1
|
Hengsbach R, Bychko I, Schwarz S, Strizhak P, Fahmi A. Sustainable Bifunctional Electrospun Hybrid Nanofibers for CO 2 Capture and Conversion. Macromol Rapid Commun 2025:e2500050. [PMID: 40423658 DOI: 10.1002/marc.202500050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Indexed: 05/28/2025]
Abstract
Bifunctional nanofibers for CO2 capture and conversion can be fabricated by electrospinning. Using advanced methods like side-by-side electrospinning enables the integration of multiple independent functionalities. The combination of poly(ethylene oxide) (PEO) modified with poly(ethylene imine) (PEI) for CO2 capture and PEO loaded with copper nanoparticles (CuNP) for CO2 catalysis results in bifunctional fibers that can be synthesized using water as a green solvent. The fibers are characterized using scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. The bifunctional properties of fibers are illustrated by gas adsorption and catalytic experiments. The production via side-by-side electrospinning leads to materials with orthogonal properties that can be adjusted and optimized independently. The introduced imine groups capture CO2, which can be directly converted to methanol by hydrogenation at CuNP at a low temperature of 150 °C.
Collapse
Affiliation(s)
- R Hengsbach
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - I Bychko
- L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prosp. Nauky, Kyiv, 03028, Ukraine
| | - S Schwarz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069, Dresden, Germany
| | - P Strizhak
- L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prosp. Nauky, Kyiv, 03028, Ukraine
| | - A Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straße 1, 47533, Kleve, Germany
| |
Collapse
|
2
|
Savas PE, Yuan Z, La N, Chen W, Wang X, Wu X, Malloy TB, Bollini P, Tour JM. Incomplete CO 2 Desorption Enhances O 2 Stability of Solid Amine Carbon Capture Sorbents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408462. [PMID: 40277273 DOI: 10.1002/smll.202408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Reducing carbon dioxide (CO2) emissions is a critical environmental challenge. Capturing CO2 by solid polyethylenimine (PEI) sorbents is proposed as a strategy to address this concern. The CO2 forms carbamates with the amine groups on the solid sorbent. However, solid PEI sorbents are unstable under O2-containing flue gas streams, a property that has greatly limited their industrial importance. To combat this O2-sensitivity, the amount of CO2 desorbed per cycle is reduced to protect amines by the formed carbamates. These carbamates sufficiently reduce oxidative cleavage and maintain a low kdeac of -0.00373 cycle-1 while maintaining a working capacity of 2.88 wt% (0.65 mmol g-1) under an O2-containing gas mixture. Additionally, it is discovered that the degradation rate can be tuned through adjusting the sorbent working capacity; this tunability can be used to inform future process simulations. This approach offers an additive-free pathway toward oxidatively stable PEI carbon capture sorbents.
Collapse
Affiliation(s)
- Paul E Savas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Zhe Yuan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Nghi La
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiaowei Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, 4722 Calhoun Road, Houston, TX, 77004, USA
| | - Thomas B Malloy
- Center for Petroleum Geochemistry, Department of Earth and Atmospheric Sciences, University of Houston, 3705 Cullen Blvd, Houston, TX, 77204, USA
| | - Praveen Bollini
- Department of Chemical and Biomolecular Engineering, University of Houston, 4722 Calhoun Road, Houston, TX, 77004, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Smalley-Curl Institute, NanoCarbon Center and Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
3
|
Wang Y, Cheng C, Li S, Sun S, Zhao C. Immobilization of carbonic anhydrase on modified PES membranes for artificial lungs. J Mater Chem B 2024; 12:2364-2372. [PMID: 38345129 DOI: 10.1039/d3tb02553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The introduction of carbonic anhydrase (CA) onto an extracorporeal membrane oxygenation (ECMO) membrane can improve the permeability of carbon dioxide (CO2). However, existing CA-grafting methods have limitations, and the hemocompatibility of current substrate membranes of commercial ECMO is not satisfactory. In this study, a 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/N-hydroxy succinimide (NHS) activation method is adopted to graft CA with CO2-catalyzed conversion activity onto a polyethersulfone (PES) membrane, which is prepared by a phase inversion technique after in situ crosslinking polymerization of 1-vinyl-2-pyrrolidone (VP) and acrylic acid (AA) in PES solution. The characterization results reveal that CA has been grafted onto the modified PES membrane successfully and exhibits catalytic activity. The kinetic parameters of esterase activity verify that the grafted amount of active CA increases with an increase in the concentration of the CA incubation solution. The CA-grafted membrane (CA-M) can accelerate the conversion of bicarbonate to CO2 in water and blood, which demonstrates the special catalytic activity towards bicarbonate of CA. Finally, blood compatibility tests prove that the CA-M does not lead to hemolysis, shows suppressed protein adsorption and increased coagulation time, and is suitable for application in ECMO. This work demonstrates a green and efficient method for preparing bioactive materials and has practical guiding significance for subsequent pulmonary membrane research and ECMO applications.
Collapse
Affiliation(s)
- Yi Wang
- Sichuan University, College Biomedical Engineering, Chengdu 610065, Sichuan, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Zhu Y, Xie F, Wun TCK, Li K, Lin H, Tsoi CC, Jia H, Chai Y, Zhao Q, Lo BT, Leu S, Jia Y, Ren K, Zhang X. Bio-Inspired Microreactors Continuously Synthesize Glucose Precursor from CO 2 with an Energy Conversion Efficiency 3.3 Times of Rice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305629. [PMID: 38044316 PMCID: PMC10853710 DOI: 10.1002/advs.202305629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Excessive CO2 and food shortage are two grand challenges of human society. Directly converting CO2 into food materials can simultaneously alleviate both, like what green crops do in nature. Nevertheless, natural photosynthesis has a limited energy efficiency due to low activity and specificity of key enzyme D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). To enhance the efficiency, many prior studies focused on engineering the enzymes, but this study chooses to learn from the nature to design more efficient reactors. This work is original in mimicking the stacked structure of thylakoids in chloroplasts to immobilize RuBisCO in a microreactor using the layer-by-layer strategy, obtaining the continuous conversion of CO2 into glucose precursor at 1.9 nmol min-1 with enhanced activity (1.5 times), stability (≈8 times), and reusability (96% after 10 reuses) relative to the free RuBisCO. The microreactors are further scaled out from one to six in parallel and achieve the production at 15.8 nmol min-1 with an energy conversion efficiency of 3.3 times of rice, showing better performance of this artificial synthesis than NPS in terms of energy conversion efficiency. The exploration of the potential of mass production would benefit both food supply and carbon neutralization.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Department of ChemistryHong Kong Baptist UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Fengjia Xie
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Tommy Ching Kit Wun
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Kecheng Li
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huan Lin
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Chi Chung Tsoi
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huaping Jia
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Yao Chai
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Benedict Tsz‐woon Lo
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Shao‐Yuan Leu
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Yanwei Jia
- State‐Key Laboratory of Analog and Mixed‐Signal VLSI, Institute of MicroelectronicsFaculty of Science and Technology – ECEFaculty of Health Sciencesand MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau999078China
| | - Kangning Ren
- Department of ChemistryHong Kong Baptist UniversityKowloonHong Kong999077China
| | - Xuming Zhang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| |
Collapse
|
5
|
Tourzani AA, Hormozi F, Asadollahzadeh M, Torkaman R. Effective CO 2 capture by using poly (acrylonitrile) nanofibers based on the radiation grafting procedure in fixed-bed adsorption column. Sci Rep 2023; 13:6173. [PMID: 37061577 PMCID: PMC10105707 DOI: 10.1038/s41598-023-33036-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
In this study, a new adsorbent was investigated for CO2 adsorption in the fixed-bed column. Poly (acrylonitrile) nanofibers were prepared by electrospinning, then grafting under gamma irradiation with glycidyl methacrylate (GMA). Then, the nanofibers were modified with ethanolamine (EA), diethylamine (DEA) and triethylamine (TEA) to adsorb carbon dioxide molecules. Dynamic adsorption experiments were performed with a mixture of CH4, CO2 in a constant bed column at ambient pressure and temperature and CO2 feed concentration (5%). The maximum adsorption capacity is 2.84 mmol/g for samples with 172.26% degree of grafting (DG) in 10 kGy. Also, the degree of amination with ethanolamine was achieved equal to 170.83%. In addition, the reduction of the regeneration temperature and the stability of this adsorbent after four cycles indicated the high performance of this adsorbent for CO2 adsorption.
Collapse
Affiliation(s)
- Ali Ahmadizadeh Tourzani
- Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, P.O. Box 35195-363, Semnan, Islamic Republic of Iran
| | - Faramarz Hormozi
- Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, P.O. Box 35195-363, Semnan, Islamic Republic of Iran
| | - Mehdi Asadollahzadeh
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Islamic Republic of Iran.
| | - Rezvan Torkaman
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Islamic Republic of Iran
| |
Collapse
|
6
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
7
|
Liao Q, Guo M, Mao M, Gao R, Meng Z, Fan X, Liu W. Construction and optimization of a photo−enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Fan X, Wang H, Liu X, Liu J, Zhao N, Zhong C, Hu W, Lu J. Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209290. [PMID: 36455877 DOI: 10.1002/adma.202209290] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Increasing pursuit of next-generation wearable electronics has put forward the demand of reliable energy devices with high flexibility, durability, and enhanced electrochemical performances. Flexible aqueous zinc-air batteries (FAZABs) have attracted great interests owing to the high energy density, safety, and environmental benignity, for which quasi-solid-state gel polymer electrolytes (QSGPEs) are state-of-the-art electrolytes with high ionic conductivity, flexibility, and resistance to leakage problems of traditional liquid electrolytes. Compared to commonly used PVA-KOH electrolyte with poor electrolyte retention capability and cycling stability, a new type of sulfonate functionalized nanocomposite QSGPE is applied in FAZABs with high ionic conductivity, strong alkaline tolerance, and high zinc anode stability. Notably, the existence of (1) strong anionic sulfonate groups of QSGPEs, contributing to the exposure of preferred Zn (002) plane that is more resistant to zinc dendrite formation, and (2) nano-attapulgite electrolyte additives, beneficial for the enhancement of ionic conductivity, electrolyte uptake, and retention capability, endows a ultralong cycling life of 450 h for the fabricated FAZAB. Furthermore, flexible energy belts and knittable energy wires fabricated with a series/parallel unit of several FAZABs can be used to power various wearable electronics.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Naiqin Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Composite and Functional Material, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
9
|
Xv J, Zhang Z, Pang S, Jia J, Geng Z, Wang R, Li P, Bilal M, Cui J, Jia S. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFsShort title: Accelerated CO2 capture using immobilized carbonic anhydrase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Liao Q, Liu W, Meng Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol Adv 2022; 60:108024. [PMID: 35907470 DOI: 10.1016/j.biotechadv.2022.108024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
The overexploitation of fossil fuels has led to a significant increase in atmospheric carbon dioxide (CO2) concentrations, thereby causing problems, such as the greenhouse effect. Rapid global climate change has caused researchers to focus on utilizing CO2 in a green and efficient manner. One of the ways to achieve this is by converting CO2 into valuable chemicals via chemical, photochemical, electrochemical, or enzymatic methods. Among these, the enzymatic method is advantageous because of its high specificity and selectivity as well as the mild reaction conditions required. The reduction of CO2 to formate, formaldehyde, and methanol using formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), and alcohol dehydrogenase (ADH) are attractive routes, respectively. In this review, strategies for overcoming the common limitations of enzymatic CO2 reduction are discussed. First, we present a brief background on the importance of minimizing of CO2 emissions and introduce the three bottlenecks limiting enzymatic CO2 reduction. Thereafter, we explore the different strategies for enzyme immobilization on various support materials. To solve the problem of cofactor consumption, different state-of-the-art cofactor regeneration strategies as well as research on the development of cofactor substitutes and cofactor-free systems are extensively discussed. Moreover, aiming at improving CO2 solubility, biological, physical, and engineering measures are reviewed. Finally, conclusions and future perspectives are presented.
Collapse
Affiliation(s)
- Qiyong Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China.
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| |
Collapse
|
11
|
Nanostructured Ceria-zirconia Supported Ni Catalysts for High Performance CO2 Methanation: Phase and morphology effect on activity. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Immobilization of formate dehydrogenase on polyethyleneimine modified carriers for the enhancement of catalytic performance. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
13
|
Zhu W, Ji M, Zhang Y, Wang Z, Chen W, Xue Y. Synthesis and Characterization of Aminosilane Grafted Cellulose Nanocrystal Modified Formaldehyde-Free Decorative Paper and its CO 2 Adsorption Capacity. Polymers (Basel) 2019; 11:polym11122021. [PMID: 31817674 PMCID: PMC6960817 DOI: 10.3390/polym11122021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
As one of the main consumables of interior decoration and furniture, decorative paper can be seen everywhere in the indoor space. However, because of its high content of formaldehyde, it has a certain threat to people’s health. Therefore, it is necessary to develop and study new formaldehyde-free decorative paper to meet the market demand. In this work, we have obtained formaldehyde-free decorative paper with high CO2 adsorption capacity. Here, cellulose nanocrystals (CNC) were prepared by hydrolyzing microcrystalline cellulose with sulfuric acid. The N-(2-aminoethyl) (3-amino-propyl) methyldimethoxysilane (AEAPMDS) was grafted onto the CNCs by liquid phase hydrothermal treatment, and the aqueous solution was substituted by tert-butanol to obtain aminated CNCs (AEAPMDS-CNCs). The as-prepared AEAPMDS-CNCs were applied to formaldehyde-free decorative paper by the spin-coating method. The effects of various parameters on the properties of synthetic materials were systematically studied, and the optimum reaction conditions were revealed. Moreover, the surface bond strength and abrasion resistance of modified formaldehyde-free decorative paper were investigated. The experimental results showed that AEAPMDS grafted successfully without destroying the basic morphology of the CNCs. The formaldehyde-free decorative paper coated with AEAPMDS-CNCs had high CO2 adsorption capacity and exhibited excellent performance of veneer to plywood. Therefore, laminating the prepared formaldehyde-free decorative paper onto indoor furniture can achieve the purpose of capturing indoor CO2 and have a highly potential use for the indoor decoration.
Collapse
|
14
|
Zhao Y, Zhou J, Fan L, Chen L, Li L, Xu ZP, Qian G. Indoor CO2 Control through Mesoporous Amine-Functionalized Silica Monoliths. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Li Li
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
15
|
Fan M, Gai F, Cao Y, Zhao Z, Ao Y, Liu Y, Huo Q. Structuring ZIF-8-based hybrid material with hierarchical pores by in situ synthesis and thermal treatment for enhancement of CO2 uptake. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|