24
|
Zong Y, Xu SM, Shi W, Lu C. Oriented arrangement of simple monomers enabled by confinement: towards living supramolecular polymerization. Nat Commun 2021; 12:2596. [PMID: 33972542 PMCID: PMC8110532 DOI: 10.1038/s41467-021-22827-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
The living supramolecular polymerization technique provides an exciting research avenue. However, in comparison with the thermodynamic spontaneous nucleation, using simple monomers to realize living supramolecular polymerization is hardly possible from an energy principle. This is because the activation barrier of kinetically trapped simple monomer (nucleation step) is insufficiently high to control the kinetics of subsequent elongation. Here, with the benefit of the confinement from the layered double hydroxide (LDH) nanomaterial, various simple monomers, (such as benzene, naphthalene and pyrene derivatives) successfully form living supramolecular polymer (LSP) with length control and narrow dispersity. The degree of polymerization can reach ~6000. Kinetics studies reveal LDH overcomes a huge energy barrier to inhibit undesired spontaneous nucleation of monomers and disassembly of metastable states. The universality of this strategy will usher exploration into other multifunctional molecules and promote the development of functional LSP. Using simple monomers in living supramolecular polymerization is difficult due to energy principles. Here the authors use confinement from a layered double hydroxide nanomaterial to successfully polymerise several simple monomers with length control and narrow dispersity.
Collapse
Affiliation(s)
- Yingtong Zong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
25
|
Zhou X, Li J, Tan LL, Li Q, Shang L. Novel perylene probe-encapsulated metal-organic framework nanocomposites for ratiometric fluorescence detection of ATP. J Mater Chem B 2021; 8:3661-3666. [PMID: 31999287 DOI: 10.1039/c9tb02319d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, a novel ratiometric fluorescence assay for ATP was developed based on the excimer-monomer transfer of a perylene probe. By encapsulating a perylene probe, N,N'-bis(6-caproic acid)-3,4:9,10-perylenediimide (PDI), into zeolitic imidazolate framework-8 (ZIF-8) nanocrystals, fluorescent nanocomposites (PDI@ZIF-8) with significant excimer emission of the perylene probe were prepared for the first time. The presence of ATP will trigger the decomposition of PDI@ZIF-8 due to much stronger coordination between ATP and Zn2+ than that of 2-methylimidazole and Zn2+. As a result, the encapsulated PDI probes were released, leading to significantly increased monomer emission accompanying the decrease in the excimer emission. The excimer-monomer transition signal was utilized for ratiometric ATP sensing and its potential application for detecting ATP in cell lysates was also successfully demonstrated.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | | | | | | | | |
Collapse
|
26
|
Chen DM, Zheng YP, Fang SM. Microporous mixed-ligand metal–organic framework with fluorine-decorated pores for efficient C2H2/C2H4 separation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
28
|
Tu QQ, Ren LL, Cheng AL, Gao EQ. Fabrication of a dual-emitting RhB@Zn-1composite as a recyclable luminescent sensor for sensitive detection of nitrofuran antibiotics. CrystEngComm 2021. [DOI: 10.1039/d0ce01483d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel dual-emittingRhB@Zn-1composite was fabricated by encapsulating RhB into the channels ofZn-1, which can serve as a recyclable sensor for sensitive and selective detection of nitrofuran antibioticsviathe luminescence quenching process.
Collapse
Affiliation(s)
- Qian-Qian Tu
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200240
- People's Republic of China
| | - Ling-Ling Ren
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200240
- People's Republic of China
| | - Ai-Ling Cheng
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200240
- People's Republic of China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- People's Republic of China
| |
Collapse
|
29
|
Liu M, Liang J, Liu Z. Modulating the ferroelectric performance by altering halogen anions in the crystals of tetranuclear copper-clusters. NEW J CHEM 2021. [DOI: 10.1039/d1nj01894a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferroelectric performance of tetranuclear copper clusters can be modulated by altering the free halogen anions existing in the crystal structure.
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| |
Collapse
|
30
|
Li J, Zhang N, Yuan Y, Li X, Wu M, Yang Q, Yu X, Zhang X, Wang Y. A luminescent Cd(II)-metal organic frameworks combined of TPT and H 3BTC detecting 2,4,6-trinitrophenol and chromate anions in aqueous. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118790. [PMID: 32795950 DOI: 10.1016/j.saa.2020.118790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A new luminescence Cd(II)-MOF (1) ([Cd3(BTC)2(TPT)(H2O)2]·4H2O, TPT = tris(4-pyridyl)triazine, H3BTC = 1,3,5-benzenetricarboxylic acid) was successfully synthesized under solvothermal conditions. 1 contains 3D framework which consist of Cd atoms and btc3- anions with the large channels along c axis. Then, tpt ligands locate in the channels by utilizing three N atoms to bridge two Cd1 atoms and one Cd2 atom. 1 not only possesses remarkable thermal stability, but also can steadily exist in different organic solvents and various acid/base solutions (pH = 3-12). Moreover, 1 can detect 2,4,6-trinitrophenol (TNP) and chromate (CrO42-/Cr2O72-) anions with high selectivity and sensitivity in water via the luminescent quenching. The detection limits of 1 for TNP and CrO42-/Cr2O72- are 6.23 μM and 2.13 μM/2.87 μM. The mechanism of TNP luminescence quenching may be attributed to photoinduced electron transfer and resonance energy transfer, and CrO42-/Cr2O72- quenching involves resonance energy transfer and competitive absorption of light. Additionally, 1 has the great anti-interference ability and repeatability for detecting TNP and CrO42-/Cr2O72-, which can display the feasibility of this material as a stable luminescent probe in aqueous system.
Collapse
Affiliation(s)
- Jinxue Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Nanxi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Ye Yuan
- Center of Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Xiangyu Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Maoquan Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Xiaoyang Yu
- Jilin Institute of Chemical Technology, Jilin City, Jilin 132022, People's Republic of China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China..
| | - Yan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China..
| |
Collapse
|
31
|
Fan C, Xu C, Zong Z, Zhang X, Zhu B, Wang L, Zhang X, Bi S, Fan Y. Rational design and construction of a serious of highly water-stable coordination polymers with various N, N′-donor linkers: Syntheses, diversity structures, and dye adsorption property. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Zhou Y, Pang M, Zhu W, Jiang Z, Liu Y, Meng J. Crystal structure and photochromism of auxochrome-introduced Spiro[indoline-quinoline]oxazine deriatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Yang Y, Dong J, Li H, Guo D, Yang W, Pan Q. AIE Infinite Coordination Polymer for Phosphate Ion Detection via Aggregation State Modulation. ChemistrySelect 2020. [DOI: 10.1002/slct.202003449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Jiaxuan Dong
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Dongyu Guo
- Department of Clinical Laboratory Xiamen Huli Guoyu Clinic, Co., Ltd. Xiamen 361000 China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education School of Science Hainan University Haikou 570228 China
| |
Collapse
|
34
|
Xu X, Liu M, Liu Z. Crystal structures and the ferroelectric properties of homochiral metal-organic frameworks constructed from a single chiral ligand. Dalton Trans 2020; 49:10402-10406. [PMID: 32662478 DOI: 10.1039/d0dt01323d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOFs have proven to be promising candidates for designing ferroelectric materials. Herein, two new homochiral MOFs, Co-MOF-1 and Co-MOF-2, have been synthesized using the chiral ligand, HL (HL = phenyl-((pyridin-4-ylmethyl)-amino)-acetic acid), and Co(NO3)2·6H2O. Co-MOF-1 was obtained via a two-step synthetic route involving a hydrogel to Zn-MOF conversion and a dissolution-recrystallization process. Co-MOF-2 was directly synthesized by a coordination reaction between chiral ligand, HL, and Co(NO3)2·6H2O under hydrothermal conditions. We investigate the correlation between the ferroelectric properties of the samples and their crystal structures. The ferroelectric properties of Co-MOF-1 and Co-MOF-2 are drastically different. Indeed, Co-MOF-2 shows an obvious hysteretic behavior, while a clear electric hysteresis loop was not observed for Co-MOF-1. These significant disparities may be attributed to the different molecular dipole moments in Co-MOF-1 and Co-MOF-2. The different octahedral coordination units in the molecular structures of the Co-MOFs may alter the dipole moments of the molecules, resulting in the absence of a hysteresis loop for Co-MOF-1.
Collapse
Affiliation(s)
- Xuebin Xu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | | | | |
Collapse
|
35
|
Li CP, Zhou H, Chen J, Wang JJ, Du M, Zhou W. A Highly Efficient Coordination Polymer for Selective Trapping and Sensing of Perrhenate/Pertechnetate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15246-15254. [PMID: 32150370 DOI: 10.1021/acsami.0c00775] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A porous cationic Ag(I) coordination polymer, [Ag(1,2,4,5-p4b)](SbF6) (TJNU-302) with the ligand 1,2,4,5-p4b (1,2,4,5-tetra(pyridin-4-yl)benzene), is reported that shows high sorption capacity (211 mg g-1) and distribution coefficient Kd (5.8 × 105 mL g-1) as well as outstanding selectivity in 500 times excess of CO32- or PO43- anion for perrhenate removal. TJNU-302 can act as a crystalline turn-off sensor for perrhenate upon UV radiation. In this way, a test paper strip for sensing ReO4- could be produced. In water solution, TJNU-302 shows an efficient fluorescence quenching response to ReO4- ion, with the highest quenching percentage (86%) among all reported ReO4- sensors. These results could be elucidated by the bonding properties of single-crystal structures of TJNU-302 before and after perrhenate sorption, as well as density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
- School of Chemistry, University of St. Andrews, Andrews KY16 9ST, United Kingdom
| | - Hang Zhou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jing Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jia-Jun Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Miao Du
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Wuzong Zhou
- School of Chemistry, University of St. Andrews, Andrews KY16 9ST, United Kingdom
| |
Collapse
|
36
|
Zhuang X, Zhang N, Zhang X, Wang Y, Zhao L, Yang Q. A stable Cu-MOF as a dual function sensor with high selectivity and sensitivity detection of picric acid and CrO42-in aqueous solution. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Fu H, Shao H, Wang L, Jin H, Xia D, Deng S, Wang Y, Chen Y, Hua C, Liu L, Zang L. From a Relatively Hydrophobic and Triethylamine (TEA) Adsorption-Selective Core-Shell Heterostructure to a Humidity-Resistant and TEA Highly Selective Sensing Prototype: An Alternative Approach to Improve the Sensing Characteristics of TEA Sensors. ACS Sens 2020; 5:571-579. [PMID: 32013398 DOI: 10.1021/acssensors.9b02519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the detection of industrial toxic gases, such as triethylamine (TEA), poor selectivity and negative humidity impact are still challenging issues. A frequently reported strategy is to employ molecular sieves or metal-organic framework (MOF) membranes so that interference derived from surrounding gases or water vapor can be blocked. Nevertheless, the decline in the response signal was also observed after coating these membranes. Herein, an alternative strategy that is based on a hydrophobic, TEA adsorption-selective p-n conjunction core-shell heterostructure is proposed and is speculated to simultaneously enhance selectivity, sensitivity, and humidity resistance. To verify the practicability of the proposed strategy, a thickness-tunable nitrogen-doped carbon (N-C) shell-coated α-Fe2O3 nano-olive (N-C@α-Fe2O3 NO)-based core-shell heterostructure that is obtained via a unique all-vapor-phase processing method is selected as the research example. After forming the core-shell heterostructure, a relatively hydrophobic and TEA adsorption-selective N-C@α-Fe2O3 NO surface was experimentally confirmed. Particularly, a chemiresistive sensor that comprises N-C@α-Fe2O3 NOs exhibits satisfactory selectivity and response magnitude to TEA when compared with the sensor using α-Fe2O3 NOs. The detection limit can even reduce to be 400 ppb at 250 °C. Furthermore, the sensor based on N-C@α-Fe2O3 NOs shows desirable humidity resistance within the relative humidity (RH) range of 30-90%. For practical usage, a sensing prototype based on the N-C@α-Fe2O3 NO probe is fabricated, and its satisfactory sensing performance further confirms the potential for future applications in industrial organic amine detection. These promising results show a bright future in enhancing the humidity resistance and selectivity as well as sensitivity of chemiresistive sensors by simply designing a hydrophobic and target gas adsorption (e.g., TEA) preferred p-n junction core-shell heterostructure.
Collapse
Affiliation(s)
- Hao Fu
- School of Marine Sciences, Guangxi University, Nanning 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530003, China
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, Nanning 530003, China
| | - Hongyun Shao
- School of Marine Sciences, Guangxi University, Nanning 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530003, China
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, Nanning 530003, China
| | - Liwei Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530003, China
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, Nanning 530003, China
| | - Han Jin
- Institute of Micro-Nano Science and Technology, Shanghai Jiaotong University, Shanghai 200240, China
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo 315201, China
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shengwei Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530003, China
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, Nanning 530003, China
| | - Yi Chen
- School of Information Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Changzhou Hua
- School of Information Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Li Liu
- Faculty of Information Engineering, Ningbo University of Finance & Economics, Ningbo 315175, Zhejiang, China
| | - Ling Zang
- Nano Institute of Utah and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
38
|
|
39
|
Liu JJ, Xia SB, Que QT, Suo H, Liu J, Shen X, Cheng FX. Naphthalimide-containing coordination polymer with mechanoresponsive luminescence and excellent metal ion sensing properties. Dalton Trans 2020; 49:3174-3180. [PMID: 32091051 DOI: 10.1039/c9dt04928b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mechanoresponsive luminescent materials coupled with other functionalities are of particular interest due to their multiple external stimuli responsive properties. In this paper, a new sensitive mechanoresponsive luminescent coordination polymer, [Cd(INI)(DMF)2·DMF] (1) (H2INI = N-(5-isophthalic acid)-1,8-naphthalimide), has been successfully designed and synthesized. Complex 1 exhibits interesting mechanoresponsive and grinding-enhanced luminescence properties, and its luminescence colour changed from weak blue-green to bright blue upon grinding owing to the external pressure-induced destruction of ππ stacked arrangements in local defective areas. Moreover, the luminescence properties and uncoordinated carbonyl groups of well-ground g-1 endow it with excellent sensing ability for Cr3+ ions. This work will provide a new perspective to rationally design multifunctional coordination polymers that can serve as practical multi-responsive sensors to pressure and chemicals.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, China.
| | - Shu-Biao Xia
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, China.
| | - Qi-Tao Que
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, China.
| | - Hongbo Suo
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jiaming Liu
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xiang Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, China.
| | - Fei-Xiang Cheng
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
40
|
Hu ML, Razavi SAA, Piroozzadeh M, Morsali A. Sensing organic analytes by metal–organic frameworks: a new way of considering the topic. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01617a] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, our goal is comparison of advantageous and disadvantageous of MOFs about signal-transduction in different instrumental methods for detection of different categories of organic analytes.
Collapse
Affiliation(s)
- Mao-Lin Hu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | | | - Maryam Piroozzadeh
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
41
|
Qin JH, Huang YD, Shi MY, Wang HR, Han ML, Yang XG, Li FF, Ma LF. Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid. RSC Adv 2020; 10:1439-1446. [PMID: 35494702 PMCID: PMC9047407 DOI: 10.1039/c9ra08733h] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/15/2019] [Indexed: 01/05/2023] Open
Abstract
An alkali-resistant 3D anionic Zn-MOF directed by [BMI]Br ionic liquid has been synthesized for aqueous-phase detection of antibiotics and nitroaromatic explosives.
Collapse
Affiliation(s)
- Jian-Hua Qin
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Ya-Dan Huang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Ming-Yu Shi
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Hua-Rui Wang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Fei-Fei Li
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- PR. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| |
Collapse
|
42
|
Synthesis and characterization of a luminescent Ni(II)-compound based on tpt and m-H2bdc detecting picric acid and chromate anions in aqueous. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
A MOF material based on zinc (II) and mixed ligands: Synthesis, structure and luminescence behavior. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Zhong F, Li C, Xie Y, Xu H, Gao J. Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.07.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Zhu Y, Durini S, Lönnecke P, Cong M, Hey‐Hawkins E. Reversible Single‐Crystal to Single‐Crystal Transformation Between Two Copper(II)‐Based Two‐Dimensional Coordination Polymers for Detection of Fe
3+
and 3‐Iodobromobenzene. ChemistrySelect 2019. [DOI: 10.1002/slct.201901980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Zhu
- College of Pharmacy and Chemistry & Chemical EngineeringTaizhou University Taizhou 225300 P. R. China
- Faculty of Chemistry and MineralogyInstitute of Inorganic ChemistryLeipzig University 04103 Leipzig Germany
| | - Sara Durini
- Faculty of Chemistry and MineralogyInstitute of Inorganic ChemistryLeipzig University 04103 Leipzig Germany
| | - Peter Lönnecke
- Faculty of Chemistry and MineralogyInstitute of Inorganic ChemistryLeipzig University 04103 Leipzig Germany
| | - Minghui Cong
- Faculty of Chemistry and MineralogyInstitute of Inorganic ChemistryLeipzig University 04103 Leipzig Germany
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and MineralogyInstitute of Inorganic ChemistryLeipzig University 04103 Leipzig Germany
| |
Collapse
|
46
|
Gładysiak A, Nguyen TN, Bounds R, Zacharia A, Itskos G, Reimer JA, Stylianou KC. Temperature-dependent interchromophoric interaction in a fluorescent pyrene-based metal-organic framework. Chem Sci 2019; 10:6140-6148. [PMID: 31360420 PMCID: PMC6585595 DOI: 10.1039/c9sc01422e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022] Open
Abstract
Compounds exhibiting tuneable fluorescence emission upon heating or cooling are considered smart materials as their optical properties can be exquisitely controlled by adjusting the external temperature. Herein, we report such a material, which is a porous pyrene-based metal-organic framework with a chemical formula of [Mg1.5(HTBAPy)(H2O)2]·3DMF (H4TBAPy = 1,3,6,8-tetrakis(p-benzoic acid)pyrene), named SION-7. The bulk solid material of SION-7 can display either monomer or excimer fluorescence emission due to the temperature-dependent extent of interchromophoric interactions between the HTBAPy3- ligands within the framework. Consequently, the fluorescence emission colours gradually change from blue at low temperature (80 K) to yellow-green at high temperature (450 K). Interestingly, while kept in a relatively wide temperature range of 80-200 K, SION-7 displays a structured monomer-like spectrum and its colour changes reversibly from deep to light blue. Ex situ variable-temperature (100-350 K) single-crystal X-ray diffractometry studies revealed the impact of solvent content on the optical properties of SION-7, and illustrated the correlation between the position of the phenylene groups of the HTBAPy3- ligands at different temperatures and the interchromophoric interaction. Our study demonstrates a step forward towards the design of tuneable thermofluorochromic materials sought by optoelectronics.
Collapse
Affiliation(s)
- Andrzej Gładysiak
- Laboratory of Molecular Simulation (LSMO) , Institut des Sciences et Ingénierie Chimiques (ISIC) , Ecole Polytechnique Fédérale de Lausanne (EPFL Valais) , Rue de l'Industrie 17 , 1951 Sion , Switzerland .
| | - Tu N Nguyen
- Laboratory of Molecular Simulation (LSMO) , Institut des Sciences et Ingénierie Chimiques (ISIC) , Ecole Polytechnique Fédérale de Lausanne (EPFL Valais) , Rue de l'Industrie 17 , 1951 Sion , Switzerland .
| | - Richard Bounds
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , USA
| | - Anna Zacharia
- Experimental Condensed Matter Physics Laboratory , Department of Physics , University of Cyprus , Nicosia 1678 , Cyprus
| | - Grigorios Itskos
- Experimental Condensed Matter Physics Laboratory , Department of Physics , University of Cyprus , Nicosia 1678 , Cyprus
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , USA
| | - Kyriakos C Stylianou
- Laboratory of Molecular Simulation (LSMO) , Institut des Sciences et Ingénierie Chimiques (ISIC) , Ecole Polytechnique Fédérale de Lausanne (EPFL Valais) , Rue de l'Industrie 17 , 1951 Sion , Switzerland .
| |
Collapse
|
47
|
Feng L, Ren G, Ding S, Wang F, Yang W, Liang Z, Pan Q. A lithium‐organic framework as a fluorescent sensor for detecting aluminum (III) ion. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lijuan Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Shunan Ding
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Fuxiang Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative ChemistryJilin University Changchun 130012 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of ScienceHainan University Haikou 570228 China
- Hainan Policy and Industrial Research Institute of Low‐Carbon EconomyHainan University Haikou 570228 China
| |
Collapse
|
48
|
Zhang Y, Meng XQ, Ding HJ, Wang X, Yu MH, Zhang SM, Chang Z, Bu XH. Rational Construction of Breathing Metal-Organic Frameworks through Synergy of a Stretchy Ligand and Highly Variable π-π Interaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20995-21003. [PMID: 31117453 DOI: 10.1021/acsami.9b04759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synergy of a stretchy ligand and highly variable π-π interaction has been proposed as a rational strategy for the construction of breathing metal-organic frameworks (MOFs). Based on this strategy, a breathing MOF, {[Cd2(AzDC)2(TPT)2](DMF)3} n, was successfully constructed with stretchy 4,4'-diazene-1,2-diyldibenzoate acid (H2AzDC) and 2,4,6-tris(4-pyridyl)triazine (TPT) as a source of the π-π interaction. The MOF features structure transformation upon stimulation with solvent guests and varied temperatures, which is straightforwardly characterized by single-crystal structures. Moreover, the solvent-free framework shows breathing behaviors in response to light hydrocarbon (C2H4, C2H6, C3H6, and C3H8) sorption, which was verified by stepwise sorption isotherms and in situ powder X-ray diffraction. Additional investigation of the sorption selectivity of C3/C2 systems indicated that the selectivity can be regulated by the modulation of the dynamic breathing behaviors, which can be used for the selective separation of C3/C2 light hydrocarbons.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Xiao-Qing Meng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry , Nankai University , Tianjin 300350 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Hao-Jing Ding
- School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Xi Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry , Nankai University , Tianjin 300350 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry , Nankai University , Tianjin 300350 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry , Nankai University , Tianjin 300350 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry , Nankai University , Tianjin 300350 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
49
|
Dicarboxylate-Induced Structural Diversity of Luminescent Zn(II)/Cd(II) Metal-Organic Frameworks Based on the 2,5-Bis(4-pyridyl)thiazolo[5,4-d
]thiazole Ligand. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Liu L, Yao Z, Ye Y, Liu C, Lin Q, Chen S, Xiang S, Zhang Z. Enhancement of Intrinsic Proton Conductivity and Aniline Sensitivity by Introducing Dye Molecules into the MOF Channel. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16490-16495. [PMID: 30997797 DOI: 10.1021/acsami.8b22327] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The encapsulation of dyes into metal-organic frameworks (MOFs) has generated a variety of platforms for luminescence, but little attention has been paid to their application in proton conduction. Here, a cationic MOF {{[In3OL1.5(H2O)3](NO3)}·(DMA)3·(CH3CN)6·(H2O)30} n (FJU-10, H4L = 4,4',4″,4‴-(1,4-phenylenbis(pyridine-4,2,6-triyl))-tetrabenzoic acid, DMA = N, N-dimethylacetamide) was synthesized, and the dye molecule 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was further added to the MOF growth solution, but during the reaction, HPTS was nitrated and nitrated HPTS was encapsulated into the FJU-10 to obtain dye@FJU-10. As a result, the intrinsic proton conductivity of dye@FJU-10 is nearly 5 times higher than that of FJU-10 at 90 °C. Dye@FJU-10 exhibits more sensitive fluorescence quenching toward aniline than FJU-10 in DMF solution (the detection limits of FJU-10 and dye@FJU-10 are as low as 0.58 and 0.62 μM, respectively). Here, it is demonstrated for the first time that intrinsic proton conductivity can be effectively improved by encapsulating a nitrated HPTS dye into an MOF.
Collapse
Affiliation(s)
- Lizhen Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Chulong Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Quanjie Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| |
Collapse
|