1
|
Wan L, Liu K, Kirillov AM, Fang R, Yang L. Fabrication of Cellulose Filters Incorporating Metal-Organic Frameworks for Efficient Nicotine Adsorption from Cigarette Smoke. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5364-5374. [PMID: 37011410 DOI: 10.1021/acs.langmuir.2c03454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To prevent negative effects of smoking, there is constant research on the development of various types of sustainable filter materials, capable of removing toxic compounds present in cigarette smoke. Because of the extraordinary porosity and adsorption properties, metal-organic frameworks (MOFs) represent promising adsorbents for volatile toxic molecules such as nicotine. This study reports new hybrid materials wherein six types of common MOFs of different porosity and particle size are incorporated into sustainable cellulose fiber from bamboo pulp, resulting in a series of cellulose filter samples abbreviated as MOF@CF. The obtained hybrid cellulose filters were fully characterized and investigated in nicotine adsorption from cigarette smoke, using a specially designed experimental setup. The results revealed that the UiO-66@CF material features the best mechanical performance, facile recyclability, and excellent nicotine adsorption efficiency that attains 90% with relative standard deviations lower than 8.80%. This phenomenon may be caused by the large pore size, open metal sites, and high loading of UiO-66 in cellulose filters. Additionally, the high adsorption capacity showed almost 85% removal of nicotine after the third adsorption cycle. The DFT calculation methods allowed further investigation of the nicotine adsorption mechanism, showing that the energy difference between HOMO and LUMO for UiO-66 was the closest to that of nicotine, which further proves the adsorption ability of nicotine by this material. Owing to the flexibility, recyclability, and excellent adsorption performance, the prepared hybrid MOF@CF materials may find prospective applications in nicotine adsorption from cigarette smoke.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Kunyang Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Yang C, Li J, Zhang Y, Wu C, Li D. A pesticide sustained‐release microcapsule from cellulose nanocrystal stabilized Pickering emulsion template. J Appl Polym Sci 2023. [DOI: 10.1002/app.53716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cai‐xia Yang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering Xinjiang Agricultural University Urumchi People's Republic of China
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering Xinjiang Agricultural University Urumchi People's Republic of China
| | - Yu‐qing Zhang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering Xinjiang Agricultural University Urumchi People's Republic of China
| | - Chao Wu
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering Xinjiang Agricultural University Urumchi People's Republic of China
| | - De‐qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering Xinjiang Agricultural University Urumchi People's Republic of China
| |
Collapse
|
3
|
Tran TT, Jung J, Garcia L, DeShields JB, Cerrato DC, Penner MH, Tomasino E, Levin AD, Zhao Y. Impact of functional spray coatings on smoke volatile phenol compounds and Pinot noir grape growth. J Food Sci 2023; 88:367-380. [PMID: 36533941 DOI: 10.1111/1750-3841.16435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The frequency and intensity of wildfires have been increasing over the last 50 years and negatively impacted the wine industry. Previous methods of smoke mitigation during grape processing have shown little impact in reducing smoke taint in wines. Therefore, a novel method of using edible spray coatings for vineyard application was developed to help prevent volatile smoke phenol uptake in wine grapes. Four cellulose nanofiber-based coating suspensions incorporated with chitosan and/or β-cyclodextrin were evaluated. Films derived from the coating suspensions were exposed to volatile phenols found in wildfire smoke (guaiacol, 4-methyl guaiacol, m-cresol, o-cresol, p-cresol, syringol, and 4-methyl syringol) and evaluated with ultraviolet-visible spectroscopy where the results indicated that the coatings could uptake smoke phenols in varying degrees. The coatings were also applied in a vineyard at three different application times during grape growth: pea-sized, pre-bunch closure, and both at pea-sized and pre-bunch closure. The results showed that the application time did not have a significant (p < 0.05) effect on berry size, weight, °Brix, pH, or titratable acidity. The type of coating, time of application and washing were found to impact the number of volatile phenols in the grapes after a smoke event. Results from this study indicated that edible coatings could help mitigate smoke uptake in wine grapes without sacrificing the growth and key composition parameters of wine grapes. PRACTICAL APPLICATION: This research provides a novel spray coating that can be applied to wine grapes in the vineyard to potentially mitigate volatile smoke compounds in wine grapes without impacting fruit growth and key compositional parameters of wine grapes, thus maintaining high quality of wines for consumers. Results from this study can also be potentially applied to other agricultural commodities to solve the issues caused by the wildfire smoke.
Collapse
Affiliation(s)
- Trung T Tran
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jooyeoun Jung
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Lindsay Garcia
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Joseph B DeShields
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA.,Southern Oregon Research and Extension Center, Oregon State University, Central Point, Oregon, USA
| | - D Cole Cerrato
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Michael H Penner
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth Tomasino
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| | - Alexander D Levin
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA.,Southern Oregon Research and Extension Center, Oregon State University, Central Point, Oregon, USA
| | - Yanyun Zhao
- Department of Food Science & Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
5
|
Borbora A, Manna U. Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules. Chem Commun (Camb) 2021; 57:2110-2123. [PMID: 33587065 DOI: 10.1039/d0cc06917e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, various chemical bondings and interactions were rationally adopted to develop different multilayered microcapsules, where the empty interior accommodated various important cargoes, including bioactive molecules, nanoparticles, antibodies, enzymes, etc., and the thin membrane protected/controlled the release of the loaded cargo. Eventually, such materials are with immense potential for a wide range of prospective applications related to targeted drug delivery, sensing, bio-imaging, developing biomimetic microreactors, and so on. The emphasis on the use of various chemistries for the development of functional and useful microcapsules is rarely illustrated in the literature in the past. In this feature article, the rational uses of different chemistries for (a) preparing and (b) post-modifying various functional microcapsules are accounted. The appropriate selection of chemical bondings/interactions, including electrostatic interaction, host-guest interaction, hydrogen bonding, and covalent bonding, allowed the integration of essential constituents during the layer-by-layer deposition process for 'in situ' tailoring of the relevant and diverse properties of the hollow microcapsules. Recently, different chemically reactive hollow microcapsules were also introduced through the strategic association of 'click chemistry', ring-opening azlactone reaction, thiol-ene reaction, and 1,4-conjugate addition reaction for facile and desired post covalent modifications of the multilayer membrane. The strategic selection of chemistry remained as the key basis to synthesize smart and useful microcapsules.
Collapse
Affiliation(s)
- Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India and Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
6
|
Kim J, Do UT, Kim JW, Jo D, Luu QS, Jung J, Lee Y. Biodegradability Evaluation of Hydroxyethylcellulose-based Microcapsules by 1H Nuclear Magnetic Resonance Spectroscopy. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Sun Y, Chu Y, Wu W, Xiao H. Nanocellulose-based lightweight porous materials: A review. Carbohydr Polym 2020; 255:117489. [PMID: 33436249 DOI: 10.1016/j.carbpol.2020.117489] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
Nanocellulose has been widely concerned and applied in recent years. Because of its high aspect ratio, large specific surface area, good modifiability, high mechanical strength, renewability and biodegradability, nanocellulose is particularly suitable as a base for constructing lightweight porous materials. This review summarizes the preparation methods and applications of nanocellulose-based lightweight porous materials including aerogels, cryogels, xerogels, foams and sponges. The preparation of nanocellulose-based lightweight porous materials usually involves gelation and drying processes. The characteristics and influencing factors of three main drying methods including freeze, supercritical and evaporation drying are reviewed. In addition, the mechanism of physical and chemical crosslinking during gelation and the effect on the structure and properties of the porous materials in different drying methods are especially focused on. This contribution also introduces the application of nanocellulose-based lightweight porous materials in the fields of adsorption, biomedicine, energy storage, thermal insulation and sound absorption, flame retardancy and catalysis.
Collapse
Affiliation(s)
- Yan Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
8
|
Lombardo S, Villares A. Engineered Multilayer Microcapsules Based on Polysaccharides Nanomaterials. Molecules 2020; 25:E4420. [PMID: 32993007 PMCID: PMC7582779 DOI: 10.3390/molecules25194420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The preparation of microcapsules composed by natural materials have received great attention, as they represent promising systems for the fabrication of micro-containers for controlled loading and release of active compounds, and for other applications. Using polysaccharides as the main materials is receiving increasing interest, as they constitute the main components of the plant cell wall, which represent an ideal platform to mimic for creating biocompatible systems with specific responsive properties. Several researchers have recently described methods for the preparation of microcapsules with various sizes and properties using cell wall polysaccharide nanomaterials. Researchers have focused mostly in using cellulose nanomaterials as structural components in a bio-mimetic approach, as cellulose constitutes the main structural component of the plant cell wall. In this review, we describe the microcapsules systems presented in the literature, focusing on the works where polysaccharide nanomaterials were used as the main structural components. We present the methods and the principles behind the preparation of these systems, and the interactions involved in stabilizing the structures. We show the specific and stimuli-responsive properties of the reported microcapsules, and we describe how these characteristics can be exploited for specific applications.
Collapse
|
9
|
Zhang X, Zhang L, Zhang D, Liu S, Wei D, Liu F. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|