1
|
Li R, Chen C, Shen J, Wei Z, Olu PY, Dong W, Peng Y, Fan R, Shen M. In situ activation-induced surface reconstruction on Cr-incorporated Ni 3S 2 for enhanced alkaline hydrogen evolution reaction. Phys Chem Chem Phys 2025; 27:10310-10320. [PMID: 40326312 DOI: 10.1039/d5cp00813a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Ni3S2 has emerged as one of the most promising hydrogen evolution reaction (HER) catalysts due to its moderate activity, exceptional electrical conductivity, and scalable synthesis methods. However, the high energy barrier for H2O dissociation and weak desorption of the H* intermediate severely hinder its HER kinetics. In this study, a novel Cr-incorporated Ni3S2 was grown on a Ni mesh substrate (denoted as Cr-Ni3S2/NM) using a one-step electrodeposition approach, resulting in a large surface area with abundant Ni3S2/Cr2S3 heterojunctions. Subsequently, it underwent surface reconstruction after in situ activation (denoted as A-Cr-Ni3S2/NM), which not only enhanced charge and mass transfer but also altered the electronic structure by introducing more oxygen species on the catalyst surface and creating S vacancies. Using theoretical calculations, this in situ activation was shown to not only promote charge transport but also boost HER kinetics by strengthening OH* desorption for H2O dissociation and facilitating the desorption of H* intermediates. As a result, the fabricated A-Cr-Ni3S2/NM demonstrated exceptional HER performance with a small overpotential of 78 mV to deliver a current density of -10 mA cm-2, along with stability for over 200 h at 100 mA cm-2. While surface reconstruction has been intensively studied in catalysts for the oxygen evolution reaction, we illustrate that it also plays a significant and positive role in Cr-Ni3S2 HER catalysts in this study, thus providing a pathway for achieving high-performance HER catalysts.
Collapse
Affiliation(s)
- Ruidi Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| | - Cong Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| | - Junxia Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| | - Zhihe Wei
- Soochow Institute of Energy and Material Innovations, College of Energy, Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Pierre-Yves Olu
- John Cockerill Hydrogen S. A, 1 Rue Jean Potier, 4100 Seraing, Belgium
| | - Wen Dong
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| | - Yang Peng
- Soochow Institute of Energy and Material Innovations, College of Energy, Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Ronglei Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| | - Mingrong Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
2
|
Li W, Ni Z, Akdim O, Liu T, Zhu B, Kuang P, Yu J. Dual Active Site Engineering in Porous NiW Bimetallic Alloys for Enhanced Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503742. [PMID: 40348592 DOI: 10.1002/adma.202503742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Utilizing dual active sites in electrocatalysts creates a synergistic effect, enabling the independent optimization of H2O dissociation and intermediate adsorption/desorption, which in turn enhances the efficiency of the hydrogen evolution reaction (HER). Herein, a porous NiW bimetallic alloy electrocatalyst using a dynamic H2 bubble template (DHBT) strategy is fabricated. This electrocatalyst capitalizes on the synergistic effect of dual active sites, achieving industrial-level current densities of 500 and 1000 mA cm-2 for HER in 1.0 M KOH, with low overpotentials of 198 and 264 mV, respectively. It also demonstrates excellent stability over a 200 h test. Theoretical studies reveal that alloying Ni with W shifts the d-band center (εd) of the W 5d orbital downward, which enhances *OH intermediate desorption and promotes H2O adsorption and dissociation at the W site, leading to increased active site availability. Meanwhile, this shift provides more accessible H* intermediates, further enhancing H2 production at the Ni2W1 hollow site. When the porous NiW bimetallic alloy electrocatalyst is implemented in a solar-driven water splitting system, it achieves a high solar-to-hydrogen (STH) conversion efficiency of 16.59%. This work underscores the effectiveness of dual active site electrocatalysts for sustainable H2 production.
Collapse
Affiliation(s)
- Weijie Li
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Zhenrui Ni
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Ouardia Akdim
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
3
|
Shen Y, Bai J, Wei H, Gu J, Cao Q. Recent Strategies for Ni 3S 2-Based Electrocatalysts with Enhanced Hydrogen Evolution Performance: A Tutorial Review. Int J Mol Sci 2025; 26:3771. [PMID: 40332406 PMCID: PMC12027722 DOI: 10.3390/ijms26083771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Water electrolysis represents one of the most environmentally friendly methods for hydrogen production, while its overall efficiency is primarily governed by the electrocatalyst. Nickel sulfides, e.g., Ni3S2, are considered to be highly promising catalysts for the hydrogen evolution reaction (HER) due to their distinctive chemical structure. However, the practical application of Ni3S2-based electrocatalysts is hindered by unsatisfactory high overpotential in the HER and weakened catalytic performance under alkaline conditions. Therefore, in this regard, further research on Ni3S2-based catalysts is being carried out to tackle these challenges. This review provides a comprehensive survey of the latest advancements in Ni3S2-based in improving the HER performance of Ni3S2-based electrocatalysts. The review may offer some inspiration for the rational design and synthesis of novel transition metal-based catalysts with enhanced water electrolysis performance.
Collapse
Affiliation(s)
| | | | | | | | - Qi Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Pan G, Wang H, Li Z, Zheng J, Peng B, Duan Q, Zhang M. Photodynamic therapy based on bismuth oxyiodide nanoparticles for nondestructive tooth whitening. Colloids Surf B Biointerfaces 2024; 243:114133. [PMID: 39096622 DOI: 10.1016/j.colsurfb.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Achieving a desired whitening effect through short treatments without using peroxide and without compromising the integrity of tooth enamel remains a challenge in teeth whitening. Here, we developed a highly safe and efficient photodynamic therapy (PDT) strategy based on visible light-activated bismuth oxyiodide nanoparticles for nondestructive tooth whitening. The Bi7O9I3 nanoparticles (NPs) exhibited efficient photocatalytic activity owing to their narrow band gap, effectively harnessing the broad spectrum of visible light to generate ample electrons and holes. Meanwhile, the presence of oxygen vacancies, low oxidation state Bi3+ and the high specific surface area endow Bi7O9I3 NPs with effective electron-hole separation ability and potent redox potentials. Empowered by these characteristics, Bi7O9I3 NPs effectively catalyzed O2 into radicals (O2•-), facilitating the degradation of dental surface pigment molecules for tooth whitening. Concurrently, they eradicated oral bacteria and bacterial biofilms adhering to tooth surfaces, thereby having a positive effect on the effectiveness of tooth whitening. This PDT strategy with Bi7O9I3 NPs shows broad application prospects in tooth whitening.
Collapse
Affiliation(s)
- Ge Pan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Haoyu Wang
- Department of Orthodontics, Stomatological Hospital of Jilin University, Changchun 130022, PR China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jinyao Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Bo Peng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| | - Miaomiao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
5
|
Zhang J, Bu Y, Li Z, Yang T, Zhao N, Wu G, Zhao F, Zhang R, Zhang D. Nanoarchitectonics of Fe-Doped Ni 3S 2 Arrays on Ni Foam from MOF Precursors for Promoted Oxygen Evolution Reaction Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1445. [PMID: 39269107 PMCID: PMC11397559 DOI: 10.3390/nano14171445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Oxygen evolution reaction (OER) is a critical half-reaction in electrochemical overall water splitting and metal-air battery fields; however, the exploitation of the high activity of non-noble metal electrocatalysts to promote the intrinsic slow kinetics of OER is a vital and urgent research topic. Herein, Fe-doped Ni3S2 arrays were derived from MOF precursors and directly grown on nickel foam via the traditional solvothermal way. The arrays integrated into nickel foam can be used as self-supported electrodes directly without any adhesive. Due to the synergistic effect of Fe and Ni elements in the Ni3S2 structure, the optimized Fe2.3%-Ni3S2/NF electrode delivers excellent OER activity in an alkaline medium. The optimized electrode only requires a small overpotential of 233 mV to reach the current density of 10 mA cm-2, and the catalytic activity of the electrode can surpass several related electrodes reported in the literature. In addition, the long-term stability of the Fe2.3%-Ni3S2/NF electrode showed no significant attenuation after 12 h of testing at a current density of 50 mA cm-2. The introduction of Fe ions could modulate the electrical conductivity and morphology of the Ni3S2 structure and thus provide a high electrochemically active area, fast reaction sites, and charge transfer rate for OER activity.
Collapse
Affiliation(s)
- Jingchao Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingping Bu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuoyan Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ting Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Naihui Zhao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Guanghui Wu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fujing Zhao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Renchun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Daojun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
6
|
Zang B, Liu X, Gu C, Chen J, Wang L, Zheng W. Design Strategies of Hydrogen Evolution Reaction Nano Electrocatalysts for High Current Density Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1172. [PMID: 39057849 PMCID: PMC11280403 DOI: 10.3390/nano14141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen production is scaled up to industrial levels, operating at high current densities introduces unique challenges. It is necessary to design advanced electrocatalysts for hydrogen evolution reactions (HERs) under high current densities. This review will briefly introduce the challenges posed by high current densities on electrocatalysts, including catalytic activity, mass diffusion, and catalyst stability. In an attempt to address these issues, various electrocatalyst design strategies are summarized in detail. In the end, our insights into future challenges for efficient large-scale industrial hydrogen production from water splitting are presented. This review is expected to guide the rational design of efficient high-current density water electrolysis electrocatalysts and promote the research progress of sustainable energy.
Collapse
Affiliation(s)
- Bao Zang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Xianya Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
7
|
Zhang X, Wu F, Zhang Q, Lu Z, Zheng Y, Zhu Y, Lin Y. Self-Supported WO 3@RuO 2 Nanowires for Electrocatalytic Acidic Water Oxidation. Inorg Chem 2024; 63:8418-8425. [PMID: 38644568 DOI: 10.1021/acs.inorgchem.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Developing catalysts with high catalytic activity and stability in acidic media is crucial for advancing hydrogen production in proton exchange membrane water electrolyzers (PEMWEs). To this end, a self-supported WO3@RuO2 nanowire structure was grown in situ on a titanium mesh using hydrothermal and ion-exchange methods. Despite a Ru loading of only 0.098 wt %, it achieves an overpotential of 246 mV for the oxygen evolution reaction (OER) at a current density of 10 mA·cm-2 in acidic 0.5 M H2SO4 while maintaining excellent stability over 50 h, much better than that of the commercial RuO2. After the establishment of the WO3@RuO2 heterostructure, a reduced overpotential of the rate-determining step from M-O* to M-OOH* is confirmed by the DFT calculation. Meanwhile, its enhanced OER kinetics are also greatly improved by this self-supported system in the absence of the organic binder, leading to a reduced interface resistance between active sites and electrolytes. This work presents a promising approach to minimize the use of noble metals for large-scale PEMWE applications.
Collapse
Affiliation(s)
- Xiaozan Zhang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Fei Wu
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueqing Zheng
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yin'an Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Cao Y, Li Z, Yin X, Gan Y, Ye Y, Cai R, Wang Q, Feng B, Dai X, Song W. Electronic modulation and reaction-pathway optimization on three-dimensional seaweed-like NiSe@NiMn LDH heterostructure to trigger effective oxygen evolution reaction. J Colloid Interface Sci 2024; 658:528-539. [PMID: 38128196 DOI: 10.1016/j.jcis.2023.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The development of low-cost and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is essential to produce high-purity hydrogen in large scale. Herein, a three-dimensional (3D) seaweed-like hierarchical structure was fabricated using two-dimensional (2D) NiMn LDH nanosheets wrapped on one-dimensional (1D) NiSe nanowires with nickel foam (NF) as a substrate (NiSe@NiMn LDH/NF) via hydrothermal and electrodeposition processes. Owing to the strong interfacial synergy, 3D seaweed-like hierarchical structure, higher conductivity, and strong structural stability, the NiSe@NiMn LDH/NF exhibited superior OER performance with an overpotential of 287 mV at 100 mA cm-2, and stably operated for 160 h at large current. Moreover, the overall water splitting system with NiSe@NiMn LDH/NF as the anode and Pt/C/NF as the cathode exhibited a low cell voltage of 1.59/1.64 V to reach 50/100 mA cm-2, and excellent stability for 110 h at 300 mA cm-2. The density function theory (DFT) calculations unveiled that NiSe@NiMn LDH enabled the interfacial synergy, reallocating the electron density at the interface, and further weakening the energy barrier of OH* by strengthening chemical bonds with OH* intermediates to improve the intrinsic OER activity.
Collapse
Affiliation(s)
- Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhi Li
- College of Science, China University of Petroleum, Beijing 102249, China
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Weiyu Song
- College of Science, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
9
|
Liu Q, Liu K, Huang J, Hui C, Li X, Feng L. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction. Dalton Trans 2024; 53:3959-3969. [PMID: 38294259 DOI: 10.1039/d3dt04244h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Electrocatalytic water splitting is considered to be one of the most promising technologies for large-scale sustained production of H2. Developing non-noble metal-based electrocatalytic materials with low cost, high activity and long life is the key to electrolysis of water. Transition metal sulfides (TMSs) with good electrical conductivity and a tunable electronic structure are potential candidates that are expected to replace noble metal electrocatalysts. In addition, self-supported electrodes have fast electron transfer and mass transport, resulting in enhanced kinetics and stability. In this paper, TMS self-supported electrocatalysts are taken as examples and their recent progress as hydrogen evolution reaction (HER) electrocatalysts is reviewed. The HER mechanism is first introduced. Then, based on optimizing the active sites, electrical conductivity, electronic structure and adsorption/dissociation energies of water and intermediates of the electrocatalysts, the article focuses on summarizing five modulation strategies to improve the activity and stability of TMS self-supported electrode electrocatalysts in recent years. Finally, the challenges and opportunities for the future development of TMS self-supported electrodes in the field of electrocatalytic water splitting are presented.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Kehan Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jianfeng Huang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| | - Chiyuan Hui
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaoyi Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| | - Liangliang Feng
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P.R. China.
| |
Collapse
|
10
|
Jian J, Wang M, Wang Z, Meng J, Yang Y, Chang L. Tin-doped NiFe 2O 4 nanoblocks grown on an iron foil for efficient and stable water splitting at large current densities. Dalton Trans 2024; 53:520-524. [PMID: 38051219 DOI: 10.1039/d3dt03355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Developing low-cost and self-supported bifunctional catalysts for highly efficient water splitting devices is of great significance. Herein, different from previously reported NiFe2O4-based electrocatalysts, we have grown nano-NiFe2O4 directly onto the iron foil (IF) surface and in situ introduced Sn4+ into NiFe2O4. The resulting experimental phenomena confirmed that the as-synthesized Sn-NiFe2O4/IF can deliver large-current densities (>1000 mA cm-2) during oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes at a low overpotential. The needed overpotentials at the current density of 10 and 1000 mA cm-2 are 231 and 368 mV for OER and 57 and 439 mV for HER, respectively. Additionally, when applied for the two-electrode water splitting, the corresponding needed voltage for Sn-NiFe2O4/IF at the current density of 10 mA cm-2 was only 1.56 V, which was comparable to the commercial Pt/C-RuO2/IF electrode. Thus, the introduced Sn4+ greatly enhanced the electrocatalytic property of Sn-NiFe2O4/IF, resulting in a superior bifunctional catalyst that can be applied for large-scale hydrogen production.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Meiting Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Jingwen Meng
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Yuqin Yang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| |
Collapse
|
11
|
Wu YZ, Huang Y, Jiang LW, Meng C, Yin ZH, Liu H, Wang JJ. Modulating the electronic structure of CoS2 by Sn doping boosting urea oxidation for efficient alkaline hydrogen production. J Colloid Interface Sci 2023; 642:574-583. [PMID: 37028164 DOI: 10.1016/j.jcis.2023.03.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Urea electrocatalytic oxidation afforded by renewable energies is highly promising to replace the sluggish oxygen evolution reaction in water splitting for hydrogen production while realizing the treatment of urea-rich waste water. Therefore, the development of efficient and cost-effective catalysts for water splitting assisted by urea is highly desirable. Herein, Sn-doped CoS2 electrocatalysts were reported with the engineered electronic structure and the formation of Co-Sn dual active sites for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), respectively. Consequently, the number of active sites and the intrinsic activity were enhanced simultaneously and the resultant electrodes exhibited outstanding electrocatalytic activity with a very low potential of 1.301 V at 10 mA·cm-2 for UOR and an overpotential of 132 mV at 10 mA·cm-2 for HER. Therefore, a two-electrode device was assembled by employing Sn(2)-CoS2/CC and Sn(5)-CoS2/CC and the constructed cell required only 1.45 V to approach a current density of 10 mA·cm-2 along with good durability for at least 95 h assisted by urea. More importantly, the assembled electrolyzer can be powered by commercial dry battery to generate numerous gas bubbles on the surface of the electrodes, demonstrating the high potential of the as-fabricated electrodes for applications in hydrogen production and pollutant treatment at a low-voltage electrical energy input.
Collapse
|
12
|
Yang X, Liu Y, Guo R, Xiao J. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity. CHEM REC 2022; 22:e202200176. [PMID: 36000851 DOI: 10.1002/tcr.202200176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Developing advanced electrocatalysts is of great significance for boosting electrochemical water splitting to produce hydrogen. The electrocatalytic activity of a catalyst is associated with the surface/interface, geometric structure, and electronic properties. Coupling Ir with transition metal compounds is an effective strategy to improve their electrocatalytic performance. In this review, we summarize the recent progress of Ir coupled transition metal compound catalysts for the application in driving electrochemical water splitting. The significant role of Ir played in the promotion of electrocatalytic performance is firstly illustrated. Then, the applications of Ir-based catalysts in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are comprehensively discussed, with an emphasis on correlating the structure-function relationships. Lastly, the challenges and future directions for the fabrication of more advanced Ir coupled electrocatalysts are also presented.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Yan Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, PR China
| |
Collapse
|
13
|
Bera K, Madhu R, Dhandapani HN, Nagappan S, De A, Kundu S. Accelerating the Electrocatalytic Performance of NiFe-LDH via Sn Doping toward the Water Oxidation Reaction under Alkaline Condition. Inorg Chem 2022; 61:16895-16904. [PMID: 36221930 DOI: 10.1021/acs.inorgchem.2c02947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Aditi De
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
14
|
Plasma-modified iron-doped Ni3S2 nanosheet arrays as efficient electrocatalysts for hydrogen evolution reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Jin M, Zhang X, Niu S, Wang Q, Huang R, Ling R, Huang J, Shi R, Amini A, Cheng C. Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm -2. ACS NANO 2022; 16:11577-11597. [PMID: 35952364 DOI: 10.1021/acsnano.2c02820] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depletion of fossil fuels and rapidly increasing environmental concerns have urgently called for the utilization of clean and sustainable sources for future energy supplies. Hydrogen (H2) is recognized as a prioritized green resource with little environmental impact to replace traditional fossil fuels. Electrochemical water splitting has become an important method for large-scale green production of hydrogen. The hydrogen evolution reaction (HER) is the cathodic half-reaction of water splitting that can be promoted to produce pure H2 in large quantities by active electrocatalysts. However, the unsatisfactory performance of HER electrocatalysts cannot follow the extensive requirements of industrial-scale applications, including working efficiently and stably over long periods of time at high current densities (⩾1000 mA cm-2). In this review, we study the crucial issues when electrocatalysts work at high current densities and summarize several categories of strategies for the design of high-performance HER electrocatalysts. We also discuss the future challenges and opportunities for the development of HER catalysts.
Collapse
Affiliation(s)
- Mengtian Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xian Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Shuzhang Niu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qun Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runqing Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruihua Ling
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaqi Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Kingswood, New South Wales 2751, Australia
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen 518055, China
| |
Collapse
|
16
|
Li C, Wang Z, Liu M, Wang E, Wang B, Xu L, Jiang K, Fan S, Sun Y, Li J, Liu K. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat Commun 2022; 13:3338. [PMID: 35680929 PMCID: PMC9184596 DOI: 10.1038/s41467-022-31077-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/31/2022] [Indexed: 01/22/2023] Open
Abstract
Designing cost-effective and high-efficiency catalysts to electrolyze water is an effective way of producing hydrogen. Practical applications require highly active and stable hydrogen evolution reaction catalysts working at high current densities (≥1000 mA cm-2). However, it is challenging to simultaneously enhance the catalytic activity and interface stability of these catalysts. Herein, we report a rapid, energy-saving, and self-heating method to synthesize high-efficiency Mo2C/MoC/carbon nanotube hydrogen evolution reaction catalysts by ultrafast heating and cooling. The experiments and density functional theory calculations reveal that numerous Mo2C/MoC hetero-interfaces offer abundant active sites with a moderate hydrogen adsorption free energy ΔGH* (0.02 eV), and strong chemical bonding between the Mo2C/MoC catalysts and carbon nanotube heater/electrode significantly enhances the mechanical stability owing to instantaneous high temperature. As a result, the Mo2C/MoC/carbon nanotube catalyst achieves low overpotentials of 233 and 255 mV at 1000 and 1500 mA cm-2 in 1 M KOH, respectively, and the overpotential shows only a slight change after working at 1000 mA cm-2 for 14 days, suggesting the excellent activity and stability of the high-current-density hydrogen evolution reaction catalyst. The promising activity, excellent stability, and high productivity of our catalyst can fulfil the demands of hydrogen production in various applications.
Collapse
Affiliation(s)
- Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhijie Wang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Mingda Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Longlong Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kaili Jiang
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Shoushan Fan
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Yinghui Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Chen Z, Yang H, Kang Z, Driess M, Menezes PW. The Pivotal Role of s-, p-, and f-Block Metals in Water Electrolysis: Status Quo and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108432. [PMID: 35104388 DOI: 10.1002/adma.202108432] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Indexed: 05/27/2023]
Abstract
Transition metals, in particular noble metals, are the most common species in metal-mediated water electrolysis because they serve as highly active catalytic sites. In many cases, the presence of nontransition metals, that is, s-, p-, and f-block metals with high natural abundance in the earth-crust in the catalytic material is indispensable to boost efficiency and durability in water electrolysis. This is why alkali metals, alkaline-earth metals, rare-earth metals, lean metals, and metalloids receive growing interest in this research area. In spite of the pivotal role of these nontransition metals in tuning efficiency of water electrolysis, there is far more room for developments toward a knowledge-based catalyst design. In this review, five classes of nontransition metals species which are successfully utilized in water electrolysis, with special emphasis on electronic structure-catalytic activity relationships and phase stability, are discussed. Moreover, specific fundamental aspects on electrocatalysts for water electrolysis as well as a perspective on this research field are also addressed in this account. It is anticipated that this review can trigger a broader interest in using s-, p-, and f-block metals species toward the discovery of advanced polymetal-containing electrocatalysts for practical water splitting.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
18
|
Yang X, Guo R, Cai R, Shi W, Liu W, Guo J, Xiao J. Engineering transition metal catalysts for large-current-density water splitting. Dalton Trans 2022; 51:4590-4607. [PMID: 35231082 DOI: 10.1039/d2dt00037g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemical water splitting plays a crucial role in transferring electricity to hydrogen fuel and appropriate electrocatalysts are crucial to satisfy the strict industrial demand. However, the successfully developed non-noble metal catalysts have a small tested range and the current density is usually less than 100 mA cm-2, which is still far away from the practical application standards. Aiming to provide guidance for the fabrication of more advanced electrocatalysts with a large current density, we herein systematically summarize the recent progress achieved in the field of cost-efficient and large-current-density electrocatalyst design. Beginning by illustrating the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) mechanisms, we elaborate on the concurrent issues of non-noble metal catalysts that are required to be addressed. In view of large-current-density operating conditions, some distinctive features with regard to good electrical conductivity, high intrinsic activity, rich active sites, and porous architecture are also summarized. Next, some representative large-current-density electrocatalysts are classified. Finally, we discuss the challenges associated with large-current-density water electrolysis and future pathways in the hope of guiding the future development of more efficient non-noble-metal catalysts to boost large-scale hydrogen production with less electricity consumption.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Rui Cai
- International Office of Huaihua University, Huaihua University, Huaihua 418000, PR China
| | - Wei Shi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Wenzhu Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jian Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| |
Collapse
|
19
|
Yang Y, Mao H, Sun K, Ning R, Zheng X, Sui J, Cai W. Facile Synthesis of FeOOH−Ni
3
S
2
Nanosheet Arrays on Nickel Foam via Chemical Immersion toward Electrocatalytic Water Splitting. ChemistrySelect 2022. [DOI: 10.1002/slct.202103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaqian Yang
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Han Mao
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Kuishan Sun
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Rui Ning
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaohang Zheng
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Jiehe Sui
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Wei Cai
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
20
|
Sahu N, Das JK, Behera JN. NiSe 2 Nanoparticles Encapsulated in N-Doped Carbon Matrix Derived from a One-Dimensional Ni-MOF: An Efficient and Sustained Electrocatalyst for Hydrogen Evolution Reaction. Inorg Chem 2022; 61:2835-2845. [PMID: 35113554 DOI: 10.1021/acs.inorgchem.1c03323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spherical-type NiSe2 nanoparticles encapsulated in a N-doped carbon (NC) matrix (NiSe2-T@NC, temperature (T) = 400-800 °C) are derived from a 1D Ni-MOF precursor of the formula [Ni(BPY)(DDE)] [(BPY = 2,2'-bipyridyl), (DDE = 4,4'-dicarboxy diphenyl ether)] via a facile solvothermal technique followed by annealing at different temperatures and selenylation strategies. The combined effect of a NC matrix and the Ni nanoparticles has been optimized during varied annealing processes with subsequent selenylation, leading to the formation of the series NiSe2-400@NC, NiSe2-500@NC, NiSe2-600@NC, NiSe2-700@NC, and NiSe2-800@NC, respectively. The variation of annealing temperature plays a vital role in optimizing the catalytic behavior of the NiSe2-T@NCs. Among different high-temperature annealed products, NiSe2-600@NC shows superior electrocatalytic performance because of the unique spherical-type morphology and higher specific surface area (57.95 m2 g-1) that provides a large number of electrochemical active sites. The synthesized material exhibits a lower overpotential of 196 mV to deliver 10 mA cm-2 current density, a small Tafel slope of 45 mV dec-1 for better surface kinetics, and outstanding durability in an acidic solution, respectively. Consequently, the post stability study of the used electrocatalyst gives insight into surface phase analysis. Therefore, we presume that the synthesized 1D MOF precursor derived NiSe2 nanoparticles encapsulated in a NC matrix has excellent potential to replace the noble-metal-based electrocatalyst for enhanced hydrogen evolution through simple water electrolysis.
Collapse
Affiliation(s)
- Nachiketa Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| | - Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| |
Collapse
|
21
|
Liu Q, Huang J, Liu K, Du H, Kang L, Yang D, Niu M, Li G, Cao L, Feng L. In-situ construction of superhydrophilic crystalline Ni 3S 2@amorphous VO x heterostructure nanorod arrays for hydrogen evolution reaction with industry-compatible current density . Dalton Trans 2022; 51:7234-7240. [DOI: 10.1039/d2dt00157h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect of high active surface/interface and optimized electronic structure of electrocatalysts is of great significance to improve the performance of hydrogen evolution reaction. Herein, a superhydrophilic core@shell heterostructure...
Collapse
|
22
|
Jin D, Qiao F, Liu W, Liu Y, Xie Y, Li H. One-step fabrication of MoS 2/Ni 3S 2 with P-doping for efficient water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00493c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The p-doped MoS2/Ni3S2/NF heterostructure catalyst designed in this work shows excellent HER and OER performance due to its electronic configuration and chemisorption performance, driving 10 mA cm−2 current density at 95 mV and 136 mV, respectively.
Collapse
Affiliation(s)
- Dunyuan Jin
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjie Liu
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yanzhen Liu
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Haitao Li
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China
| |
Collapse
|
23
|
Li J, Wang Y, Gao H, Song S, Lu B, Tian X, Zhou S, Yuan Y, Zang J. Nickel Boride/Boron Carbide Particles Embedded in Boron-Doped Phenolic Resin-Derived Carbon Coating on Nickel Foam for Oxygen Evolution Catalysis in Water and Seawater Splitting. CHEMSUSCHEM 2021; 14:5499-5507. [PMID: 34648234 DOI: 10.1002/cssc.202101800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Electrolysis of seawater can be a promising technology, but chloride ions in seawater can lead to adverse side reactions and the corrosion of electrodes. A new transition metal boride-based self-supported electrocatalyst was prepared for efficient seawater electrolysis by directly soaking nickel foam (NF) in a mixture of phenolic resin (PR) and boron carbide (B4 C), followed by an 800 °C annealing. During PR carbonization process, the reaction of B4 C and NF generated nickel boride (Nix B) with high catalytic activity, while PR-derived carbon coating was doped with boron atoms from B4 C (B-CPR ). The B-CPR coating fixed Nix B/B4 C particles in the frames and holes to improve the space utilization of NF. Meanwhile, the B-CPR coating effectively protected the catalyst from the corrosion by seawater and facilitates the transport of electrons. The optimal Nix B/B4 C/B-CPR /NF required 1.50 and 1.58 V to deliver 100 and 500 mA cm-2 , respectively, in alkaline natural seawater for the oxygen evolution reaction.
Collapse
Affiliation(s)
- Jilong Li
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Hongwei Gao
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Shiwei Song
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Bowen Lu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xueqing Tian
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Shuyu Zhou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yungang Yuan
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
24
|
Kong D, Wang Y, Huang S, Lim YV, Wang M, Xu T, Zang J, Li X, Yang HY. Defect-Engineered 3D hierarchical NiMo 3S 4 nanoflowers as bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2021; 607:1876-1887. [PMID: 34695737 DOI: 10.1016/j.jcis.2021.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
The design and construction of bifunctional electrocatalysts with high activity and durability is essential for overall water splitting. Herein, a unique 3D hierarchical NiMo3S4 nanoflowers with abundant defects and reactive sites were grown directly on carbon textiles (NiMo3S4/CTs) using a facile hydrothermal synthesis method. The defect-rich NiMo3S4 nanoflakes, prepared by doping Ni2+ in the lattice of Mo-S, displays extended d-spacing of (002) crystal plane, resulting in the electrocatalytic activity of hydrogen evolution and oxygen evolution reaction (HER and OER) was improved under alkaline conditions. The self-supported NiMo3S4/CTs electrode delivers a small overpotential of 149.5 mV for HER and 126.2 mV for OER at 10 mA cm-2, respectively. Based on detailed structure analysis and density functional theory (DFT) calculations, the excellent HER and OER activities can be attributed to the unique structure of the nanoflowers, where the metallic characteristics for Ni-doped Mo-S lead to the enhancement of intrinsic conductivity and the rich abundance of Ni3+ active sites. As a result, the NiMo3S4/CTs as efficient bifunctional electrocatalysts for overall water-splitting was performed in alkaline electrolyte, where the system required only 1.55, 1.66 and 1.76 V to deliver current densities of 10, 50 and 100 mA cm-2, respectively. This study provides a new method for improving the electrocatalysis properties of transition metal sulfides by metal-ion doping to generate more active defect sites, thus promoting the development of non-noble-metal electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Dezhi Kong
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Ye Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei 430074, China
| | - Yew Von Lim
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Tingting Xu
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jinhao Zang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xinjian Li
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
25
|
Du X, Ma G, Wang Y, Han X, Zhang X. Controllable synthesis of Ni 3S 2@MOOH/NF (M = Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction. Dalton Trans 2021; 50:14001-14008. [PMID: 34546267 DOI: 10.1039/d1dt02530a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of hybrid core-shell catalysts is of great significance for obtaining an excellent performance of hydrogen evolution reaction (HER). However, it remains a challenge to explore the exact active sites and research the catalytic mechanism for HER. Here, a series of Ni3S2@MOOH/NF (M = Fe, Ni, Cu, Mn and Co) hybrid structures is firstly in-site grown on Ni foam by the typical hydrothermal and electrodeposition methods. The Ni3S2@NiOOH/NF catalyst with a core-shell structure exhibits a relatively low overpotential of 79 mV for HER at a current density of 10 mA cm-2, which is one of the best catalytic activities reported so far. Moreover, it also shows good stability in the long-term durability test. Various spectral analysis and density functional theory calculations demonstrate that NiOOH is favorable for the adsorption of water molecules, and the S atom at the interface between Ni3S2 and NiOOH is favorable for the adsorption of H intermediates, which strongly accelerates the HER process in alkaline solution. This work provides a general strategy for the synthesis of electrocatalytic materials, which can be used for efficient electrocatalytic water splitting reactions.
Collapse
Affiliation(s)
- Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Guangyu Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Yanhong Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
26
|
Jian J, Kou X, Wang H, Chang L, Zhang L, Gao S, Xu Y, Yuan H. Fascinating Tin Effects on the Enhanced and Large-Current-Density Water Splitting Performance of Sn-Ni(OH) 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42861-42869. [PMID: 34473469 DOI: 10.1021/acsami.1c12005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ni(OH)2-based materials are widely studied in oxygen evolution reaction (OER), but no related synthesis, electrocatalytic application, or theoretical analysis of Sn4+-doped Ni(OH)2 has been reported. In this work, Sn-Ni(OH)2 with a homogeneously distributed nanosheet array was synthesized through a one-step hydrothermal process. It displays a hugely enhanced catalytic activity compared to undoped Ni(OH)2 throughout the OER and hydrogen evolution reaction (HER) processes. The overpotentials at 100 mA cm-2 of Sn-Ni(OH)2 are 312 mV (OER) and 298 mV (HER), which are lower than the corresponding 396 and 427 mV of Ni(OH)2, respectively. In addition, Sn-Ni(OH)2 can deliver stable large current densities (at ≈500 and ≈1000 mA cm-2) for the long-term (>100 h) chronoamperometry testing. Moreover, Sn-Ni(OH)2 illustrates catalytic activity comparable to that of a commercial Pt/C||RuO2 electrode pair during the overall water splitting course. Both experimental phenomena and relevant computed theoretical data confirm that the enhanced water splitting activity is mainly due to the introduced Sn4+ site, which acts as the active center activates the nearby Ni sites during the OER, while acting as the most active reaction site that participates in the HER. Although the doped Sn4+ has two different effects on OER and HER proceedings, water splitting performance of Sn-Ni(OH)2 has been conspicuously improved.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Xianyi Kou
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Le Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuang Gao
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yue Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
27
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
28
|
Samantara AK, Das JK, Ratha S, Jena NK, Chakraborty B, Behera JN. Enhanced Oxygen Evolution Reaction with a Ternary Hybrid of Patronite-Carbon Nanotube-Reduced Graphene Oxide: A Synergy between Experiments and Theory. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35828-35836. [PMID: 34301146 DOI: 10.1021/acsami.1c09927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports the hybridization of patronite (VS4) sheets with reduced graphene oxide and functionalized carbon nanotubes (RGO/FCNT/VS4) through a hydrothermal method. The synergistic effect divulged by the individual components, i.e., RGO, FCNT, and VS4, significantly improves the efficiency of the ternary (RGO/FCNT/VS4) hybrid toward the oxygen evolution reaction (OER). The ternary composite exhibits an impressive electrocatalytic OER performance in 1 M KOH and requires only 230 mV overpotential to reach the state-of-the-art current density (10 mA cm-2). Additionally, the hybrid shows an appreciable Tafel slope with a higher Faradaic efficiency (97.55 ± 2.3%) at an overpotential of 230 mV. Further, these experimental findings are corroborated by the state-of-the-art density functional theory by presenting adsorption configurations, the density of states, and the overpotential of these hybrid structures. Interestingly, the theoretical overpotential follows the qualitative trend RGO/FCNT/VS4 < FCNT/VS4 < RGO/VS4, supporting the experimental findings.
Collapse
Affiliation(s)
- Aneeya K Samantara
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Satyajit Ratha
- School of Basic Science, Indian Institute of Technology Bhubaneswar, Arugul, Jatni, Odisha 752050, India
| | - Naresh K Jena
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120, Sweden
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Mumbai 400094, India
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
29
|
Qian G, Chen J, Yu T, Luo L, Yin S. N-Doped Graphene-Decorated NiCo Alloy Coupled with Mesoporous NiCoMoO Nano-sheet Heterojunction for Enhanced Water Electrolysis Activity at High Current Density. NANO-MICRO LETTERS 2021; 13:77. [PMID: 34138320 PMCID: PMC8187493 DOI: 10.1007/s40820-021-00607-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 05/05/2023]
Abstract
Developing highly effective and stable non-noble metal-based bifunctional catalyst working at high current density is an urgent issue for water electrolysis (WE). Herein, we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam (NiCo@C-NiCoMoO/NF) for water splitting. NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction (HER: 39/266 mV; OER: 260/390 mV) at ± 10 and ± 1000 mA cm-2. More importantly, in 6.0 M KOH solution at 60 °C for WE, it only requires 1.90 V to reach 1000 mA cm-2 and shows excellent stability for 43 h, exhibiting the potential for actual application. The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet, which not only increase the intrinsic activity and expose abundant catalytic activity sites, but also enhance its chemical and mechanical stability. This work thus could provide a promising material for industrial hydrogen production.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China.
| |
Collapse
|
30
|
Yang Y, Mao H, Ning R, Zhao X, Zheng X, Sui J, Cai W. Ar plasma-assisted P-doped Ni 3S 2 with S vacancies for efficient electrocatalytic water splitting. Dalton Trans 2021; 50:2007-2013. [PMID: 33538707 DOI: 10.1039/d0dt03711g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Doping engineering is considered an effective way to improve the electrocatalytic water splitting performance of catalysts. In this paper, P-doped Ni3S2/NF was prepared by Ar plasma-assisted chemical vapor deposition, where the P dopant was efficiently introduced into Ni3S2/NF under the assistance of Ar plasma. Meanwhile, numerous vacancies were generated due to plasma bombardment. In the doping process, the P dopants replace the S vacancies, which contributes to the strong bonding between the P dopants and Ni3S2. Due to the synergistic effect of the P dopants and S vacancies, the Sv-Ni3S2-xPx-4 catalyst has low HER and OER overpotentials of 89 mV and 216 mV at 10 mA cm-2, with a lower impedance value and good stability. The present work shows a facile route to introduce dopants and vacancies into catalyst materials for adding active sites, eventually improving their electrocatalytic performance.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ding Y, Du X, Zhang X. Cu‐doped Ni
3
S
2
Interlaced Nanosheet Arrays as High‐efficiency Electrocatalyst Boosting the Alkaline Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202001838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yangyang Ding
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 P.R. China
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 P.R. China
| | - Xiaoshuang Zhang
- School of Science North University of China Taiyuan 030051 P.R. China
| |
Collapse
|
32
|
Liu Y, Dou Y, Li S, Xia T, Xie Y, Wang Y, Zhang W, Wang J, Huo L, Zhao H. Synergistic Interaction of Double/Simple Perovskite Heterostructure for Efficient Hydrogen Evolution Reaction at High Current Density. SMALL METHODS 2021; 5:e2000701. [PMID: 34927891 DOI: 10.1002/smtd.202000701] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/02/2020] [Indexed: 06/14/2023]
Abstract
Electrocatalytic hydrogen production for industrial level requires highly active and cost-effective catalysts at large current densities. Herein A-site Ba-deficient double perovskite PrBa0.94 Co2 O5+ δ (PB0.94 C) is used as a precursor for fabricating PB0.94 C-based double/simple perovskite heterostructure (PB0.94 C-DSPH). PB0.94 C-DSPH with enhanced electrochemical surface area, more hydrophilic surface, and high conductivity ensures abundant active sites, rapid release of gas, and efficient charge transfer at high current densities. The resultant PB0.94 C-DSPH delivers the overpotential of 364 mV at a current density of 500 mA cm-2 for hydrogen evolution reaction in 1.0 m KOH solution, along with excellent long-term durability. Promisingly, the electrolyzer with PB0.94 C-DSPH cathode and NiFe-layered double hydroxide anode demonstrates high performance for overall water splitting by yielding high current density of 500 mA cm-2 at 1.93 V. Density functional theory calculations indicate that the double/simple perovskite heterostructure promotes the water adsorption, the dissociation of molecular H2 O, and the OH* desorption considerably, which controls the whole hydrogen evolution process. The proposed PB0.94 C-DSPH solves the problem of low hydrogen-evolution efficiency at high current density faced by noble metal-based catalysts in basic environment. This study may provide a route to explore high-demand elements in the earth for addressing the critical catalysts in clean-energy utilizations.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yingnan Dou
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Shuang Li
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Tian Xia
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yan Wang
- Key Laboratory of Automobile Materials MOE, and Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Jingping Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lihuo Huo
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hui Zhao
- Key Laboratory of Functional Materials Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
33
|
Peng Y, He H. Novel heterostructure Cu 2S/Ni 3S 2 coral-like nanoarrays on Ni foam to enhance hydrogen evolution reaction in alkaline media. RSC Adv 2021; 11:39493-39502. [PMID: 35492458 PMCID: PMC9044425 DOI: 10.1039/d1ra07514d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
We fabricated a heterostructure Cu2S/Ni3S2 nanosheet array, which can accelerate charge transfer and provide more active sites. This work provides a promising non-noble metal electrocatalyst for water splitting under alkaline conditions.
Collapse
Affiliation(s)
- Yizhi Peng
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, China
| | - Hanwei He
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, China
| |
Collapse
|
34
|
Liu H, Guo Z, Lian J. Cu-doped Ni3S2 nanosheet arrays on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Synthesis of Micro- and Nanoparticles in Sub- and Supercritical Water: From the Laboratory to Larger Scales. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of micro- and nanoparticles is gaining more and more importance because of their wide range of uses and benefits based on their unique mechanical, physical, electrical, optical, electronic, and magnetic properties. In recent decades, supercritical fluid technologies have strongly emerged as an effective alternative to other numerous particle generation processes, mainly thanks to the peculiar properties exhibited by supercritical fluids. Carbon dioxide and water have so far been two of the most commonly used fluids for particle generation, the former being the fluid par excellence in this field, mainly, because it offers the possibility of precipitating thermolabile particles. Nevertheless, the use of high-pressure and -temperature water opens an innovative and very interesting field of study, especially with regards to the precipitation of particles that could hardly be precipitated when CO2 is used, such as metal particles with a considerable value in the market. This review describes an innovative method to obtain micro- and nanoparticles: hydrothermal synthesis by means of near and supercritical water. It also describes the differences between this method and other conventional procedures, the most currently active research centers, the types of particles synthesized, the techniques to evaluate the products obtained, the main operating parameters, the types of reactors, and amongst them, the most significant and the most frequently used, the scaling-up studies under progress, and the milestones to be reached in the coming years.
Collapse
|
36
|
Wang X, Dou Y, Xie Y, Wang J, Xia T, Huo L, Zhao H. A-Site Cation-Ordering Layered Perovskite EuBa 0.5Sr 0.5Co 2-x Fe x O 5+δ as Highly Active and Durable Electrocatalysts for Oxygen Evolution Reaction. ACS OMEGA 2020; 5:12501-12515. [PMID: 32548435 PMCID: PMC7271414 DOI: 10.1021/acsomega.0c01383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/11/2020] [Indexed: 05/07/2023]
Abstract
The developments of high-performance and tolerant catalysts may enable more sustainable energy in the future, especially toward water oxidation. Herein, we report A-site cation-ordering layered perovskite EuBa0.5Sr0.5Co2-x Fe x O5+δ (EBSCFx) (x = 0.2-0.6) electrocatalysts. When evaluated for oxygen evolution reaction (OER) in alkaline media, EuBa0.5Sr0.5Co1.6Fe0.4O5+δ (EBSCF0.4) exhibits the best catalytic activity among all of these catalysts, as evidenced by the lowest overpotential of 420 mV at a current density of 10 mA cm-2. Notably, the catalytic activity of EBSCF0.4 is better than that of commercial IrO2 at the overpotential >460 mV. Furthermore, the EBSCF0.4-20RuO2 (involving 20 wt % RuO2) composite catalyst is developed and gives an overpotential as low as 390 mV at 50 mA cm-2, which is even superior to commercial RuO2. For overall water splitting, an electrolysis voltage of merely 1.47 V is achieved at 10 mA cm-2 in an electrolyzer employing EBSCF0.4-20RuO2 as bifunctional catalysts, with exceptional durability for 24 h. Such a performance outperforms state-of-the-art IrO2∥Pt/C and RuO2∥Pt/C couples. According to density functional theory (DFT) calculations, the unique catalytic properties of EBSCF0.4 may benefit from highly active Fe sites with octahedral coordination, and the synergistic effects of Fe and Ru sites in the composite catalyst accelerate the electrochemical water oxidation.
Collapse
Affiliation(s)
- Xiu Wang
- Key
Laboratory of Functional Inorganic Materials Chemistry, Ministry of
Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, Heilongjiang, People’s Republic of China
| | - Yingnan Dou
- Key
Laboratory of Functional Inorganic Materials Chemistry, Ministry of
Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, Heilongjiang, People’s Republic of China
| | - Ying Xie
- Key
Laboratory of Functional Inorganic Materials Chemistry, Ministry of
Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, Heilongjiang, People’s Republic of China
| | - Jingping Wang
- Key
Laboratory of Superlight Material and Surface Technology, Ministry
of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, People’s Republic
of China
| | - Tian Xia
- Key
Laboratory of Functional Inorganic Materials Chemistry, Ministry of
Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, Heilongjiang, People’s Republic of China
- . Tel: +86 451 86608426
| | - Lihua Huo
- Key
Laboratory of Functional Inorganic Materials Chemistry, Ministry of
Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, Heilongjiang, People’s Republic of China
| | - Hui Zhao
- Key
Laboratory of Functional Inorganic Materials Chemistry, Ministry of
Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, Heilongjiang, People’s Republic of China
- . Tel: +86 451
86608040
| |
Collapse
|
37
|
Sun Z, Wang X, Yuan M, Yang H, Su Y, Shi K, Nan C, Li H, Sun G, Zhu J, Yang X, Chen S. "Lewis Base-Hungry" Amorphous-Crystalline Nickel Borate-Nickel Sulfide Heterostructures by In Situ Structural Engineering as Effective Bifunctional Electrocatalysts toward Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23896-23903. [PMID: 32362112 DOI: 10.1021/acsami.0c03796] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of high-performance, low-cost, and long-lasting electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is urgently needed for effective electrochemical water splitting. In the present study, an engineering process was employed to prepare "Lewis base-hungry" amorphous-crystalline nickel borate-nickel sulfide (Ni3(BO3)2-Ni3S2) heterostructures, which exhibited unprecedentedly high electrocatalytic activity toward both OER and HER in alkaline media. The optimal Ni3(BO3)2-Ni3S2/nickel foam (Ni3(BO3)2-Ni3S2/NF) electrode displayed an ultralow overpotential of only -92 and +217 mV to reach the current density of 10 mA cm-2 for HER and OER, respectively. When the Ni3(BO3)2-Ni3S2/NF electrode was used as both the anode and cathode for overall water splitting, a low cell voltage of 1.49 V was needed to achieve the current density of 10 mA cm-2, which was superior to the performance of most noble metal-free electrocatalysts. Results from density functional theory calculations showed that the Lewis base-hungry sites in the heterostructures effectively enhanced the chemisorption of hydrogen and oxygen intermediates, a critical step in HER and OER electrocatalysis. Results from this study highlight the significance of rational design and engineering of heterostructured materials for the development of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Zemin Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaorui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Han Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuhe Su
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kefan Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institute, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95060, United States
| |
Collapse
|
38
|
Siegmund D, Blanc N, Smialkowski M, Tschulik K, Apfel U. Metal‐Rich Chalcogenides for Electrocatalytic Hydrogen Evolution: Activity of Electrodes and Bulk Materials. ChemElectroChem 2020. [DOI: 10.1002/celc.201902125] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Siegmund
- Fraunhofer UMSICHT Osterfelder Str. 3 46047 Oberhausen Germany
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Mathias Smialkowski
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Ulf‐Peter Apfel
- Fraunhofer UMSICHT Osterfelder Str. 3 46047 Oberhausen Germany
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
39
|
Yang D, Gao L, Yang JH. New Insights into Layered Graphene Materials as Substrates to Regulate Synthesis of Ni-P Nanomaterials for Electrocatalytic Oxidation of Methanol and Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45189-45198. [PMID: 31701732 DOI: 10.1021/acsami.9b14020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The doping ring-core nickel phosphide/graphene nanomaterial is obtained by H2 reduction of the flower-like nickel phosphates/graphene oxide (NiPOGO) and sea urchin-like nickel phosphates/chemically converted graphene (NiPOG) substrates. The obtained structure of nickel phosphates depends on the influence of different kinds of oxygen-containing groups on the graphene substrate. The substrate can also affect the particle size and distribution of nickel phosphate nanoparticles. The substrate can adjust the particle size, distribution, and exposed growth direction of nickel phosphide. These materials with high activity are employed as electrochemical catalysts for methanol oxidation reactions, which is ∼7 times that of pure nickel phosphide, and there is a very small Tafel slope of 47 mV decade-1 in the water oxidation reaction. Our results highlight that the substrate structure is essential to catalytic materials for electrochemical oxidation of methanol and water.
Collapse
Affiliation(s)
- Duo Yang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
- College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , China
| | - Li Gao
- College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , China
| | - Jing-He Yang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
40
|
Chen G, Chen X, Song K, Zhao N, Wang W, Yin G, Liu Y. Design and Excellent HER Performance of a Novel 3D Mo–Doped Ni
3
S
2
/Ni Foam Composite. ChemistrySelect 2019. [DOI: 10.1002/slct.201902553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoli Chen
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Xiaoshuang Chen
- College of Chemistry and Chemical EngineeringQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Kun Song
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Nan Zhao
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Wenbo Wang
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Guangming Yin
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Yongzhi Liu
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| |
Collapse
|
41
|
Feng Y, Wang X, Dong P, Li J, Feng L, Huang J, Cao L, Feng L, Kajiyoshi K, Wang C. Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Sci Rep 2019; 9:15965. [PMID: 31685920 PMCID: PMC6828720 DOI: 10.1038/s41598-019-52412-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
The design and fabrication of intricate hollow architectures as cost-effective and dual-function electrocatalyst for water and urea electrolysis is of vital importance to the energy and environment issues. Herein, a facile solvothermal strategy for construction of Prussian-blue analogue (PBA) hollow cages with an open framework was developed. The as-obtained CoFe and NiFe hollow cages (CFHC and NFHC) can be directly utilized as electrocatalysts towards oxygen evolution reaction (OER) and urea oxidation reaction (UOR) with superior catalytic performance (lower electrolysis potential, faster reaction kinetics and long-term durability) compared to their parent solid precursors (CFC and NFC) and even the commercial noble metal-based catalyst. Impressively, to drive a current density of 10 mA cm-2 in alkaline solution, the CFHC catalyst required an overpotential of merely 330 mV, 21.99% lower than that of the solid CFC precursor (423 mV) at the same condition. Meanwhile, the NFHC catalyst could deliver a current density as high as 100 mA cm-2 for the urea oxidation electrolysis at a potential of only 1.40 V, 24.32% lower than that of the solid NFC precursor (1.85 V). This work provides a new platform to construct intricate hollow structures as promising nano-materials for the application in energy conversion and storage.
Collapse
Affiliation(s)
- Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Xiao Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Peipei Dong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Liangliang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Koji Kajiyoshi
- Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
42
|
Karthick K, Anantharaj S, Patchaiammal S, Jagadeesan SN, Kumar P, Ede SR, Pattanayak DK, Kundu S. Advanced Cu 3Sn and Selenized Cu 3Sn@Cu Foam as Electrocatalysts for Water Oxidation under Alkaline and Near-Neutral Conditions. Inorg Chem 2019; 58:9490-9499. [PMID: 31247824 DOI: 10.1021/acs.inorgchem.9b01467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Water electrolysis is a field growing rapidly to replace the limited fossil fuels for harvesting energy in future. In searching of non-noble and advanced electrocatalysts for the oxygen evolution reaction (OER), here we highlight a new and advanced catalyst, selenized Cu3Sn@Cu foam, with overwhelming activity for OER under both alkaline (1 M KOH) and near-neutral (1 M NaHCO3) conditions. The catalysts were prepared by a double hydrothermal treatment where Cu3Sn is first formed which further underwent for second hydrothermal condition for selenization. For comparison, Cu7Se4@Cu foam was prepared by a hydrothermal treatment under the same protocol. The as-formed Cu3Sn@Cu foam, selenized Cu3Sn@Cu foam, and Cu7Se4@Cu foam were utilized as electrocatalysts and showed their potentiality in terms of activity and stability. In 1 M KOH, for attaining the benchmarking current density of 50 mA cm-2, selenized Cu3Sn@Cu foam required a low overpotential of 384 mV and increased charge transfer kinetics with a lower Tafel slope value of 177 mV/dec comparing Cu3Sn@Cu foam, Cu7Se4@Cu foam, and pristine Cu foam. Furthermore, potentiostatic analysis (PSTAT) was carried out for 40 h for selenized Cu3Sn@Cu foam and with minimum degradation in activity assured the long-term application for hydrogen generation. Similarly, under neutral condition selenized Cu3Sn@Cu foam also delivered better activity trend at higher overpotentials in comparison with others. Therefore, the assistance of both Sn and Se in Cu foam ensured better activity and stability in comparison with only selenized Cu foam. With these possible outcomes, it can also be combined with other active, non-noble elements for enriched hydrogen generation in future.
Collapse
Affiliation(s)
- Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus , New Delhi 630006 , India.,CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630003 , Tamil Nadu India
| | - Sengeni Anantharaj
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus , New Delhi 630006 , India.,CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630003 , Tamil Nadu India
| | - Swathi Patchaiammal
- Centre for Education (CFE) , CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630006 , Tamil Nadu India
| | - Sathya Narayanan Jagadeesan
- Centre for Education (CFE) , CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630006 , Tamil Nadu India
| | - Piyush Kumar
- Centre for Education (CFE) , CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630006 , Tamil Nadu India
| | - Sivasankara Rao Ede
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus , New Delhi 630006 , India.,CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630003 , Tamil Nadu India
| | - Deepak Kumar Pattanayak
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus , New Delhi 630006 , India.,CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630003 , Tamil Nadu India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus , New Delhi 630006 , India.,CSIR-Central Electrochemical Research Institute (CECRI) , Karaikudi 630003 , Tamil Nadu India
| |
Collapse
|
43
|
Lin Y, Chen G, Wan H, Chen F, Liu X, Ma R. 2D Free-Standing Nitrogen-Doped Ni-Ni 3 S 2 @Carbon Nanoplates Derived from Metal-Organic Frameworks for Enhanced Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900348. [PMID: 30957975 DOI: 10.1002/smll.201900348] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/03/2019] [Indexed: 06/09/2023]
Abstract
2D metal-organic frameworks (2D MOFs) are promising templates for the fabrication of carbon supported 2D metal/metal sulfide nanocomposites. Herein, controllable synthesis of a newly developed 2D Ni-based MOF nanoplates in well-defined rectangle morphology is first realized via a pyridine-assisted bottom-up solvothermal treatment of NiSO4 and 4,4'-bipyridine. The thickness of the MOF nanoplates can be controlled to below 20 nm, while the lateral size can be tuned in a wide range with different amounts of pyridine. Subsequent pyrolysis treatment converts the MOF nanoplates into 2D free-standing nitrogen-doped Ni-Ni3 S2 @carbon nanoplates. The obtained Ni-Ni3 S2 nanoparticles encapsulated in the N-doped carbon matrix exhibits high electrocatalytic activity in oxygen evolution reaction. A low overpotential of 284.7 mV at a current density of 10 mA cm-2 is achieved in alkaline solution, which is among the best reported performance of substrate-free nickel sulfides based nanomaterials.
Collapse
Affiliation(s)
- Yifan Lin
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hao Wan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Fashen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiaohe Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
44
|
Jian J, Yuan L, Li H, Liu H, Zhang X, Sun X, Yuan H, Feng S. Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8344-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|