1
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025. [PMID: 40378355 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Lacombe
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Simindokht Rostami
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Arshia Arasteh Kani
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Andrea Borgonovo
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Gerald Striedner
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Birgit Wiltschi
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
3
|
Ding L, Hu J, Liu X, Zeng J, Hu Z, Chen J, Zhu K, Duan H, Huang X. Ultrasensitive dynamic light scattering immunodetection of alpha-fetoprotein using heptamer-amplified nanoparticle crosslinking aggregation. Mikrochim Acta 2024; 191:387. [PMID: 38869719 DOI: 10.1007/s00604-024-06437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL-1 to 512 ng mL-1, with a detection limit of 15 pg mL-1. The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis.
Collapse
Affiliation(s)
- Lu Ding
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
- Songzi Center for Inspection and Test, Songzi, 434200, P. R. China
| | - Xing Liu
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Zhiwen Hu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Hypertension Research Institute, Nanchang University, Nanchang, 330006, P. R. China
| | - Jing Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Kang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, P. R. China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China.
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, P. R. China.
| |
Collapse
|
4
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
5
|
Guo Y, Liu S, Jing D, Liu N, Luo X. The construction of elastin-like polypeptides and their applications in drug delivery system and tissue repair. J Nanobiotechnology 2023; 21:418. [PMID: 37951928 PMCID: PMC10638729 DOI: 10.1186/s12951-023-02184-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiwei Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
6
|
Sisila V, Indhu M, Radhakrishnan J, Ayyadurai N. Building biomaterials through genetic code expansion. Trends Biotechnol 2023; 41:165-183. [PMID: 35908989 DOI: 10.1016/j.tibtech.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023]
Abstract
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
Collapse
Affiliation(s)
- Valappil Sisila
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Janani Radhakrishnan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
7
|
Li L, Liu X, Su B, Zhang H, Li R, Liu Z, Chen Q, Huang T, Cao H. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Slawinski M, Khoury LR, Sharma S, Nowitzke J, Gutzman JH, Popa I. Kinetic Method of Producing Pores Inside Protein-Based Biomaterials without Compromising Their Structural Integrity. ACS Biomater Sci Eng 2022; 8:1132-1142. [PMID: 35188361 DOI: 10.1021/acsbiomaterials.1c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels made from globular proteins cross-linked covalently into a stable network are becoming an important type of biomaterial, with applications in artificial tissue design and cell culture scaffolds, and represent a promising system to study the mechanical and biochemical unfolding of proteins in crowded environments. Due to the small size of the globular protein domains, typically 2-5 nm, the primary network allows for a limited transfer of protein molecules and prevents the passing of particles and aggregates with dimensions over 100 nm. Here, we demonstrate a method to produce protein materials with micrometer-sized pores and increased permeability. Our approach relies on forming two competing networks: a covalent network made from cross-linked bovine serum albumin (BSA) proteins via a light-activated reaction and a physical network triggered by the aggregation of a polysaccharide, alginate, in the presence of Ca2+ ions. By fine-tuning the reaction times, we produce porous-protein hydrogels that retain the mechanical characteristics of their less-porous counterparts. We further describe a simple model to investigate the kinetic balance between the nucleation of alginate and cross-linking of BSA molecules and find the upper rate of the alginate aggregation reaction driving pore formation. By enabling a more significant permeability for protein-based materials without compromising their mechanical response, our method opens new vistas into studying protein-protein interactions and cell growth and designing novel affinity methods.
Collapse
Affiliation(s)
- Marina Slawinski
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Luai R Khoury
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States.,Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
9
|
Facile Synthesis of Peptide-Conjugated Gold Nanoclusters with Different Lengths. NANOMATERIALS 2021; 11:nano11112932. [PMID: 34835696 PMCID: PMC8623805 DOI: 10.3390/nano11112932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of ultra-small gold nanoclusters (Au NCs) with sizes down to 2 nm has received increasing interest due to their unique optical and electronic properties. Like many peptide-coated gold nanospheres synthesized before, modified gold nanoclusters with peptide conjugation are potentially significant in biomedical and catalytic fields. Here, we explore whether such small-sized gold nanoclusters can be conjugated with peptides also and characterize them using atomic force microscopy. Using a long and flexible elastin-like polypeptide (ELP)20 as the conjugated peptide, (ELP)20-Au NCs was successfully synthesized via a one-pot synthesis method. The unique optical and electronic properties of gold nanoclusters are still preserved, while a much larger size was obtained as expected due to the peptide conjugation. In addition, a short and rigid peptide (EAAAK)3 was conjugated to the gold nanoclusters. Their Yong’s modulus was characterized using atomic force microscopy (AFM). Moreover, the coated peptide on the nanoclusters was pulled using AFM-based single molecule-force spectroscopy (SMFS), showing expected properties as one of the first force spectroscopy experiments on peptide-coated nanoclusters. Our results pave the way for further modification of nanoclusters based on the conjugated peptides and show a new method to characterize these materials using AFM-SMFS.
Collapse
|
10
|
Nanobody multimerization strategy to enhance the sensitivity of competitive ELISA for detection of ochratoxin A in coffee samples. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Wang B, Pan R, Zhu W, Xu Y, Tian Y, Endo M, Sugiyama H, Yang Y, Qian X. Short intrinsically disordered polypeptide-oligonucleotide conjugates for programmed self-assembly of nanospheres with temperature-dependent size controllability. SOFT MATTER 2021; 17:1184-1188. [PMID: 33527954 DOI: 10.1039/d0sm01817a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of short intrinsically disordered polypeptide conjugated oligonucleotides (IDPOCs) were rationally developed and assembled into well-defined nanospheres. The nanospheres exhibited excellent reversible thermoresponsive regulation of their contraction and expansion. Furthermore, the nanospheres showed biocompatibility, drug encapsulation and effective cellular uptake.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Rizhao Pan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ye Tian
- College of Engineering and Applied Science, Nanjing University, Nanjing, 210093, China
| | - Masayuki Endo
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502, Kyoto, Japan
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun 2020; 11:4321. [PMID: 32859904 PMCID: PMC7456326 DOI: 10.1038/s41467-020-18063-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
- Department of Physics, Auburn University, 36849, Auburn, AL, USA
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
13
|
Dahal N, Nowitzke J, Eis A, Popa I. Binding-Induced Stabilization Measured on the Same Molecular Protein Substrate Using Single-Molecule Magnetic Tweezers and Heterocovalent Attachments. J Phys Chem B 2020; 124:3283-3290. [DOI: 10.1021/acs.jpcb.0c00167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Annie Eis
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
14
|
Nuijens T, Toplak A, Schmidt M, Ricci A, Cabri W. Natural Occurring and Engineered Enzymes for Peptide Ligation and Cyclization. Front Chem 2019; 7:829. [PMID: 31850317 PMCID: PMC6895249 DOI: 10.3389/fchem.2019.00829] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
The renaissance of peptides as prospective therapeutics has fostered the development of novel strategies for their synthesis and modification. In this context, besides the development of new chemical peptide ligation approaches, especially the use of enzymes as a versatile tool has gained increased attention. Nowadays, due to their inherent properties such as excellent regio- and chemoselectivity, enzymes represent invaluable instruments in both academic and industrial laboratories. This mini-review focuses on natural- and engineered peptide ligases that can form a new peptide (amide) bond between the C-terminal carboxy and N-terminal amino group of a peptide and/or protein. The pro's and cons of several enzyme classes such as Sortases, Asparaginyl Endoproteases, Trypsin related enzymes and as a central focus subtilisin-derived variants are summarized. Most recent developments with regards to ligation and cyclization are highlighted.
Collapse
Affiliation(s)
- Timo Nuijens
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
| | - Ana Toplak
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
| | - Marcel Schmidt
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
| | | | - Walter Cabri
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
- Fresenius Kabi iPSUM Srl, Villadose, Italy
| |
Collapse
|
15
|
Khoury LR, Popa I. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels. Nat Commun 2019; 10:5439. [PMID: 31784506 PMCID: PMC6884551 DOI: 10.1038/s41467-019-13312-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Programmable behavior combined with tailored stiffness and tunable biomechanical response are key requirements for developing successful materials. However, these properties are still an elusive goal for protein-based biomaterials. Here, we use protein-polymer interactions to manipulate the stiffness of protein-based hydrogels made from bovine serum albumin (BSA) by using polyelectrolytes such as polyethyleneimine (PEI) and poly-L-lysine (PLL) at various concentrations. This approach confers protein-hydrogels with tunable wide-range stiffness, from ~10-64 kPa, without affecting the protein mechanics and nanostructure. We use the 6-fold increase in stiffness induced by PEI to program BSA hydrogels in various shapes. By utilizing the characteristic protein unfolding we can induce reversible shape-memory behavior of these composite materials using chemical denaturing solutions. The approach demonstrated here, based on protein engineering and polymer reinforcing, may enable the development and investigation of smart biomaterials and extend protein hydrogel capabilities beyond their conventional applications.
Collapse
Affiliation(s)
- Luai R Khoury
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, WI, 53211, USA.
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, WI, 53211, USA.
| |
Collapse
|
16
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
17
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|