1
|
Kandettu A, Kuthethur R, Chakrabarty S. A detailed review on the role of miRNAs in mitochondrial-nuclear cross talk during cancer progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167731. [PMID: 39978440 DOI: 10.1016/j.bbadis.2025.167731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are associated with biochemical pathways through the post-transcriptional regulation of gene expression in different cell types. Based on their expression pattern and function, miRNAs can have oncogenic and tumor suppressor activities in different cancer cells. Altered mitochondrial function and bioenergetics are known hallmarks of cancer cells. Mitochondria play a central role in metabolic reprogramming during cancer progression. Cancer cells exploit mitochondrial function for cell proliferation, invasion, migration and metastasis. Genetic and epigenetic changes in nuclear genome contribute to altered mitochondrial function and metabolic reprogramming in cancer cells. Recent studies have identified the role of miRNAs as major facilitators of anterograde and retrograde signaling between the nucleus and mitochondria in cancer cells. Detailed analysis of the miRNA-mediated regulation of mitochondrial function in cancer cells may provide new avenues for the diagnosis, prognosis, and therapeutic management of the disease. Our review aims to discuss the role of miRNAs in nuclear-mitochondrial crosstalk regulating mitochondrial functions in different cancer types. We further discussed the potential application of mitochondrial miRNAs (mitomiRs) targeting mitochondrial biogenesis and metabolism in developing novel cancer therapy.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
3
|
Heidari R, Assadollahi V, Khosravian P, Mirzaei SA, Elahian F. Engineered mesoporous silica nanoparticles, new insight nanoplatforms into effective cancer gene therapy. Int J Biol Macromol 2023; 253:127060. [PMID: 37774811 DOI: 10.1016/j.ijbiomac.2023.127060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Human Stem Cells and Neuronal Differentiation Core, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
4
|
Fabrication of zein–carboxymethyl cellulose nanoparticles for co-delivery of quercetin and resveratrol. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
6
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
7
|
Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors. Cancers (Basel) 2022; 14:cancers14174123. [PMID: 36077660 PMCID: PMC9454760 DOI: 10.3390/cancers14174123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of economic and health burden worldwide. The commonly used approaches for the treatment of cancer are chemotherapy, radiotherapy, and surgery. Chemotherapy frequently results in undesirable side effects, and cancer cells may develop resistance. Combating drug resistance is a challenging task in cancer treatment. Drug resistance may be intrinsic or acquired and can be due to genetic factors, growth factors, the increased efflux of drugs, DNA repair, and the metabolism of xenobiotics. The strategies used to combat drug resistance include the nanomedicine-based targeted delivery of drugs and genes using different nanocarriers such as gold nanoparticles, peptide-modified nanoparticles, as well as biomimetic and responsive nanoparticles that help to deliver payload at targeted tumor sites and overcome resistance. Gene therapy in combination with chemotherapy aids in this respect. siRNA and miRNA alone or in combination with chemotherapy improve therapeutic response in tumor cells. Some natural substances, such as curcumin, quercetin, tocotrienol, parthenolide, naringin, and cyclosporin-A are also helpful in combating the drug resistance of cancer cells. This manuscript summarizes the mechanism of drug resistance and nanoparticle-based strategies used to combat it.
Collapse
|
8
|
Lv Y, Han Y, Yu Z, Chen J, Li C, Wang C, Hu P, Liu Y. Core-shell alum-borneol fiber for high bioavailability. Prog Biomater 2022; 11:253-261. [PMID: 35731421 DOI: 10.1007/s40204-022-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, the treatment of burns poses a significant challenge to clinical surgical. The use of nanofibers combined with drugs provides an entirely new option for treating burns. Alum-borneol combination has been shown as a promising alternative in clinical burn treatment. However, the utilization of the alum-borneol combination is not optimistic due to the low solubility of borneol. In this study, alum-borneol incorporated polyvinyl pyrrolidone fibers with a core-shell structure were fabricated through coaxial electrospinning. In vitro Borneol release behavior of fibers with different ratios of alum to borneol was explored. Scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimeter, in vitro drug release, and in vitro release mechanism were evaluated. The results showed that the fiber membranes maintained an integrated morphology. In vitro dissolution data showed an improved solubility of borneol, which reached more than 82% at 240 min in alum-borneol fibers. It was 4.8 times higher than borneol powder, and the ratio of alum to borneol was 2:1 for the best results. Therefore, alum-borneol incorporated polyvinyl pyrrolidone fibers can significantly improve the dissolution rate of borneol, which opens up a new way for the combined application of the alum and borneol.
Collapse
Affiliation(s)
- Yarong Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yufen Han
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongxun Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, 130012, Jilin, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Luo Z, Yang F, Hong S, Wang J, Chen B, Li L, Yang J, Yao Y, Yang C, Hu Y, Wang S, Xu T, Wu J. Role of microRNA alternation in the pathogenesis of gouty arthritis. Front Endocrinol (Lausanne) 2022; 13:967769. [PMID: 36034424 PMCID: PMC9402903 DOI: 10.3389/fendo.2022.967769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Gouty arthritis is a common inflammatory disease. The condition is triggered by a disorder of uric acid metabolism, which causes urate deposition and gout flares. MicroRNAs are a class of conserved small non-coding RNAs that bind to the 3' untranslated region (UTR) of mRNA and regulate the expression of a variety of proteins at the post-transcriptional level. In recent years, attention has been focused on the role of miRNAs in various inflammatory diseases, including gouty arthritis. It is thought that miRNAs may regulate immune function and inflammatory responses, thereby influencing the onset and progression of the disease. This article mainly reviewed the roles of miRNAs in the pathogenesis of gouty arthritis and prospected their potential as diagnostic and prognostic relevant biomarkers and as possible therapeutic targets.
Collapse
Affiliation(s)
- Zhipan Luo
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Shaocheng Hong
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Junfa Yang
- Institute of clinical pharmacology, Anhui Medical University, Hefei, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenchen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Tao Xu, ; Jun Wu,
| | - Jun Wu
- Geriatric Department, The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Xu, ; Jun Wu,
| |
Collapse
|
10
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
11
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Yu H, Zhang C, Li W, Sun X, Liu Q, Wang D. Nano-Coated si-SNHG14 Regulated PD-L1 Expression and Decreased Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma Cells. J Biomed Nanotechnol 2021; 17:1993-2002. [PMID: 34706799 DOI: 10.1166/jbn.2021.3162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the expression characteristics of long non-coding RNA SNHG14 in nasopharyngeal carcinoma (NPC) and its effects on epithelial-mesenchymal transition and development of nano-coated si-SNHG14 as an anti-tumor agent. The SNHG14 expression in cancerous and adjacent non-cancerous tissues was monitored using reverse transcriptionpolymerase chain reaction (RT-PCR). Gain- and loss-of-function experiments tested the regulation of SNHG14, miR- 5590-3p, and ZEB1 on PD-L1. The binding association between the above three factors was verified using bioinformatics analysis. EMT-related E-cadherin, N-cadherin, and Vimentin were tested using Western blot. Animal experiments in nude mice verified the function of SNHG14 in the EMT of NPC in vivo. The nano-coated si-SNHG14 was developed as an anti-tumor agent and was verified NPC cell in vitro. SNHG14 was upregulated in NPC tissues. Knocking down SNHG14 markedly inhibited the EMT of NPC. Additionally, the expression of ZEB1 was positively related to that of the SNHG14, while it was inversely correlated with that of miR-5590-3p. Moreover, ZEB1 transcription upregulated PD-L1 and promoted the EMT, while SNHG14 could accelerate the EMT of NPC in vivo by regulating the PD-1 and PD-L1. SNHG14-miR-5590- 3p-ZEB1 positively regulated PD-L1 and facilitate the EMT of NPC. Nano-coated si-SNHG14 significantly downregulated PD-L1 expression and decreased EMT.
Collapse
Affiliation(s)
- Haoran Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Chen Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Wanpeng Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Quan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| |
Collapse
|
13
|
Li T, Zhu L, Zhu L, Wang P, Xu W, Huang J. Recent Developments in Delivery of MicroRNAs Utilizing Nanosystems for Metabolic Syndrome Therapy. Int J Mol Sci 2021; 22:ijms22157855. [PMID: 34360621 PMCID: PMC8346175 DOI: 10.3390/ijms22157855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Longjiao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
14
|
Wang X, Liu Z, Jin R, Cai B, Liu S, Bai Y, Chen X. Multifunctional hierarchical nanohybrids perform triple antitumor theranostics in a cascaded manner for effective tumor treatment. Acta Biomater 2021; 128:408-419. [PMID: 33878477 DOI: 10.1016/j.actbio.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Gene therapy based on transfection of RNAs/DNAs offers tremendous promise for tumor treatment. However, the relatively weak therapeutic efficiency of current genetic nanohybrids in vivo has limited the application of this strategy. Herein, we fabricated multifunctional core-shell-corona nanohybrids by combining cascaded theranostics for enhanced gene therapy. The nanohybrids consist of polydopamine-modified Fe3O4 nanoparticles as core, anti-miRNA-21 oligonucleotides (anti-miRNA) strands as shell, and doxorubicin (DOX)-conjugated DNA-8pb (DOX-DNA-8bp) as corona. The polydopamine/Fe3O4 core not only serves as an active agent for local photothermal therapy under NIR irradiation, but it also provides magnetic targeting to tumor tissue for accurate treatment, which could enhance the therapeutic effect and reduce the undesired side effects to healthy tissues. The DOX-DNA-8bp corona was grafted on the anti-miRNA shell through base pairing, which could be replaced by overexpressed miRNA-21 in tumor cells due to the strong interaction between miRNA-21 and anti-miRNA, resulting in tumor-specific gene therapy through tumorigenic miRNA-21 consumption and tumor selective chemotherapy through miRNA-21-triggered DOX-DNA-8bp release in tumor cells. Moreover, the intelligent controlled release system can gradually stop the release of DOX to prevent side effects caused by drug overdose, once sufficient damage of tumor cells has occurred, due to the downregulation of miRNA-21. The results of both in vitro and in vivo analyses showed that the nanohybrids combining cascaded chemo-photo-gene therapy could effectively inhibit tumor growth, promote the survival of tumor-bearing mice, and show no visible adverse effects on these mice, resulting in a promising nanoplatform for tumor treatment. STATEMENT OF SIGNIFICANCE: Gene therapy based on transfection of RNAs/DNAs offers tremendous promise for cancer treatment. However, the relatively weak therapeutic efficiency of current genetic nanovectors in vivo that results in insufficient tumor targeting and easy decomposition/elimination of RNAs/DNAs during therapy has limited its application. Although some approaches have combined photothermal agents or antitumor drugs with RNA/DNA nanocarriers to achieve better treatment, the spatiotemporal differences in photothermal therapy, chemotherapy, and gene therapy using current nanohybrids may hinder their synergistic effect. In the present study, we fabricated multifunctional core-shell-corona nanohybrids (Fe3O4@PDA@anti-miRNA/DNA) to simultaneously perform on-demand photothermal therapy, miR-21-triggered chemotherapy, and miR-21-dependent gene therapy at the same location, which can achieve an efficient synergistic effect for precise and effective tumor treatment.
Collapse
Affiliation(s)
- Xiangdong Wang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China; Xi'an Jiao Tong University Shenzhen Research School, High-Tech Zone, Shenzhen, 518057, China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, China
| | - Ronghua Jin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China.
| |
Collapse
|
15
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
16
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
17
|
Zhang L, Zhang S, Li M, Li Y, Xiong H, Jiang D, Li L, Huang H, Kang Y, Pang J. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111956. [PMID: 33812584 DOI: 10.1016/j.msec.2021.111956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
Docetaxel (DTX)-based chemotherapy of prostate cancer is still confronted with significant challenges due to insufficient drug accumulation at the tumor sites and the systemic side effects on normal cells and organs. Tumor microenvironment-responsive nanosized drug delivery systems have shown enormous potential to improve the anticancer efficacy and minimize the systemic side effects of chemotherapeutics. However, most of the currently redox-responsive nanoparticles respond only to single stimuli, which compromise the treatment effect. Hence, inspired by the abundance of reactive oxygen species (ROS) and intracellular glutathione (GSH) in cancer cells, we proposed a unique ROS and GSH dual responsive nanocarrier (PCL-SS) for DTX delivery. The DTX-loaded PCL-SS nanoparticles (PCL-SS@DTX NPs) were not only stable in a normal physiological environment but also rapidly triggered DTX release in prostate cancer cells. In vitro experiments showed that PCL-SS@DTX NPs had robust prostate cancer cell cytotoxicity, induced cell apoptosis, inhibited cell migration and invasion and exhibited satisfactory biocompatibility. In mice bearing orthotopic prostate cancer, PCL-SS@DTX NPs could accumulate in orthotopic tumor sites and then significantly weaken tumor growth by inhibiting prostate cancer cell proliferation and inducing cell apoptosis, without obvious damages to major organs. Overall, this dual responsive nanosized drug delivery system may act as a promising therapeutic option for prostate cancer chemotherapy.
Collapse
Affiliation(s)
- Liuhui Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengxiong Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yamei Li
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haiyun Xiong
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Donggen Jiang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lujing Li
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hai Huang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yang Kang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
18
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
19
|
Rezaei S, Landarani-Isfahani A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Hierarchical Gold Mesoflowers in Enzyme Engineering: An Environmentally Friendly Strategy for the Enhanced Enzymatic Performance and Biodiesel Production. ACS APPLIED BIO MATERIALS 2020; 3:8414-8426. [PMID: 35019613 DOI: 10.1021/acsabm.0c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To expand the field of nanomaterial and engineering of enzyme in eco-friendly processes, gold mesoflower (Au-MF) nanostructure was applied for preparation of three series of immobilized lipase (Au-MF/SAM 1-3) through biofunctionalization of surface by Ugi multicomponent reaction. The synthesized Au-MF/SAM 1-3/lipase as unique biocatalysts was confirmed by different analytical tools and techniques. Compared to the free lipase, the Au-MF/SAM 1-3/lipase showed more stability at high temperature and pH. Also, these biocatalysts showed high storage stability and reusability after 2 months and eight cycles, respectively. Moreover, the kinetic behavior was investigated and the results showed a minimal impairment of catalytic activity of immobilized lipase. The kinetic constants of the immobilized lipase, Au-MF/SAM 2/lipase, are Km = 0.37 mM, Vmax = 0.22 mM min-1, and kcat = 154 min-1. The immobilized lipase showed smaller activation energy (Ea) than that of free enzyme, indicating that the immobilized enzyme is less sensitive to temperature. In the following, the biodiesel production from palmitic acid was studied in the presence of Au-MF/SAM 2/lipase as an efficient biocatalyst. The influence of different reaction parameters such as temperature, molar ratio of alcohol to palmitic acid, water content, and lipase amount was deeply investigated.
Collapse
Affiliation(s)
- Saghar Rezaei
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
20
|
Pontón I, Martí del Rio A, Gómez Gómez M, Sánchez-García D. Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2466. [PMID: 33317099 PMCID: PMC7763534 DOI: 10.3390/nano10122466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Combination therapies rely on the administration of more than one drug, with independent mechanisms of action, aiming to enhance the efficiency of the treatment. For an optimal performance, the implementation of such therapies requires the delivery of the correct combination of drugs to a specific cellular target. In this context, the use of nanoparticles (NP) as platforms for the co-delivery of multiple drugs is considered a highly promising strategy. In particular, mesoporous silica nanoparticles (MSN) have emerged as versatile building blocks to devise complex drug delivery systems (DDS). This review describes the design, synthesis, and application of MSNs to the delivery of multiple drugs including nucleic acids for combination therapies.
Collapse
Affiliation(s)
| | | | | | - David Sánchez-García
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta, 390, 08017 Barcelona, Spain; (I.P.); (A.M.d.R.); (M.G.G.)
| |
Collapse
|
21
|
Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116:1-15. [PMID: 32911102 DOI: 10.1016/j.actbio.2020.09.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have received increasing interest due to their tunable particle size, large surface area, stable framework, and easy surface modification. They are increasingly being used in varying applications as delivery vehicles including bio-imaging, drug delivery, biosensors and tissue engineering etc. Precise structure control and the ability to modify surface properties of MSNs are important for their applications. This review summarises the different synthetic methods for the preparation of well-ordered MSNs with tunable pore volume as well as the approaches of drugs loading, especially highlighting the facile surface functionalization for various purposes and versatile biomedical applications in oncology. Finally, the challenges of clinical transformation of MSNs-based nanomedicines are further discussed.
Collapse
|
23
|
Chen S, Zhang Y, Qing J, Han Y, McClements DJ, Gao Y. Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105651] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Meng Q, Cong H, Hu H, Xu FJ. Rational design and latest advances of codelivery systems for cancer therapy. Mater Today Bio 2020; 7:100056. [PMID: 32510051 PMCID: PMC7264083 DOI: 10.1016/j.mtbio.2020.100056] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023] Open
Abstract
Current treatments have limited effectiveness in treating tumors. The combination of multiple drugs or treatment strategies is widely studied to improve therapeutic effect and reduce adverse effects of cancer therapy. The codelivery system is the key to realize combined therapies. It is necessary to design and construct different codelivery systems in accordance with the variable structures and properties of cargoes and vectors. This review presented the typical design considerations about codelivery vectors for cancer therapy and described the current state of codelivery systems from two aspects: different types of vectors and collaborative treatment strategies. The commonly used loading methods of cargoes into the vectors, including physical and chemical processes, are discussed in detail. Finally, we outline the challenges and perspectives about the improvement of codelivery systems.
Collapse
Affiliation(s)
- Q.Y. Meng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - H.L. Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - H. Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - F.-J. Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
25
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
26
|
Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics 2020; 12:E290. [PMID: 32210184 PMCID: PMC7151186 DOI: 10.3390/pharmaceutics12030290] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/20/2023] Open
Abstract
Nanogel-based nanoplatforms have become a tremendously promising system of drug delivery. Nanogels constructed by chemical crosslinking or physical self-assembly exhibit the ability to encapsulate hydrophilic or hydrophobic therapeutics, including but not limited to small-molecule compounds and proteins, DNA/RNA sequences, and even ultrasmall nanoparticles, within their 3D polymer network. The nanosized nature of the carriers endows them with a specific surface area and inner space, increasing the stability of loaded drugs and prolonging their circulation time. Reactions or the cleavage of chemical bonds in the structure of drug-loaded nanogels have been shown to trigger the controlled or sustained drug release. Through the design of specific chemical structures and different methods of production, nanogels can realize diverse responsiveness (temperature-sensitive, pH-sensitive and redox-sensitive), and enable the stimuli-responsive release of drugs in the microenvironments of various diseases. To improve therapeutic outcomes and increase the precision of therapy, nanogels can be modified by specific ligands to achieve active targeting and enhance the drug accumulation in disease sites. Moreover, the biomembrane-camouflaged nanogels exhibit additional intelligent targeted delivery features. Consequently, the targeted delivery of therapeutic agents, as well as the combinational therapy strategy, result in the improved efficacy of disease treatments, though the introduction of a multifunctional nanogel-based drug delivery system.
Collapse
Affiliation(s)
- Yanlong Yin
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (Y.Y.); (B.H.)
- School of Pharmacy, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (X.Y.); (L.C.)
| | - Ben Hu
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (Y.Y.); (B.H.)
- School of Pharmacy, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (X.Y.); (L.C.)
| | - Xiao Yuan
- School of Pharmacy, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (X.Y.); (L.C.)
| | - Li Cai
- School of Pharmacy, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (X.Y.); (L.C.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Qian Yang
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (Y.Y.); (B.H.)
- School of Pharmacy, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China; (X.Y.); (L.C.)
| |
Collapse
|
27
|
Guimarães RS, Rodrigues CF, Moreira AF, Correia IJ. Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery. Pharmacol Res 2020; 155:104742. [PMID: 32151682 DOI: 10.1016/j.phrs.2020.104742] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/14/2023]
Abstract
The application of nanomaterials is regarded nowadays as a highly promising approach for overcoming the limitations of the currently available cancer treatments, contributing for the creation of more effective, precise, and safer therapies. In the last years, organosilica nanoparticles arisen as alternatives to the most common mesoporous silica nanoparticles. The organosilica nanoparticles combine the advantages of the mesoporous silica, such as structural stability and mesoporous structure, with the increased biocompatibility and biodegradability of organic materials. Therefore, the variety of organic bridges that can be incorporated into the silica matrix allowed the development of new and exciting compositions, properties, and functions for improving the therapeutic effectiveness of the anticancer nanomedicines. In this review, the strategies that have been explored to create stimuli-responsive organosilica-based drug delivery systems are highlighted, describing the practical approaches and mechanisms controlling the drug release. Additionally, the organosilica nanoparticles surface modifications aimed for increasing the blood circulation time and the tumor targeting are also described.
Collapse
Affiliation(s)
- Rafaela S Guimarães
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| |
Collapse
|
28
|
Boca S, Gulei D, Zimta AA, Onaciu A, Magdo L, Tigu AB, Ionescu C, Irimie A, Buiga R, Berindan-Neagoe I. Nanoscale delivery systems for microRNAs in cancer therapy. Cell Mol Life Sci 2020; 77:1059-1086. [PMID: 31637450 PMCID: PMC11105078 DOI: 10.1007/s00018-019-03317-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/26/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Concomitant with advances in research regarding the role of miRNAs in sustaining carcinogenesis, major concerns about their delivery options for anticancer therapies have been raised. The answer to this problem may come from the world of nanoparticles such as liposomes, exosomes, polymers, dendrimers, mesoporous silica nanoparticles, quantum dots and metal-based nanoparticles which have been proved as versatile and valuable vehicles for many biomolecules including miRNAs. In another train of thoughts, the general scheme of miRNA modulation consists in inhibition of oncomiRNA expression and restoration of tumor suppressor ones. The codelivery of two miRNAs or miRNAs in combination with chemotherapeutics or small molecules was also proposed. The present review presents the latest advancements in miRNA delivery based on nanoparticle-related strategies.
Collapse
Affiliation(s)
- Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian, 400271, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Anca Onaciu
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Calin Ionescu
- 5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecological Oncology, 400015, Cluj-Napoca, Romania
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015, Cluj-Napoca, Romania
| | - Rares Buiga
- Department of Pathology, "Prof Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania.
| |
Collapse
|
29
|
UV-light cross-linked and pH de-cross-linked coumarin-decorated cationic copolymer grafted mesoporous silica nanoparticles for drug and gene co-delivery in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110469. [DOI: 10.1016/j.msec.2019.110469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
|
30
|
Ding C, Wu H, Yin ZZ, Gao J, Wu D, Qin Y, Kong Y. Disulfide-cleavage- and pH-triggered drug delivery based on a vesicle structured amphiphilic self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110366. [DOI: 10.1016/j.msec.2019.110366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
|
31
|
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov 2020; 15:63-83. [PMID: 31739699 DOI: 10.1080/17460441.2020.1690449] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that repress the expression of their target genes by reducing mRNA stability and/or inhibiting translation. miRNAs are known to be aberrantly regulated in cancers. Modulators of miRNA (mimics and antagonists) have emerged as novel therapeutic tools for cancer treatment.Areas covered: This review summarizes the various strategies that have been applied to correct the dysregulated miRNA in cancer cells. The authors also discuss the recent advances in the technical development and preclinical/clinical evaluation of miRNA-based therapeutic agents.Expert opinion: Application of miRNA-based therapeutics for cancer treatment is appealing because they are able to modulate multiple dysregulated genes and/or signaling pathways in cancer cells. Major obstacles hindering their clinical development include drug delivery, off-target effects, efficacious dose determination, and safety. Tumor site-specific delivery of novel miRNA therapeutics may help to minimize off-target effects and toxicity. Combination of miRNA therapeutics with other anticancer treatment modalities could provide a synergistic effect, thus allowing the use of lower dose, minimizing off-target effects, and improving the overall safety profile in cancer patients. It is critical to identify individual miRNAs with cancer type-specific and context-specific regulation of oncogenes and tumor-suppressor genes in order to facilitate the precise use of miRNA anticancer therapeutics.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
32
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|
33
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
34
|
Jiao X, Wang Z, Wang F, Wen Y. Dual Stimuli-Responsive Controlled Release Nanocarrier for Multidrug Resistance Cancer Therapy. Chemphyschem 2019; 20:3271-3275. [PMID: 31654459 DOI: 10.1002/cphc.201900935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Multidrug resistance of cancer cells is a major obstacle for cancer chemotherapy. Herein, we present a nanocarrier that can release chemotherapeutic agents to induce tumor cell death and generate NO under NIR to overcome multidrug resistance in cancer chemotherapy. Owing to the unique structure of the water channel in this controlled release system for chemotherapeutic agents, the nanocarrier surface is equipped with more active sites to graft NO donor molecules. The released NO performs very well in reversing multidrug resistance by inhibiting P-gp expression. Our findings provide new insight into multidrug resistance cancer therapy and controlled release nanocarriers for multiple drugs.
Collapse
Affiliation(s)
- Xiangyu Jiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083
| | - Zemin Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
| | - Fang Wang
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083
| |
Collapse
|
35
|
Chen S, McClements DJ, Jian L, Han Y, Dai L, Mao L, Gao Y. Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38103-38115. [PMID: 31509373 DOI: 10.1021/acsami.9b11782] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Curcumin and piperine are natural nutraceuticals that exhibit synergistic biological activities, but have different polarities, which can make their encapsulation within a single delivery system challenging. In this study, the two bioactive components were encapsulated within core-shell nanoparticles formed by a combination of antisolvent precipitation and layer-by-layer deposition. Initially, strongly hydrophobic curcumin (log P = 4.12) was embedded in the hydrophobic core of zein-hyaluronic acid nanoparticles using the antisolvent precipitation method. Then, the weakly hydrophobic piperine (log P = 2.78) was adsorbed to the outer biopolymer shell of these nanoparticles. Finally, the nutraceutical-loaded particles were coated with a layer of chitosan by the electrostatic deposition method. The surface charge and coating thickness depended on the number of adsorbed layers and the nature of the outer layer, being negative for hyaluronic acid and positive for chitosan. Low-, medium-, and high-molecular weight chitosan were utilized to modify the surface properties. Chitosan with a low-molecular weight was selected to fabricate the core-shell nanoparticles because it produced small highly charged cationic particles (d = 599 nm; ζ = +38.1 mV). The encapsulation efficiency and loading capacities were 90.4 and 5.7% for curcumin, and 86.4 and 5.4% for piperine, respectively. The core-shell nanoparticles protected the nutraceuticals from chemical degradation during light exposure, thermal processing, and storage for 2 months. Moreover, the nanoparticles were able to control the release of the bioactive components in simulated gastrointestinal conditions. Our results should facilitate the development of more effective nanodelivery systems for nutraceuticals that exhibit synergistic activities, but have different molecular characteristics.
Collapse
Affiliation(s)
| | - David Julian McClements
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | | | - Yahong Han
- College of Engineering , Huazhong Agricultural University , Wuhan 430070 , China
| | | | | | | |
Collapse
|
36
|
Abstract
Delivery of the drug to a desired point of body and controlled release of the therapeutic agent are important features, provided by drug delivery systems (DDSs), for development of today's effective medicines. A variety of nanomaterials or nanomolecules such as lipids/liposomes, nucleic acids, peptides/proteins, composites, polymers, or carbon nanotubes can be used as DDSs. Single-molecule characterization of these small materials in terms of their size, shape, surface, encapsulation efficiency, as well as interaction with the drug-receiving cell has importance for their efficiency. The loading, distribution, or leakage of the drug as well as its interaction with DDS should also be characterized. Although diverse techniques are present for characterization of specific DDS material, methods such as electron microscopy and fluorescence microscopy are widely used. In this review, the current methodologies utilized for the single-molecule characterization of mostly preferred DDS materials were presented.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey.,Department of Biology, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
37
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
38
|
Han D, Steckl AJ. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019; 84:1453-1497. [PMID: 31943926 DOI: 10.1002/cplu.201900281] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Indexed: 12/12/2022]
Abstract
The formation of fibers by electrospinning has experienced explosive growth in the past decade, recently reaching 4,000 publications and 1,500 patents per year. This impressive growth of interest is due to the ability to form fibers with a variety of materials, which lend themselves to a large and rapidly expanding set of applications. In particular, coaxial electrospinning, which forms fibers with multiple core-sheath layers from different materials in a single step, enables the combination of properties in a single fiber that are not found in nature in a single material. This article is a detailed review of coaxial electrospinning: basic mechanisms, early history and current status, and an in-depth discussion of various applications (biomedical, environmental, sensors, energy, catalysis, textiles). We aim to provide readers who are currently involved in certain aspects of coaxial electrospinning research an appreciation of other applications and of current results.
Collapse
Affiliation(s)
- Daewoo Han
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| | - Andrew J Steckl
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| |
Collapse
|
39
|
Li X, Fan D. Smart Collagen Hydrogels Based on 1-Ethyl-3-methylimidazolium Acetate and Microbial Transglutaminase for Potential Applications in Tissue Engineering and Cancer Therapy. ACS Biomater Sci Eng 2019; 5:3523-3536. [PMID: 33405735 DOI: 10.1021/acsbiomaterials.9b00393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the first time, collagen-based hydrogels were fabricated in the presence of a biocompatible ionic liquid, 1-ethyl-3-methylimidazolium acetate ([EMIM] [Ac]), by a simple biopolymer cross-linking process facilitated by the strong catalytic hydrolysis of microbial transglutaminase (MTGase). Phosphate buffer solution (PBS)-encapsulated human-like collagen (HLC) or fish bone collagen (FBC) for the composite hydrogels was simply prepared by the codissolution of biopolymers in [EMIM] [Ac] or, in the absence of the ionic liquid, by the dispersion of MTGase in the biopolymer solution, leading to the formation of MTGase-aided hydrogels (Gel1 and Gel4) and [EMIM] [Ac]/MTGase-aided hydrogels (Gel2, Gel3, and Gel5). The effects of different contents of [EMIM] [Ac] and collagens of different origins (HLC and FBC) during fabrication on a range of structural and material characteristics, including the synthesis mechanism, three-dimensional structure, swelling behavior, mechanical strength, enzymatic hydrolysis rate, cytotoxicity, fibroblast cell proliferation rate, in vitro inhibition of cancer cells and cell adhesion, and in vivo histocompatibility, were investigated. Surprisingly, fabrication with [EMIM] [Ac] had significant effects on the structure and properties of the collagen/MTGase-based hydrogels. In other words, [EMIM] [Ac] changed the underlying mechanism responsible for the advantageous properties of the hydrogels by changing the three-dimensional structure of HLC or FBC, which improved their effects on fibroblast proliferation (3T3-L1 and L929 cells) and their in vitro inhibition of cancer cells (HepG2 and MKN45 cells). The use of the ionic liquid also imbued the hydrogels with degradation resistance and anti-inflammatory properties after subcutaneous injection into mice (in vivo). The catalytic hydrolysis by MTGase and the [EMIM] [Ac] content were the major factors that influenced the properties of the collagen. This result suggests the potential application of ionic liquid-enzymatic hydrolysis in the fabrication of collagen hydrogels in circumstances where the control of the properties by an ionic liquid is desirable. Therefore, [EMIM] [Ac] could be a promising solvent for the development of collagen into smart biomaterials with controlled biodegradation rates that can meet the needs of specific potential applications, such as tissue engineering and cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.,Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| |
Collapse
|
40
|
Chen S, Han Y, Huang J, Dai L, Du J, McClements DJ, Mao L, Liu J, Gao Y. Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16922-16933. [PMID: 30985111 DOI: 10.1021/acsami.9b02529] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The utilization of layer-by-layer composite nanoparticles fabricated from zein and hyaluronic acid (HA) for the codelivery of curcumin and quercetagetin was investigated. A combination of hydrophobic effects and hydrogen bonding was responsible for the interaction of zein with both curcumin and quercetagetin inside the nanoparticles. Electrostatic attraction and hydrogen bonding were mainly responsible for the layer-by-layer deposition of hyaluronic acid on the surfaces of the nanoparticles. The secondary structure of zein was altered by the presence of the two nutraceuticals and HA. The optimized nanoparticle formulation contained relatively small particles ( d = 231.2 nm) that were anionic (ζ = -30.5 mV). The entrapment efficiency and loading capacity were 69.8 and 2.5% for curcumin and 90.3 and 3.5% for quercetagetin, respectively. Interestingly, the morphology of the nanoparticles depended on their composition. In particular, they changed from coated nanoparticles to nanoparticle-filled microgels as the level of HA increased. The nanoparticles were effective at reducing light and thermal degradation of the two encapsulated nutraceuticals and remained physically stable throughout 6 months of long-term storage. In addition, the nanoparticles were shown to slowly release the nutraceuticals under simulated gastrointestinal tract conditions, which may help improve their oral bioavailability. In summary, we have shown that layer-by-layer composite nanoparticles based on zein and HA are an effective codelivery system for two bioactive compounds.
Collapse
Affiliation(s)
- Shuai Chen
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yahong Han
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jingyang Huang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Lei Dai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Juan Du
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control , Zhengzhou University of Light Industry , Zhengzhou 450001 , China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Like Mao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jinfang Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yanxiang Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
41
|
Sábio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm 2019; 564:379-409. [PMID: 31028801 DOI: 10.1016/j.ijpharm.2019.04.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) displays interesting properties for biomedical applications such as high chemical stability, large surface area and tunable pores diameters and volumes, allowing the incorporation of large amounts of drugs, protecting them from deactivation and degradation processes acting as an excellent nanoplatform for drug delivery. However, the functional MSNs do not present the ability to transport the therapeutics without any leakage until reach the targeted cells causing side effects. On the other hand, the hydroxyls groups available on MSNs surface allows the conjugation of specific molecules which can binds to the overexpressed Enhanced Growth Factor Receptor (EGFR) in many tumors, representing a potential strategy for the cancer treatment. Beyond that, the targeting molecules conjugate onto mesoporous surface increase its cell internalization and act as gatekeepers blocking the mesopores controlling the drug release. In this context, multifunctional MSNs emerge as stimuli-responsive controlled drug delivery systems (CDDS) to overcome drawbacks as low internalization, premature release before to reach the region of interest, several side effects and low effectiveness of the current treatments. This review presents an overview of MSNs fabrication methods and its properties that affects drug delivery as well as stimuli-responsive CDDS for cancer treatment.
Collapse
Affiliation(s)
- Rafael M Sábio
- São Carlos Institute of Physics - University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | - Andréia B Meneguin
- São Carlos Institute of Physics - University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Taís C Ribeiro
- School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Robson R Silva
- Department of Chemistry and Chemical Engineering - Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
42
|
Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. Int J Mol Sci 2019; 20:ijms20040965. [PMID: 30813333 PMCID: PMC6413464 DOI: 10.3390/ijms20040965] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous nanoparticles drug delivery systems for therapeutic implications in cancer treatment are in preclinical development as conventional chemotherapy has several drawbacks. A chemotherapeutic approach requires high doses of chemotherapeutic agents with low bioavailability, non-specific targeting, and above all, development of multiple drug resistance. In recent years, inorganic nano-drug delivery platforms (NDDPs; with a metal core) have emerged as potential chemotherapeutic systems in oncology. One of the major goals of developing inorganic NDDPs is to effectively address the targeted anti-cancer drug(s) delivery related problems by carrying the therapeutic agents to desired tumors sites. In this current review, we delve into summarizing the recent developments in targeted release of anti-cancer drugs loaded in inorganic NDDPs such as mesoporous silica nanoparticles, carbon nanotubes, layered double hydroxides, superparamagnetic iron oxide nanoparticles and calcium phosphate nanoparticles together with highlighting their therapeutic performance at tumor sites.
Collapse
Affiliation(s)
- Safia Naz
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Muhammad Shamoon
- Medical School, The Australian National University, Canberra ACT 2600, Australia.
| | - Rui Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Li Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
43
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|