1
|
Zhang K, Ren Z, Cao H, Li L, Wang Y, Zhang W, Li Y, Yang H, Meng Y, Ho JC, Wei Z, Shen G. Near-Infrared Polarimetric Image Sensors Based on Ordered Sulfur-Passivation GaSb Nanowire Arrays. ACS NANO 2022; 16:8128-8140. [PMID: 35511070 DOI: 10.1021/acsnano.2c01455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The near-infrared polarimetric image sensor has a wide range of applications in the military and civilian fields, thus developing into a research hotspot in recent years. Because of their distinguishing 1D structure features, the ordered GaSb nanowire (NW) arrays possess potential applications for near-infrared polarization photodetection. In this work, single-crystalline GaSb NWs are synthesized through a sulfur-catalyzed chemical vapor deposition process. A sulfur-passivation thin layer is formed on the NW surface, which prevents the GaSb NW core from being oxidized. The photodetector based on sulfur-passivation GaSb (S-GaSb) NWs has a lower dark current and higher responsivity than that built with pure GaSb NWs. The photodetector exhibits a large responsivity of 9.39 × 102 A/W and an ultrahigh detectivity of 1.10 × 1011 Jones for 1.55 μm incident light. Furthermore, the dichroic ratio of the device is measured to reach 2.65 for polarized 1.55 μm light. Through a COMSOL simulation, it is elucidated that the origin of the polarized photoresponse is the attenuation of a light electric field inside the NW when the angle of incident polarization light rotates. Moreover, a flexible polarimetric image sensor with 5 × 5 pixels is successfully constructed on the ordered S-GaSb NW arrays, and it exhibits a good imaging ability for incident near-infrared polarization light. These good photoresponse properties and polarized imaging abilities can empower ordered S-GaSb NW arrays with technological potentials in next-generation large-scale near-infrared polarimetric imaging sensors.
Collapse
Affiliation(s)
- Kai Zhang
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
- Institute of Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihui Ren
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelxsectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Huichen Cao
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Lingling Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Ying Wang
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wei Zhang
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yubao Li
- Hebei Key Lab of Optic-electronic Information and Materials, the College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Haitao Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - You Meng
- Department of Materials Science and Engineering, and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Guozhen Shen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Rodosthenous P, Skibinsky-Gitlin ES, Rodriguez-Bolivar S, Califano M, Gomez-Campos FM. Band-like transport in 'green' quantum dot films: the effect of composition and stoichiometry. J Chem Phys 2022; 156:104704. [DOI: 10.1063/5.0078375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Rodosthenous P, Gómez-Campos FM, Califano M. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. J Phys Chem Lett 2020; 11:10124-10130. [PMID: 33191752 DOI: 10.1021/acs.jpclett.0c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
InP nanocrystals exhibit a low photoluminescence quantum yield. As in the case of CdS, this is commonly attributed to their poor surface quality and difficult passivation, which give rise to trap states and negatively affect emission. Hence, the strategies adopted to improve their quantum yield have focused on the growth of shells, to improve passivation and get rid of the surface states. Here, we employ state-of-the-art atomistic semiempirical pseudopotential modeling to isolate the effect of surface stoichiometry from features due to the presence of surface trap states and show that, even with an atomistically perfect surface and an ideal passivation, InP nanostructures may still exhibit very long radiative lifetimes (on the order of tens of microseconds), broad and weak emission, and large Stokes' shifts. Furthermore, we find that all these quantities can be varied by orders of magnitude, by simply manipulating the surface composition, and, in particular, the number of surface P atoms. As a consequence it should be possible to substantially increase the quantum yield in these nanostructures by controlling their surface stoichiometry.
Collapse
Affiliation(s)
- Panagiotis Rodosthenous
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francisco M Gómez-Campos
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- CITIC-UGR, C/Periodista Rafael Gómez Montero, n 2, Granada E-18071, Spain
| | - Marco Califano
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Shi N, Xie W, Gao W, Wang J, Zhang S, Fan Y, Wang M. Effect of PDI ligand binding pattern on the electrocatalytic activity of two Ru(II) complexes for CO
2
reduction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ning‐ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| | - Wang‐jing Xie
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| | - Wei‐song Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| | - Jin‐miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| | - Shi‐fu Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| | - Yu‐hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong 266100 China
| |
Collapse
|