1
|
Aftabuzzaman M, Hong Y, Jeong S, Levan R, Lee SJ, Choi DH, Lee K. Colloidal Perovskite Nanocrystals for Blue-Light-Emitting Diodes and Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409736. [PMID: 40059086 PMCID: PMC12005814 DOI: 10.1002/advs.202409736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Indexed: 04/19/2025]
Abstract
The evolution of display technology toward ultrahigh resolution, high color purity, and cost-effectiveness has generated interest in metal halide perovskites, particularly colloidal perovskite nanocrystals (PeNCs). PeNCs exhibit narrow emission spectra, high photoluminescence quantum yields, and wide color gamuts, rendering them promising candidates for next-generation displays. Despite significant advancements in perovskite light-emitting diode (PeLED) technology, challenges remain regarding the efficiencies of PeNC-based blue LEDs. Addressing these challenges, including both inherent and external instabilities of PeNCs and operational instabilities of the devices, is important as they collectively impede the broader acceptance and utilization of PeNCs. Herein, a comprehensive overview of the syntheses of dimension- and composition-controlled blue colloidal PeNCs and critical factors influencing the performances of colloidal PeNC-based blue LEDs is provided. Moreover, the advancements of colloidal PeNC-based blue LEDs and challenges associated with the application of these LEDs are explored, and the potentials of these LEDs for application in next-generation displays are emphasized. This review highlights the path forward for the future development of PeNC-based blue LEDs.
Collapse
Affiliation(s)
- Md Aftabuzzaman
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Yongju Hong
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sangyeon Jeong
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Ratiani Levan
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Seung Jin Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
2
|
Zhang C, Wang Z, Da Z, Shi J, Wang J, Xu Y, Gaponenko NV, Bhatti AS, Wang M. One-Step Preparation of High-Stability CsPbX 3/CsPb 2X 5 Composite Microplates with Tunable Emission. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38598608 DOI: 10.1021/acsami.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The core-shell structure is an effective means to improve the stability and optoelectronic properties of cesium lead halide (CsPbX3 (X = Cl, Br, I)) perovskite quantum dots (QDs). However, confined by the ionic radius differences, developing a core-shell packaging strategy suitable for the entire CsPbX3 system remains a challenge. In this study, we introduce an optimized hot-injection method for the epitaxial growth of the CsPb2X5 substrate on CsPbX3 surfaces, achieved by precisely controlling the reaction time and the ratio of lead halide precursors. The synthesized CsPbX3/CsPb2X5 composite microplates exhibit an emission light spectrum that covers the entire visible range. Crystallographic analyses and density functional theory (DFT) calculations reveal a minimal lattice mismatch between the (002) plane of CsPb2X5 and the (11 ¯ 0) plane of CsPbX3, facilitating the formation of high-quality type-I heterojunctions. Furthermore, introducing Cl- and I- significantly alters the surface energy of CsPb2X5's (110) plane, leading to an evolutionary morphological shift of grains from circular to square microplates. Benefiting from the passivation of CsPb2X5, the composites exhibit enhanced optical properties and stability. Subsequently, the white light-emitting diode prepared using the CsPbX3/CsPb2X5 composite microplates has a high luminescence efficiency of 136.76 lm/W and the PL intensity decays by only 3.6% after 24 h of continuous operation.
Collapse
Affiliation(s)
- Chen Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zeyu Wang
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049 China
| | - Zheyuan Da
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jindou Shi
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junnan Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Nikolai V Gaponenko
- Belarusian State University of Informatics and Radioelectronics, P. Browki 6, Minsk 220013, Belarus
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500 Pakistan
- Virtual University of Pakistan, 5 Atta Turk Avenue, Sector G-5/1, Islamabad 44000, Pakistan
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Zhao G, Sun X, Li S, Zheng J, Liu J, Huang M. Water-stable perovskite CsPb 2Br 5/CdSe quantum dot-based photoelectrochemical sensors for the sensitive determination of dopamine. NANOSCALE 2024; 16:2621-2631. [PMID: 38226862 DOI: 10.1039/d3nr05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A heterojunction of CdSe quantum dots in situ grown on the perovskite CsPb2Br5 (CsPb2Br5/CdSe) for water-stable photoelectrochemical (PEC) sensing was simply synthesized using the hot-injection method. Due to the inherent built-in electric field and the matching band structure between CsPb2Br5 and CdSe, the CsPb2Br5/CdSe p-n heterojunction demonstrates enhanced photoelectrochemical properties. Accelerated interfacial charge transfer and increased electron-hole pair separation enable hydrolysis-resistant CsPb2Br5/CdSe sensors to exhibit heightened sensitivity with an ultra-low detection limit (0.0124 μM) and a wide linear range (0.4-303.9 μM) in subsequent dopamine detection. Moreover, the CsPb2Br5/CdSe sensors show excellent anti-interference ability, as well as remarkable stability and reproducibility in water solvent. It is noteworthy that this work is conducted in an aqueous environment, which provides an inspiring and convenient way for photoelectric and photoelectrocatalysis applications based on water-resistant perovskites.
Collapse
Affiliation(s)
- Gang Zhao
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Xinhang Sun
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Songyuan Li
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Jiale Zheng
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Junhui Liu
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Mingju Huang
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Saleem MI, Katware A, Amin A, Jung SH, Lee JH. YCl 3-Substituted CsPbI 3 Perovskite Nanorods for Efficient Red-Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1366. [PMID: 37110951 PMCID: PMC10141025 DOI: 10.3390/nano13081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) are a promising material for red-light-emitting diodes (LEDs) due to their excellent color purity and high luminous efficiency. However, small-sized CsPbI3 colloidal NCs, such as nanocubes, used in LEDs suffer from confinement effects, negatively impacting their photoluminescence quantum yield (PLQY) and overall efficiency. Here, we introduced YCl3 into the CsPbI3 perovskite, which formed anisotropic, one-dimensional (1D) nanorods. This was achieved by taking advantage of the difference in bond energies among iodide and chloride ions, which caused YCl3 to promote the anisotropic growth of CsPbI3 NCs. The addition of YCl3 significantly improved the PLQY by passivating nonradiative recombination rates. The resulting YCl3-substituted CsPbI3 nanorods were applied to the emissive layer in LEDs, and we achieved an external quantum efficiency of ~3.16%, which is 1.86-fold higher than the pristine CsPbI3 NCs (1.69%) based LED. Notably, the ratio of horizontal transition dipole moments (TDMs) in the anisotropic YCl3:CsPbI3 nanorods was found to be 75%, which is higher than the isotropically-oriented TDMs in CsPbI3 nanocrystals (67%). This increased the TDM ratio and led to higher light outcoupling efficiency in nanorod-based LEDs. Overall, the results suggest that YCl3-substituted CsPbI3 nanorods could be promising for achieving high-performance perovskite LEDs.
Collapse
Affiliation(s)
| | - Amarja Katware
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Al Amin
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seo-Hee Jung
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Wu X, Sun J, Shao H, Zhai Y, Li L, Chen W, Zhu J, Dong B, Xu L, Zhou D, Xu W, Song H, Bai X. Self-powered UV photodetectors based on CsPbCl3 nanowires enabled by the synergistic effect of acetate and lanthanide ion passivation. CHEMICAL ENGINEERING JOURNAL 2021; 426:131310. [DOI: 10.1016/j.cej.2021.131310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
|
6
|
Gao Y, Yan C, Peng X, Li W, Cao J, Wang Q, Zeng X, Fu X, Yang W. The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications. NANOSCALE 2021; 13:18010-18031. [PMID: 34718363 DOI: 10.1039/d1nr04706j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All inorganic perovskites CsPbX3 (X = Cl, Br, I), rising stars of optical materials, have shown promising application prospects in optoelectronic and photovoltaic fields. However, some open issues still exist in these perovskites, like poor long-term stability, inevitable intrinsic defects and much nonradiative recombination, which greatly weakens their optical capability and seriously hinders their further development. The metal doping strategy, through the partial substitution of foreign ions for native ions, has gradually become an effective method for significantly enhancing the comprehensive properties of CsPbX3. Whereas some previous studies have reported the impressive properties of metal-doped CsPbX3, there is still a lack of a comprehensive review on the influences of metal doping on CsPbX3. In this review, we aim to provide a systematic review of the latest achievements in metal-doped CsPbX3, which focuses on their synthetic methods and the positive effects of metal doping on structure, optical properties, morphology control, carrier behavior and related optoelectronic and photovoltaic devices. Finally, we put forward a few opportunities and challenges about the further investigation of metal-doped perovskites, which may help researchers explore new research directions.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Cheng Yan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xiaodong Peng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Wen Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Jingjing Cao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Qungui Wang
- College of Physics, Sichuan University, Chengdu 610041, P. R. China
| | - Xiankan Zeng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xuehai Fu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| |
Collapse
|
7
|
Gao Y, Luo C, Yan C, Li W, Liu C, Yang W. Copper-doping defect-lowered perovskite nanosheets for deep-blue light-emitting diodes. J Colloid Interface Sci 2021; 607:1796-1804. [PMID: 34600343 DOI: 10.1016/j.jcis.2021.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
Mixed-halide blue perovskites CsPb(Br/Cl)3 are considered promising candidates for developing efficient deep-blue perovskite light-emitting diodes (PeLEDs), but their low photoluminescence quantum yield (PLQY), environmental instability, and poor device performance gravely inhibit their future development. Here, we employ a heteroatomic Cu2+ doping strategy combined with post-treatment Br- anion exchange to prepare high-performance deep-blue perovskites CsPb(Br/Cl)3. The Cu2+ doping strategy significantly decreases the intrinsic chlorine defects, ensuring that the inferior CsPbCl3 quantum dots are transformed into two-dimensional nanosheets with enhanced violet photoluminescence and increased exciton binding energy. Further, with the post-treatment Br- anion exchange, the as-prepared CsPb(Br/Cl)3 nanosheets with more radiation recombination and less ion migration present an enhanced PLQY of 94% and better humidity stability of 30 days. Based on the optimized CsPb(Br/Cl)3, we fabricated deep-blue PeLEDs with luminescence emission at 462 nm, a maximum luminance of 761 cd m-2, and a current density of 205 mA cm-2. This work puts forward a feasible synthesis strategy to prepare efficient and stable mixed-halide blue perovskite CsPb(Br/Cl)3 and related blue PeLEDs, which may promote the further application of mixed-halide perovskites in the blue light range.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chao Luo
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, PR China
| | - Cheng Yan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wen Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chuanqi Liu
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
8
|
Lyu B, Guo X, Gao D, Kou M, Yu Y, Ma J, Chen S, Wang H, Zhang Y, Bao X. Highly-stable tin-based perovskite nanocrystals produced by passivation and coating of gelatin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123967. [PMID: 33265008 DOI: 10.1016/j.jhazmat.2020.123967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Lead-halide perovskite nanocrystals (NCs) are limited in commercial applications due to their high lead content. Developing lead-free perovskite NCs becomes a new choice. Among them, the tin-halide perovskite NCs exhibit the excellent photoelectric conversion efficiency, but has worse stability. Herein we describe an effective approach to the preparation of highly-stable all-inorganic tin-based perovskite NCs by using gelatin via interfacial passivation and coating, which leads to the retention of 77.46% of photoluminescence intensity even after the dispersion of the NCs in water for 3 d. The results show that gelatin form a "rich ligand" state on NC surface, such as amino-Sn, carboxylate-Sn and halogen-ammonium hydrogen-bonding interactions. The amino-Sn coordination would be replaced by carboxylate-Sn coordination when NCs are dispersed in polar-media. Meanwhile, gelatin is imparted excellent anti-mildew properties by NCs, which ensures long-lasting effect to NCs. This will promote the stability and sustainable development of the perovskite device.
Collapse
Affiliation(s)
- Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Xu Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China.
| | - Mengnan Kou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Yajin Yu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 96064, USA
| | - Hao Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Ying Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Xin Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| |
Collapse
|
9
|
Tang Y, Liang M, Zhang M, Honarfar A, Zou X, Abdellah M, Pullerits T, Zheng K, Chi Q. Photodetector Based on Spontaneously Grown Strongly Coupled MAPbBr 3/N-rGO Hybrids Showing Enhanced Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:858-867. [PMID: 31820629 DOI: 10.1021/acsami.9b18598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, metal-halide perovskites have emerged as a candidate for optoelectronic applications such as photodetectors. However, the poor device performance and instability have limited their future commercialization. Herein, we report the spontaneous growth of perovskite/N-rGO hybrid structures using a facile solution method and their applications for photodetectors. In the hybrid structures, perovskites were homogeneously wrapped by N-rGO sheets through strong hydrogen bonding. The strongly coupled N-rGOs facilitate the charge carrier transportation across the perovskite crystals but also distort the surface lattice of the perovskite creating a potential barrier for charge transfer. We optimize the addition of N-rGO in the hybrid structures to balance interfacial structural distortion and the intercrystal conductivity. High-performance photodetection up to 3 × 104 A/W, external quantum efficiency exceeding 105%, and detectivity up to 1012 Jones were achieved in the optimal device with the weight ratio between perovskites and N-rGO to be 8:1.5. The underlying mechanism behind the optimal N-rGO addition ratio in the hybrids has also been rationalized via time-resolved spectroscopic studies as a reference for future applications.
Collapse
Affiliation(s)
- Yingying Tang
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Mingli Liang
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - MinWei Zhang
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Alireza Honarfar
- Department of Chemical Physics and NanoLund , Lund University , Box 124, 22100 Lund , Sweden
| | - Xianshao Zou
- Department of Chemical Physics and NanoLund , Lund University , Box 124, 22100 Lund , Sweden
| | - Mohamed Abdellah
- Department of Chemical Physics and NanoLund , Lund University , Box 124, 22100 Lund , Sweden
- Department of Chemistry, Qena Faculty of Science , South Valley University , 83523 Qena , Egypt
| | - Tönu Pullerits
- Department of Chemical Physics and NanoLund , Lund University , Box 124, 22100 Lund , Sweden
| | - Kaibo Zheng
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
- Department of Chemical Physics and NanoLund , Lund University , Box 124, 22100 Lund , Sweden
| | - Qijin Chi
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| |
Collapse
|