1
|
Li L, Li X, Wang X, Zhang Q, Zheng C, Jing Y, Xie H. Enhanced near-infrared Ru (II) complex fluorescence sensor for sensitive sensing of Al 3+ and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126294. [PMID: 40294576 DOI: 10.1016/j.saa.2025.126294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
A near-infrared (NIR) fluorescent sensor (λem = 790 nm), [Ru ((CH3O)2bipy)2 (BIMPY)]2+, was synthesized and thoroughly characterized, which can selectively recognize Al3+ ions in THF. The [Ru ((CH3O)2bipy)2 (BIMPY)]2+ has excellent sensitivity (LOD = 3.48 × 10-8 mol/L) towards Al3+ with a 2:1 (Ru complex/Al3+) complex ratio and opportune binding constant (K = 606.82 mol/L). The change mechanism of photophysical properties was determined by time-dependent density functional theory (TDDFT) method, which illustrates fluorescence enhancement sensing to Al3+ ions. The [Ru ((CH3O)2bipy)2 (BIMPY)]2+ was used as a field-deployable sensor, achieving on-site Al3+ monitoring via the RGB analysis. Furthermore, the [Ru ((CH3O)2bipy)2 (BIMPY)]2+ succeed in imaging Al3+ in living HepG2 cells.
Collapse
Affiliation(s)
- Longlong Li
- University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Intelligent Manufacturing College, Weifang University of Science and Technology, Shandong 262700, China.
| | - Xiaolin Li
- University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Intelligent Manufacturing College, Weifang University of Science and Technology, Shandong 262700, China
| | - Xinzhi Wang
- University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Intelligent Manufacturing College, Weifang University of Science and Technology, Shandong 262700, China
| | - Qiang Zhang
- University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Intelligent Manufacturing College, Weifang University of Science and Technology, Shandong 262700, China
| | - Changsheng Zheng
- University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Intelligent Manufacturing College, Weifang University of Science and Technology, Shandong 262700, China
| | - Yinming Jing
- University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Intelligent Manufacturing College, Weifang University of Science and Technology, Shandong 262700, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| |
Collapse
|
2
|
Guan Y, Shuai X, Ruan X, Wang Y, Wei Y. Both carbon dots precursor and organic bridge ligands for coordination polymers: AMP-based ratiometric fluorescent probes and its application in bovine serum albumin detection. Int J Biol Macromol 2025; 290:139049. [PMID: 39710038 DOI: 10.1016/j.ijbiomac.2024.139049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Bovine serum albumin (BSA) is one of the most abundant proteins in serum, and its high-throughput detection is still one of the current challenges. Nitrogen‑phosphorus co-doped carbon dots (CDs) were synthesized by a hydrothermal method. Adenosine monophosphate (AMP) was used as a precursor for the synthesis of CDs, providing the required carbon, nitrogen and phosphorus sources for the CDs. It was also used as an organic bridge ligand for coordination polymers. Upon addition of the lanthanide metal ion Tb3+, the AMP molecules formed lanthanide coordination polymers in solution, resulting in fabrication of the novel ratiometric fluorescent probe AMP-CDs@Tb with dual emission centers. This fabricated method greatly reduced the complexity of dual-emission CDs doped with lanthanide metals. The designed ratiometric fluorescent probe only needed one precursor AMP to realize the synthesis of CDs and bound to lanthanide metal ions as an organic ligand, this probe could be used for rapid and sensitive analysis of BSA. The linear relationship was good when the concentration of BSA was 0.1 to 650 μM, and the LOD was 0.042 μM. In addition, the possible detection mechanism of BSA was explored through fluorescence lifetime and density functional theory calculations.
Collapse
Affiliation(s)
- Yuwei Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xue Shuai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiangyan Ruan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Yuejiao Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
Zhao Y, Xi E, Wang Z, Ding Q, Liu K, Zhu J, Wu X, Xie Y, Yang F, Gao N, Sun H, Yang Y, Yuan Y, Zhu G. Aggregation-induced emission-based covalent-organic framework fluorescent probes for clinical detection of aluminum and daily prevention of Alzheimerʼs disease by naked-eye. Sci China Chem 2024. [DOI: 10.1007/s11426-024-2303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
|
4
|
Shao T, Yang D, Wang X, Wang R, Yue Q. A cotton swab platform for fluorescent detection of aluminum ion in food samples based on aggregation-induced emission of carbon dots. Mikrochim Acta 2024; 191:716. [PMID: 39472328 DOI: 10.1007/s00604-024-06799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
A novel portable cotton swab based on nitrogen-doped carbon dots (NCDs) for Al3+ detection was constructed for the first time. NCDs with bright green fluorescence were prepared by hydrothermal method with phenylhydrazine hydrochloride and 3-hydroxy-2-naphthoic acid hydrazide as precursors. The surface of NCDs was exposed to abundant functional groups (such as amino, carboxyl, hydroxyl, etc.), which was helpful for the formation of complexes between NCDs and Al3+. In the presence of Al3+, the aggregation of NCDs obviously induced their fluorescence enhancement due to the aggregation-induced emission (AIE) of NCDs. Furthermore, the quantum yield (QY) of NCDs was enhanced by 12 times with Al3+, and the fluorescence lifetime was increased by 7.54 ns. The fluorescence intensity was linearly correlated with the concentration of Al3+ (2.5-300 μM), and the limit of detection was 0.76 μM. Moreover, for the portable way, cotton swabs were successfully employed to construct the sensors for the detection of Al3+ in food samples. This proposal has potential for the application in food analysis.
Collapse
Affiliation(s)
- Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ruirui Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
5
|
Genc HN, Guctekin Yasar O, Boran T, Karuk Elmas SN, Arslan FN, Yilmaz I, Sirit A. Selective Chromo-Fluorogenic Chemoprobe for nM Al 3+ Recognition: Experimental and Living-Cell Applications. J Fluoresc 2024:10.1007/s10895-024-03904-5. [PMID: 39158625 DOI: 10.1007/s10895-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
A rhodamine based chemoprobe BESN was engineered and employed as a selective ''OFF-ON'' chromo-fluorogenic sensor for Al3+ in H2O:MeOH (1:9, v:v). Notable changes in the absorption and emission spectra of BESN were clearly detectable upon the addition of Al3+. Sensitivity and binding mechanism studies demonstrated a good sensing performance of BESN with nanomolar detection limit (130 nM), and it was found to be highly selective towards interfering metal ions. Besides, the binding constant between BESN and Al3+ was found to be 3.19 × 103 M-1. Then, the validation study of BESN for Al3+ was performed based on significant analytical parameters and statistical tests. The binding of Al3+ with BESN (1:1) was probed via infrared, high-resolution mass and emission (Job's plot) spectroscopy measurements. The sensing performance of BESN could make it ideal chemosensor for real applications including vegetable, tuna fish and water samples, also for Smartphone and test-kit applications. The recovery values of the BESN to Al3+ were estimated within a range from 95.13% to 105.30% for water, 94.63% to 109.62% for tuna fish and 94.80% to 109.80% for vegetable samples. Additionally, the BESN has very low cytotoxicity and was triumphantly utilized for the recognition of Al3+ in living-cells.
Collapse
Affiliation(s)
- Hayriye Nevin Genc
- A. K. Faculty of Education, Department of Science Education, University of Necmettin Erbakan, 42090, Konya, Türkiye.
| | - Ozlem Guctekin Yasar
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
| | - Tugce Boran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University-Cerrahpaşa, 34500, Istanbul, Türkiye
| | - Sukriye Nihan Karuk Elmas
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University-Cerrahpaşa, 34500, Istanbul, Türkiye.
| | - Fatma Nur Arslan
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
| | - Ibrahim Yilmaz
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
- Faculty of Education, Department of Mathematics and Science Education, University of Bolu Abant İzzet Baysal, 14030, Bolu, Türkiye
| | - Abdulkadir Sirit
- A. K. Faculty of Education, Department of Chemistry, University of Necmettin Erbakan, 42090, Konya, Türkiye
| |
Collapse
|
6
|
Mao J, Zhang Y, Zhang S, Song B. Turn-On Fluorescent Probe for BSA Detection Constructed by Supramolecular Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5479-5487. [PMID: 38421608 DOI: 10.1021/acs.langmuir.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The fluorescent probe method has attracted significant research attention due to its high sensitivity and reproducibility in detecting bovine serum albumin (BSA). In this study, we constructed a fluorescent probe for BSA detection by assembling an amphiphilic organic fluorescent molecule, termed 2-(2'-hydroxyphenyl) benzothiazole (HBT-11), with BSA. In an aqueous solution, HBT-11 exhibited a weak fluorescence emission at 501 nm. However, the addition of BSA substantially enhanced the fluorescence emission at 501 nm, indicating that the assembly was driven by electrostatic interactions between HBT-11 and BSA. HBT-11, serving as a fluorescent probe for BSA detection, demonstrated a limit of detection (LOD) as low as 3.92 nmol L-1, excellent photostability, high selectivity, and robust anti-interference capability. Notably, we successfully applied HBT-11 for detecting BSA in fetal bovine serum and selectively imaging BSA in HeLa cells.
Collapse
Affiliation(s)
- Jingyao Mao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuteng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shensong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Yang D, Shao T, Wang X, Hong M, Li R, Li C, Yue Q. N-doped carbon dots for the determination of Al 3+ and Fe 3+ using aggregation-induced emission. Mikrochim Acta 2024; 191:78. [PMID: 38182922 DOI: 10.1007/s00604-023-06143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
New portable hydrogel sensors for Al3+ and Fe3+ detection were designed based on the aggregation-induced emission (AIE) and color change of N-doped carbon dots (N-CDs). N-CDs with yellow fluorescence were prepared by a one-pot hydrothermal method from 2,5-dihydroxyterephthalic acid and acrylamide. The fluorescence of N-CDs was enhanced by Al3+ about 20 times and quenched by Fe3+. It was interesting that although Fe3+ showed obvious quenching on the fluorescence of N-CDs it did not cause a noticeable change in the fluorescence of N-CDs + Al3+. The colorless solution of N-CDs appeared blue in the presence of Fe3+ without the influence of Al3+. Therefore, the turn-on fluorometry and colorimetry systems based on N-CDs were constructed for the simultaneous detection of Al3+ and Fe3+. Furthermore, the portable sensing of Al3+ and Fe3+ was realized with the assistance of hydrogel, filter paper, cellulose acetate, and cellulose nitrate film. The proposed approach was successfully applied to the detection of Al3+ and Fe3+ in food samples and cell imaging.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
8
|
Naithani S, Goswami N, Singh S, Yadav V, Kumar S, Kumar P, Kumar A, Goswami T, Kumar S. Turn-on detection of Al 3+ and Zn 2+ ions by a NSN donor probe: reversibility, logic gates and DFT calculations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6021-6030. [PMID: 37909225 DOI: 10.1039/d3ay01534c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An efficient dual functional naphthalene-derived Schiff base NpSb probe has been synthesised and evaluated for its fluorescence and chromogenic response towards metal ions. The NpSb probe was capable of selectively recognising Al3+ and Zn2+ ions when they were excited at the same wavelength in an aqueous organic solvent system. Almost non-fluorescent NpSb displayed a 'turn-on' fluorescence response when treated with Zn2+ (λem = 416 nm) and Al3+ (λem = 469 nm) ions due to the chelation-enhanced fluorescence (CHEF) effect. The limit of detection (LoD) values for Al3+ and Zn2+ have been determined to be 38.0 nM and 43.0 nM, respectively. The binding constants for Al3+ and Zn2+ were found to be 1.18 × 106 M-1 and 3.5 × 105 M-1, respectively. The NpSb also acted as a colorimetric sensor for Al3+ as the colour of the probe's solution turned to pale green from colourless upon Al3+ addition. The binding mechanism between NpSb and Zn2+/Al3+ was supported by the ESI-MS, Job's plot, NMR, and DFT studies. The reversibility experiments were carried out with an F- ion and EDTA with the development of corresponding logic gates. Moreover, NpSb could be applied to detect Al3+ ions in real samples such as tap water, distilled water and soil samples.
Collapse
Affiliation(s)
- Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Vikas Yadav
- Nanoscopic Imaging and Sensing Lab, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sanjay Kumar
- Department of Chemistry, Muzaffarpur Institute of Technology, Muzaffarpur 842003, India
- Department of Pharmacy, Muzaffarpur Institute of Technology, Muzaffarpur 842003, India
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), CCS University Meerut, India
| | - Amit Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
9
|
Ding C, Gu Y, Chen W, Chen L, Guo L, Huang Y. Ratiometric near-infrared upconversion fluorescence sensor for selectively detecting and imaging of Al 3. Anal Chim Acta 2023; 1263:341297. [PMID: 37225340 DOI: 10.1016/j.aca.2023.341297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
Near-infrared (NIR) fluorescent probes provide extremely sensitive Al3+ detection for human health purposes. This research develops novel Al3+ response molecules (HCMPA) and NIR upconversion fluorescent nanocarriers (UCNPs), which respond to Al3+ through ratio NIR fluorescence. UCNPs improve photobleaching and visible light lack in specific HCMPA probes. Additionally, UCNPs are capable of ratio response, which will further enhance signal accuracy. The NIR ratiometric fluorescence sensing system has been successfully used to detect Al3+ within the range 0.1-1000 nM with an accuracy limit of 0.06 nM. Alternatively, a NIR ratiometric fluorescence sensing system integrated with a specific molecule can image Al3+ within cells. This study demonstrates that a NIR fluorescent probe is an effective and highly stable method of measuring Al3+ in cells.
Collapse
Affiliation(s)
- Caiping Ding
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Yuting Gu
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Weiwei Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China
| | - Long Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China.
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Youju Huang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Zhejiang Province, Hangzhou, 311121, PR China.
| |
Collapse
|
10
|
Guctekin Yasar O, Bostanci A, Karuk Elmas SN, Aydin D, Arslan FN, Sadi G, Yilmaz I. A cyanobiphenyl-based fluorescent ''lighting-up'' sensor for highly selective and sensitive recognition of Al 3+: Theoretical, practical and bioimaging studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122556. [PMID: 36878135 DOI: 10.1016/j.saa.2023.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The recognition of toxic Al3+ in foods and biosystems has of great interest to researchers. Herein, a novel cyanobiphenyl-based chemosensor CATH (E)-N'-((4'-cyano-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)thiophene-2-carbohydrazide was fabricated and shown to recognize Al3+ in HEPES buffer:EtOH (90:10, v:v, pH = 7.4) by ''lighting-up'' fluorescence sensing. The CATH evidenced high sensitivity (LOD = 13.1 nM) and excellent selectivity to Al3+ over competing cations. The Job's plot, TOF-MS and theoretical computation studies were performed to probe the binding mechanism of Al3+ to CATH. Additionally; CATH was successfully utilized to practical applications and employed to recover of Al3+ from different food samples. More importantly, it was employed to intracellular Al3+ detection in living cells including THLE2 and HepG2.
Collapse
Affiliation(s)
- Ozlem Guctekin Yasar
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| | - Aykut Bostanci
- Biology Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| | - Sukriye Nihan Karuk Elmas
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye; Analytical Chemistry Department, Pharmacy Faculty, Istanbul University-Cerrahpaşa, 34500 Istanbul, Turkiye.
| | - Duygu Aydin
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye.
| | - Fatma Nur Arslan
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye.
| | - Gokhan Sadi
- Biology Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| | - Ibrahim Yilmaz
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| |
Collapse
|
11
|
Cui S, Dai S, Lin N, Wu X, Shi J, Tong B, Liu P, Cai Z, Dong Y. Constructing Hypoxia-Tolerant and Host Tumor-Enriched Aggregation-Induced Emission Photosensitizer for Suppressing Malignant Tumors Relapse and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203825. [PMID: 36071022 DOI: 10.1002/smll.202203825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Photodynamic immunotherapy is a promising treatment strategy that destroys primary tumors and inhibits the metastasis and relapse of distant tumors. As reactive oxygen species are an intermediary for triggering immune responses, photosensitizers (PSs) that can actively target and efficiently trigger oxidative stress are urgently required. Herein, pyrrolo[3,2-b]pyrrole as an electronic donor is introduced in acceptor-donor-acceptor skeleton PSs (TP-IS1 and TP-IS2) with aggregation-induced emission properties and high absorptivity. Meanwhile, pyrrolo[3,2-b]pyrrole derivatives innovatively prove their ability of type I photoreaction, indicating their promising hypoxia-tolerant advantages. Moreover, M1 macrophages depicting an ultrafast delivery through the cell-to-cell tunneling nanotube pathway emerge to construct TP-IS1@M1 by coating the photosensitizer TP-IS1. Under low concentration of TP-IS1@M1, an effective immune response of TP-IS1@M1 is demonstrated by releasing damage-associated molecular patterns, maturating dendritic cells, and vanishing the distant tumor. These findings reveal insights into developing hypoxia-tolerant PSs and an efficient delivery method with unprecedented performance against tumor metastasis.
Collapse
Affiliation(s)
- Shisheng Cui
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuangxiong Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Na Lin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xinghui Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pai Liu
- Department of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
12
|
Xia YF, Bao GM, Peng XX, Wu XY, Lu HF, Zhong YF, Li W, He JX, Liu SY, Fan Q, Li SH, Xiao W, Yuan HQ. A highly water-stable dual-emission fluorescent probe based on Eu3+-loaded MOF for the simultaneous detection and quantification of Fe3+ and Al3+ in swine wastewater. Anal Chim Acta 2022; 1221:340115. [DOI: 10.1016/j.aca.2022.340115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
|
13
|
Sidqi ME, Abdel Aziz AA, Abolehasan AE, Sayed MA. Photochemical processing potential of a novel Schiff base as a fluorescent probe for selective monitoring of Al3+ ions and bioimaging in human cervical cancer HeLa cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Kim Cuc TT, Nhien PQ, Khang TM, Chen HY, Wu CH, Hue BTB, Li YK, Wu JI, Lin HC. Controllable FRET Behaviors of Supramolecular Host-Guest Systems as Ratiometric Aluminum Ion Sensors Manipulated by Tetraphenylethylene-Functionalized Macrocyclic Host Donor and Multistimuli-Responsive Fluorescein-Based Guest Acceptor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20662-20680. [PMID: 33896168 DOI: 10.1021/acsami.1c02994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The novel multistimuli-responsive monofluorophoric supramolecular polymer Poly(TPE-DBC)/FL-DBA and pseudo[3]rotaxane TPE-DBC/FL-DBA consisted of the closed form of nonemissive fluorescein guest FL-DBA along with TPE-based main-chain macrocyclic polymer Poly(TPE-DBC) and TPE-functionalized macrocycle TPE-DBC hosts, respectively. By the combination of various external stimuli, these fluorescent supramolecular host-guest systems could reveal interesting photoluminescence (PL) properties in DMF/H2O (1:1, v/v) solutions, including bifluorophoric host-guest systems after the complexation of Al3+ ion, i.e., TPE-DBC/FL-DBA-Al3+ and Poly(TPE-DBC)/FL-DBA-Al3+ with their corresponding open form of fluorescein guest FL-DBA-Al3+. Importantly, the Förster resonance energy transfer (FRET) processes occurred in both bifluorophoric host-guest systems between blue-emissive TPE donors (λem = 470 nm) and green-emissive fluorescein acceptors (λem = 527 nm) after aluminum detection, which were further verified by time-resolved photoluminescence (TRPL) measurements to acquire their FRET efficiencies of 40.4 and 31.1%, respectively. Both supramolecular host-guest systems exhibited stronger green fluorescein emissions as well as appealing ratiometric PL behaviors within the desirable donor-acceptor distances of FRET processes in comparison with their detached analogous mixtures. Regarding the pH effects, the optimum green fluorescein emissions with effective FRET processes of all compounds and host-guest systems were sustained in the range pH = 7-10. Interestingly, both host-guest systems TPE-DBC/FL-DBA and Poly(TPE-DBC)/FL-DBA possessed high sensitivities and selectivities toward aluminum ion to display their strong green emissions via FRET-ON behaviors due to the chelation-induced ring opening of spirolactam moieties to become green-emissive guest acceptor FL-DBA-Al3+, which offered excellent limit of detection (LOD) values of 50.61 and 38.59 nM, respectively, to be further applied for the fabrication of facile test strips toward aluminum detection. Accordingly, the inventive ratiometric PL and FRET sensor approaches of supramolecular host-guest systems toward aluminum ion with prominent sensitivities and selectivities were well-established in this study.
Collapse
Affiliation(s)
- Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Vietnam
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hao-Yu Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bui-Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Vietnam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
15
|
Liu Y, Zhang L, Chen L, Liu Z, Liu C, Che G. 2-Hydroxynaphthalene based acylhydrazone as a turn-on fluorescent chemosensor for Al 3+ detection and its real sample applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119269. [PMID: 33302217 DOI: 10.1016/j.saa.2020.119269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Developing high performance fluorescent chemosensor for Al3+ detection is highly desirable, due to the excess of Al3+ will lead to many diseases. In this paper, a simple 2-hydroxynaphthalene-based fluorescent chemosensor has been synthesized and characterized by different spectroscopic methods. The compound exhibited an "turn-on-type" fluorescent chemosensing for the detection of Al3+, which was ascribed to the chelation-enhanced fluorescence (CHEF). The high selectivity and sensitivity of the compound for Al3+ were verified by fluorescence spectra in its DMF solution, and the enhancement of fluorescent intensity could be observed by naked-eye from non-fluorescence to green light. The detection limit of the compound for Al3+ was found to be 4.22 × 10-8 M and the stability constant was 4.82 × 104 M-1. The 1:1 binding stoichiometry of the compound to Al3+ was confirmed from the Job's plot based on fluorescence titrations. Additionally, the sensing process of the compound to Al3+ was chemically reversible by adding Na2EDTA. Importantly, the probe was successfully applied to quantitative analysis of Al3+ in real drug and potable water samples.
Collapse
Affiliation(s)
- Yucun Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China; College of Chemistry, Jilin Normal University, Siping 136000, China.
| | - Lili Zhang
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China; College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Zhixue Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Chunbo Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China; College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, China
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| |
Collapse
|
16
|
Liu M, Ren X, Meng X, Li H. Metal‐Organic Frameworks‐Based Fluorescent Nanocomposites for Bioimaging in Living Cells and
in vivo
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meijia Liu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Hongbo Li
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
17
|
Qu J, Ren F, Shi J, Tong B, Cai Z, Dong Y. The Aggregation Regularity Effect of Multiarylpyrroles on Their Near-Infrared Aggregation-Enhanced Emission Property. Chemistry 2020; 26:14947-14953. [PMID: 32602178 DOI: 10.1002/chem.202002525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Increasing the quantum yield of near-infrared (NIR) emissive dyes is critical for biological applications because these fluorescent dyes generally show decreased emission efficiency under aqueous conditions. In this work, we designed and synthesized several multiarylpyrrole (MAP) derivatives, in which a furanylidene (FE) group at the 3-position of the pyrrole forms donor-π-acceptor molecules, MAP-FE, with a NIR emissive wavelength and aggregation-enhanced emission (AEE) features. Different alkyl chains of MAP-FEs linked to phenyl groups at the 2,5-position of the pyrrole ring resulted in different emissive wavelengths and quantum yields in aggregated states, such as powders or single crystals. Powder XRD data and single crystal analysis elucidated that the different lengths of alkyl chains had a significant impact on the regularity of MAP-FEs when they were forced to aggregate or precipitate, which affected the intermolecular interaction and the restriction degree of the rotating parts, which are essential components. Therefore, an increasing number of NIR dyes could be developed by this design strategy to produce efficient NIR dyes with AEE. Moreover, this method can provide general guidance for other related fields, such as organic solar cells and organic light-emitting materials, because they are all applied in the aggregated state.
Collapse
Affiliation(s)
- Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Fei Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| |
Collapse
|
18
|
Gandra UR, Courjaret R, Machaca K, Al-Hashimi M, Bazzi HS. Multifunctional rhodamine B appended ROMP derived fluorescent probe detects Al 3+ and selectively labels lysosomes in live cells. Sci Rep 2020; 10:19519. [PMID: 33177560 PMCID: PMC7658199 DOI: 10.1038/s41598-020-76525-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
There a few reports of rhodamine-based fluorescent sensors for selective detection of only Al3+, due to the challenge of identifying a suitable ligand for binding Al3+ ion. The use of fluorophore moieties appended to a polymer backbone for sensing applications is far from mature. Here, we report a new fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of Al3+ ions. Both monomer 4 and its polymer P exhibit high selectivity toward only Al3+ with no interference from other metal ions, having a limit detection of 0.5 and 2.1 µM, respectively. The reversible recognition of monomer 4 and P for Al3+ was also proved in presence of Na2EDTA by both UV-Vis and fluorometric titration. The experimental data indicates the behavior of 4 and P toward Al3+ is pH independent in medium conditions. In addition, the switch-on luminescence response of 4 at acidic pH (0 < 5.0), allowed us to specifically stain lysosomes (pH ~ 4.5-5.0) in live cells.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Department of Chemistry, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, P.O. Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, P.O. Box 24144, Doha, Qatar
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar.
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar.
- Department of Materials Science & Engineering, Texas A&M University, 209 Reed McDonald Building, College Station, TX, 77843-3003, USA.
| |
Collapse
|
19
|
Qian Y, Shang J, Lyu Z, Huang X, Guan A, Xu L, Gong H. Synthesis of
π‐Extended
Carbazoles via
One‐Pot
C—C Coupling and Chlorination Promoted by
FeCl
3
. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Qian
- Department of Chemistry, Renmin University of China Zhongguancundajie 59 Beijing 100872 China
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Jia Shang
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Zhen‐Hua Lyu
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Xin Huang
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Ai‐jiao Guan
- Institute of Chemistry, Chinese Academy of Sciences Zhongguancunbeiyijie 2 Beijing 100190 China
| | - Li‐Jin Xu
- Department of Chemistry, Renmin University of China Zhongguancundajie 59 Beijing 100872 China
| | - Han‐Yuan Gong
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| |
Collapse
|
20
|
Sequential determination of cerium (IV) ion and ascorbic acid via a novel organic framework: A subtle interplay between intramolecular charge transfer (ICT) and aggregated-induced-emission (AIE). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
|
22
|
Highly sensitive fluorescence-linked immunosorbent assay based on aggregation-induced emission luminogens incorporated nanobeads. Biosens Bioelectron 2020; 150:111912. [DOI: 10.1016/j.bios.2019.111912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
|
23
|
Aydin D, Gunay IB, Karuk Elmas SN, Savran T, Arslan FN, Sadi G, Yilmaz I. A simple and sensitive fluorescent sensor platform for Al3+ sensing in aqueous media and monitoring through combined PET and ESIPT mechanisms: practical applications in drinking water and bio-imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj02487b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel hydrazide-based probe was designed and prepared as a fluorogenic “turn-on” sensor for Al3+ sensing in aqueous media.
Collapse
Affiliation(s)
- Duygu Aydin
- Department of Chemistry
- Kamil Ozdag Science Faculty
- Karamanoglu Mehmetbey University
- Karaman
- Turkey
| | - Ibrahim Berk Gunay
- Department of Chemistry
- Kamil Ozdag Science Faculty
- Karamanoglu Mehmetbey University
- Karaman
- Turkey
| | | | - Tahir Savran
- Department of Chemistry
- Kamil Ozdag Science Faculty
- Karamanoglu Mehmetbey University
- Karaman
- Turkey
| | - Fatma Nur Arslan
- Department of Chemistry
- Kamil Ozdag Science Faculty
- Karamanoglu Mehmetbey University
- Karaman
- Turkey
| | - Gokhan Sadi
- Department of Biology Kamil Ozdag Science Faculty
- Karamanoglu Mehmetbey University
- Karaman
- Turkey
| | - Ibrahim Yilmaz
- Department of Chemistry
- Kamil Ozdag Science Faculty
- Karamanoglu Mehmetbey University
- Karaman
- Turkey
| |
Collapse
|
24
|
Xu P, Bao Z, Yu C, Qiu Q, Wei M, Xi W, Qian Z, Feng H. A water-soluble molecular probe with aggregation-induced emission for discriminative detection of Al 3+ and Pb 2+ and imaging in seedling root of Arabidopsis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117335. [PMID: 31288169 DOI: 10.1016/j.saa.2019.117335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Luminogens with aggregation-induced emission (AIE) have been used to develop a new type of molecular probes based on analyte-triggered aggregation, but it still remains a challenge to design water-soluble AIE-active probe for specific detection of metal ions. Herein, we designed and synthesized a water-soluble molecular probe with AIE property for discriminative detection of aluminum ion and lead ion. Four carboxylic acid groups were incorporated into a tetraphenylethylene unit to enhance the coordination affinity and increase water-solubility in aqueous solution. The designed probe can be selectively lighted up by aluminum ion and lead ion via coordination-triggered AIE process. Discrimination of aluminum ion and lead ions based on the probe can be achieved in quantitative manner with the assistance of suitable masking reagents. This probe was further used to image aluminum ions in living cells of seedling roots of Arabidopsis, and the results showed that this probe is capable of imaging aluminum ions in living cells avoiding the interference of lead ions, and is suited for long-term imaging due to its excellent photostability. This work expands the application scope of AIE-active probes in discriminative detection of metal ions, and provides a design direction for water-soluble AIE probes to avoid the false signals from self-precipitation under physiological conditions.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhiyi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chenyi Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qianqian Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Mengru Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Wenbin Xi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
| |
Collapse
|
25
|
Wang XR, Wang XZ, Du J, Huang Z, Liu YY, Huo JZ, Liu K, Ding B. Post-synthetic dual-emission rhodamine B@ZIF-365 hybrid material and Enzymatic Biosensor Enzyme@ZIF-365: Ratiometric temperature sensing, Biomolecule Nicotinamide Detection and Sensing Platform for Lactose and Al3+. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Gao L, Deng C, Xiong J, Zhu P, Chen Q, Tan K. A sensitive ratiometric fluorescence method for visual detection of aluminum ion based on chelation-enhanced photoluminescence. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Qiu S, Cui S, Shi F, Pu S. Novel Diarylethene-Based Fluorescent Switching for the Detection of Al 3+ and Construction of Logic Circuit. ACS OMEGA 2019; 4:14841-14848. [PMID: 31552323 PMCID: PMC6751689 DOI: 10.1021/acsomega.9b01432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
A novel photochromic diarylethene was synthesized successfully containing a phthalazine unit. Its multistate fluorescence switching properties were investigated by stimulating with UV/vis lights and Al3+/EDTA. The synthesized diarylethene displayed excellent selectivity to Al3+ with a distinct fluorescence change, revealing that it could be used as a sensor for fluorescence identification of Al3+, and a logic circuit was constructed by utilizing this diarylethene molecular platform. Moreover, it also exhibited a high accuracy for the determination of Al3+ in practical water samples.
Collapse
Affiliation(s)
- Shouyu Qiu
- Jiangxi Key Laboratory of
Organic Chemistry, Jiangxi Science and Technology
Normal University, Nanchang 330013, China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of
Organic Chemistry, Jiangxi Science and Technology
Normal University, Nanchang 330013, China
| | - Fu Shi
- Jiangxi Key Laboratory of
Organic Chemistry, Jiangxi Science and Technology
Normal University, Nanchang 330013, China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of
Organic Chemistry, Jiangxi Science and Technology
Normal University, Nanchang 330013, China
| |
Collapse
|
28
|
Xie Y, Li X, Yan L, Li J. A highly selective aggregation-induced emission fluorogen for sensitive detection of Al 3+ in living cells. LUMINESCENCE 2019; 35:156-162. [PMID: 31507081 DOI: 10.1002/bio.3708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023]
Abstract
A Schiff's base derivative was synthesized using a condensation reaction between 8-formyl-7-hydroxy-4-methylcoumarin and furan-2-carbohydrazide that produced marked aggregation-induced emission and had excellent ability to specifically recognize aluminium ions (Al3+ ). This compound displayed faint fluorescence in the benign solvent dimethyl formamide, and exhibited obvious green fluorescence following addition of specific amounts of water. Moreover, it exhibited strong blue fluorescence after combination with Al3+ even in the presence of other interfering ions. These experimental results demonstrated that this derivative could be used as a fluorescence probe for Al3+ . The advantages, including significant fluorescence change, high selectivity and sensitivity, and fast response, meant that this probe could be used both to detect Al3+ in water samples and for fluorescence imaging in living cells.
Collapse
Affiliation(s)
- Ya Xie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| | - Xueming Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| | - Liqiang Yan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| | - Jianping Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
29
|
Khezerloo E, Mousavi-khoshdel S, Safarifard V. Sensitive and selective detection of metal ions and small molecules in aqueous media using a hydrolytically stable amide-functionalized metal–organic framework. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Barbero N, Butnarasu C, Visentin S, Barolo C. Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregation‐Induced Emission (AIE) Properties. Chem Asian J 2019; 14:896-903. [DOI: 10.1002/asia.201900055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Nadia Barbero
- Department of Chemistry, NIS Interdepartmental and INSTM Reference CentreUniversity of Torino Via Pietro Giuria 7 10125 Torino Italy
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino via Quarello 15A 10135 Torino Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health SciencesUniversity of Torino via Quarello 15A 10135 Torino Italy
| | - Claudia Barolo
- Department of Chemistry, NIS Interdepartmental and INSTM Reference CentreUniversity of Torino Via Pietro Giuria 7 10125 Torino Italy
| |
Collapse
|
31
|
Wu H, Chen M, Xu Q, Zhang Y, Liu P, Li W, Fan S. Switching to a “turn-on” fluorescent probe for selective monitoring of cyanide in food samples and living systems. Chem Commun (Camb) 2019; 55:15137-15140. [DOI: 10.1039/c9cc07492a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A “turn-on” fluorescent probe was designed by changing the structure of a “turn-off” probe for monitoring cyanide in food samples and living systems.
Collapse
Affiliation(s)
- Hai Wu
- School of Chemistry and Materials Engineering
- Fuyang Normal University
- Fuyang
- P. R. China
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction
| | - Miaomiao Chen
- School of Chemistry and Materials Engineering
- Fuyang Normal University
- Fuyang
- P. R. China
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction
| | - Qinqin Xu
- School of Chemistry and Materials Engineering
- Fuyang Normal University
- Fuyang
- P. R. China
| | - Ying Zhang
- School of Chemistry and Materials Engineering
- Fuyang Normal University
- Fuyang
- P. R. China
| | - Pingping Liu
- School of Chemistry and Materials Engineering
- Fuyang Normal University
- Fuyang
- P. R. China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction
- Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment
- Fuyang Normal University
- Fuyang
- P. R. China
| | - Suhua Fan
- School of Chemistry and Materials Engineering
- Fuyang Normal University
- Fuyang
- P. R. China
| |
Collapse
|
32
|
Ding G, Wang X, Li X, Liu H, Wang L, Liu N, Gao F, Wang Z. Nano-aggregates of furan-2-carbohydrazide derivatives displaying enhanced emission with a bathochromic shift. RSC Adv 2019; 9:36097-36102. [PMID: 35540599 PMCID: PMC9074951 DOI: 10.1039/c9ra07290j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
The non-fluorescent Schiff base compound C1 (N'-((4′-ethyl-3-hydroxy-[1,1′-biphenyl]-4-yl)methylene)furan-2-carbohydrazide) in organic solvent (e.g., THF) was found to produce yellow-green fluorescence emission upon addition of H2O, and granular-shaped aggregates in a THF/H2O mixed solution formed and exhibited obvious aggregation-induced emission (AIE). Especially its keto fluorescence band intensified dramatically, while the enol emission band remained almost unchanged. Hence, a change in fluorescence from no emission of light to emission of bright yellow-green light under a UV lamp was observed with the naked eye. In contrast, the reference compound C2 (N'-((4′-ethyl-3-methoxy-[1,1′-biphenyl]-4-yl)methylene)furan-2-carbohydrazide) showed no intensified fluorescence emission under the same experimental conditions. These results indicated the significant role played by intramolecular H-bonding in the formation of the C1 aggregates and the AIE process. C1 exhibited obvious AIE phenomena. A change from a lack of fluorescence emission to the emission of yellow-green light under a UV lamp was observed upon the inclusion of water in the solvent.![]()
Collapse
Affiliation(s)
- Ge Ding
- College of Materials and Chemical Engineering
- Chongqing University of Arts and Sciences
- Chongqing
- China
| | | | - Xiujuan Li
- College of Pharmacy
- Heze University
- Heze
- China
| | - Hongpan Liu
- College of Materials and Chemical Engineering
- Chongqing University of Arts and Sciences
- Chongqing
- China
| | - Lunxiang Wang
- College of Materials and Chemical Engineering
- Chongqing University of Arts and Sciences
- Chongqing
- China
| | - Na Liu
- College of Materials and Chemical Engineering
- Chongqing University of Arts and Sciences
- Chongqing
- China
| | - Fang Gao
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Zhenqiang Wang
- College of Chemistry
- Chongqing Normal University
- Chongqing
- China
| |
Collapse
|