1
|
Nandy SK, Das S, Pandey S, Kalita P, Gupta MK, Kabra A, Wadhwa P, Kumar D. The futuristic applications of transition metal dichalcogenides for cancer therapy. LUMINESCENCE 2024; 39:e4771. [PMID: 38747206 DOI: 10.1002/bio.4771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
The second-most common cause of death resulting from genetic mutations in DNA sequences is cancer. The difficulty in the field of anticancer research is the application of the traditional methods, which also affects normal cells. Mutations, genetic replication alterations, and chromosomal abnormalities have a direct impact on the effectiveness of anticancer drugs at different stages. Presently, therapeutic techniques utilize nanotechnology, transition metal dichalcogenides (TMDCs), and robotics. TMDCs are being increasingly employed in tumor therapy and biosensing applications due to their biocompatibility, adjustable bandgap, versatile functionality, exceptional photoelectric properties, and wide range of applications. This study reports the advancement of nanoplatforms based on TMDCs that are specifically engineered for responsive and intelligent cancer therapy. This article offers a thorough examination of the current challenges, future possibilities for theranostic applications using TMDCs, and recent progress in employing TMDCs for cancer therapy. Currently, there is significant interest in two-dimensional (2D) TMDCs nanomaterials as ultrathin unique physicochemical properties. These materials have attracted attention in various fields, including biomedicine. Due to their inherent ability to absorb near-infrared light and their exceptionally large surface area, significant efforts are being made to prepare multifunctional nanoplatforms based on 2D TMDCs.
Collapse
Affiliation(s)
- Shouvik Kumar Nandy
- Department of Pharmacology, School of Pharmacy, Techno India University, Kolkata, India
| | - Sattwik Das
- Department of Pharmacology, School of Pharmacy, Techno India University, Kolkata, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Pallab Kalita
- University of Science and Technology Meghalaya, Ribhoi, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi, Phagwara, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, India
| |
Collapse
|
2
|
Zeng W, Yue X, Dai Z. Ultrasound contrast agents from microbubbles to biogenic gas vesicles. MEDICAL REVIEW (2021) 2023; 3:31-48. [PMID: 37724107 PMCID: PMC10471104 DOI: 10.1515/mr-2022-0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/11/2022] [Indexed: 09/20/2023]
Abstract
Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features: such as non-toxicity, intravenous injectability, ability to cross the pulmonary capillary bed, and significant enhancement of echo signals for the duration of the examination, resulting in essential preclinical and clinical applications. The use of microbubbles functionalized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging. Nevertheless, it is very challenging to utilize targeted microbubbles for molecular imaging of extravascular targets due to their size. A series of acoustic nanomaterials have been developed for breaking free from this constraint. Especially, biogenic gas vesicles, gas-filled protein nanostructures from microorganisms, were engineered as the first biomolecular ultrasound contrast agents, opening the door for more direct visualization of cellular and molecular function by ultrasound imaging. The ordered protein shell structure and unique gas filling mechanism of biogenic gas vesicles endow them with excellent stability and attractive acoustic responses. What's more, their genetic encodability enables them to act as acoustic reporter genes. This article reviews the upgrading progresses of ultrasound contrast agents from microbubbles to biogenic gas vesicles, and the opportunities and challenges for the commercial and clinical translation of the nascent field of biomolecular ultrasound.
Collapse
Affiliation(s)
- Wenlong Zeng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
3
|
Zhu P, Wang Y, Bai X, Pan J. CO2-in-Water Pickering Emulsion-Assisted Polymerization-Induced Self-Assembly of Raspberry-like sorbent microbeads for uranium adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Bai X, Wang Y, Li H, Tian X, Ma Y, Pan J. Stalagmites in karst cave inspired construction: lotus root-type adsorbent with porous surface derived from CO 2-in-water Pickering emulsion for selective and ultrafast uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126398. [PMID: 34175700 DOI: 10.1016/j.jhazmat.2021.126398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous construction of porous and hollow adsorbent, especially from gas-in-water Pickering emulsion (PE) reactor, is vital for improving mass transfer kinetics and uptake amount. Inspired by the formation process of stalagmites in karst cave, amino and amidoxime bifunctionalized lotus root-type microsphere with porous surface (NH2@AO-PLRMS) is prepared by the silica nanoparticles (SPs)-stabilized CO2-in-water Pickering emulsion reactor and subsequent two-step grafting polymerization. The important roles of SPs acting as Pickering emulsifier, surface pore-forming agent, and adjusting internal lotus root structure are confirmed. Lotus root-type pores are dependent on the interface intensity and the permeability for compressed CO2 bubbles in PE droplets. Benefitting from the lotus root-type structure and abundant affinity sites, the maximum uranium adsorption capacity of NH2@AO-PLRMS is 1214.5 mg·g-1 at 298 k, and an ultrafast uptake process can be achieved in the first 30 min. Both thermodynamic and kinetic studies indicate a spontaneous, entropy increased, and exothermic chemisorption process, and the synergies of amidoxime and amino groups can enhance the adsorption selectivity. Remarkably, NH2@AO-PLRMS displays a high uranium adsorption capacity and desorption efficiency after seven cycles. These findings provide a way to obtain adsorbents with enhanced uranium extraction performance from gas-in-water PE reactor.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Lock AT, Seekell RP, Vutha A, Kheir JN, Polizzotti BD. Using design of experiments to understand and predict polymer microcapsule
core‐shell
architecture. J Appl Polym Sci 2021. [DOI: 10.1002/app.50100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Andrew T. Lock
- Heart Center's Translational Research Laboratory, Department of Cardiology Boston Children's Hospital Boston Massachusetts USA
| | - Raymond P. Seekell
- Heart Center's Translational Research Laboratory, Department of Cardiology Boston Children's Hospital Boston Massachusetts USA
- Department of Pediatrics Harvard Medical School Boston Massachusetts USA
| | - Ashwin Vutha
- Heart Center's Translational Research Laboratory, Department of Cardiology Boston Children's Hospital Boston Massachusetts USA
- Department of Pediatrics Harvard Medical School Boston Massachusetts USA
| | - John N. Kheir
- Heart Center's Translational Research Laboratory, Department of Cardiology Boston Children's Hospital Boston Massachusetts USA
- Department of Pediatrics Harvard Medical School Boston Massachusetts USA
| | - Brian D. Polizzotti
- Heart Center's Translational Research Laboratory, Department of Cardiology Boston Children's Hospital Boston Massachusetts USA
- Department of Pediatrics Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
6
|
Nguyen T, Peng Y, Seekell RP, Kheir JN, Polizzotti BD. Hyperbaric polymer microcapsules for tunable oxygen delivery. J Control Release 2020; 327:420-428. [PMID: 32798637 DOI: 10.1016/j.jconrel.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
Abstract
Over the past decade, there have been many attempts to engineer systems capable of delivering oxygen to overcome the effects of both systemic and local hypoxia that occurs as a result of traumatic injury, cell transplantation, or tumor growth, among many others. Despite progress in this field, which has led to a new class of oxygen-generating biomaterials, most reported techniques lack the tunability necessary for independent control over the oxygen flux (volume per unit time) and the duration of delivery, both of which are key parameters for overcoming tissue hypoxia of varying etiologies. Here, we show that these critical parameters can be effectively manipulated using hyperbarically-loaded polymeric microcapsules (PMC). PMCs are micron-sized particles with hollow cores and polymeric shells. We show that oxygen delivery through PMCs is dependent on its permeability through the polymeric shell, the shell thickness, and the pressure gradient across the shell. We also demonstrate that incorporating an intermediate oil layer between the polymeric shell and the gas core prevents rapid outgassing by effectively lowering the resultant pressure gradient across the polymeric membrane following depressurization.
Collapse
Affiliation(s)
- Tien Nguyen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yifeng Peng
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond P Seekell
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brian D Polizzotti
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Martins YA, Fonseca MJV, Pavan TZ, Lopez RFV. Bifunctional Therapeutic Application of Low-Frequency Ultrasound Associated with Zinc Phthalocyanine-Loaded Micelles. Int J Nanomedicine 2020; 15:8075-8095. [PMID: 33116519 PMCID: PMC7586016 DOI: 10.2147/ijn.s264528] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Sonodynamic therapy (SDT) is a new therapeutic modality for the noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Topical SDT requires the development of delivery systems to properly transport the sonosensitizer, such as zinc phthalocyanine (ZnPc), to the skin. In addition, the delivery system itself can participate in sonodynamic events and influence the therapeutic response. This study aimed to develop ZnPc-loaded micelle to evaluate its potential as a topical delivery system and as a cavitational agent for low-frequency ultrasound (LFU) application with the dual purpose of promoting ZnPc skin penetration and generating reactive oxygen species (ROS) for SDT. Methods ZnPc-loaded micelles were developed by the thin-film hydration method and optimized using the Quality by Design approach. Micelles’ influence on LFU-induced cavitation activity was measured by potassium iodide dosimeter and aluminum foil pits experiments. In vitro skin penetration of ZnPc was assessed after pretreatment of the skin with LFU and simultaneous LFU treatment using ZnPc-loaded micelles as coupling media followed by 6 h of passive permeation of ZnPc-loaded micelles. The singlet oxygen generation by LFU irradiation of the micelles was evaluated using two different hydrophilic probes. The lipid peroxidation of the skin was estimated using the malondialdehyde assay after skin treatment with simultaneous LFU using ZnPc-loaded micelles. The viability of the B16F10 melanoma cell line was evaluated using resazurin after treatment with different concentrations of ZnPc-loaded micelles irradiated or not with LFU. Results The micelles increased the solubility of ZnPc and augmented the LFU-induced cavitation activity in two times compared to water. After 6 h ZnPc-loaded micelles skin permeation, simultaneous LFU treatment increased the amount of ZnPc in the dermis by more than 40 times, when compared to non-LFU-mediated treatment, and by almost 5 times, when compared to LFU pretreatment protocol. The LFU irradiation of micelles induced the generation of singlet oxygen, and the lipoperoxidation of the skin treated with the simultaneous LFU was enhanced in three times in comparison to the non-LFU-treated skin. A significant reduction in cell viability following treatment with ZnPc-loaded micelles and LFU was observed compared to blank micelles and non-LFU-treated control groups. Conclusion LFU-irradiated mice can be a potential approach to skin cancer treatment by combining the functions of increasing drug penetration and ROS generation required for SDT.
Collapse
Affiliation(s)
- Yugo A Martins
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, 14040-903, Brazil
| | - Maria J V Fonseca
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, 14040-903, Brazil
| | - Theo Z Pavan
- School of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, 14090-900, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
8
|
Liu Z, Ran H, Wang Z, Zhou S, Wang Y. Targeted and pH-facilitated theranostic of orthotopic gastric cancer via phase-transformation doxorubicin-encapsulated nanoparticles enhanced by low-intensity focused ultrasound (LIFU) with reduced side effect. Int J Nanomedicine 2019; 14:7627-7642. [PMID: 31571868 PMCID: PMC6757192 DOI: 10.2147/ijn.s212888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Focused ultrasound-mediated chemotherapy, as a non-invasive therapeutic modality, has been extensively explored in combating deep tumors for predominant penetration performance. However, the generally used high-intensity focused ultrasound (HIFU) inevitably jeopardizes normal tissue around the lesion for hyperthermal energy. To overcome this crucial issue, low-intensity focused ultrasound (LIFU) was introduced to fulfill precisely controlled imaging and therapy in lieu of HIFU. The objective of this study was to develop a facile and versatile nanoplatform (DPP-R) in response to LIFU and provide targeted drug delivery concurrently. Methods Multifunctional DPP-R was fabricated by double emulsion method and carbodiimide method. Physicochemical properties of DPP-R were detected respectively and the bio-compatibility and bio-safety were evaluated by CCK-8 assay, blood analysis, and histologic section. The targeted ability, imaging function, and anti-tumor effect were demonstrated in vitro and vivo. Results The synthetic DPP-R showed an average particle size at 367 nm, stable physical-chemical properties in different media, and high bio-compatibility and bio-safety. DPP-R was demonstrated to accumulate at the tumor site by active receptor/ligand reaction and passive EPR effect with intravenous administration. Stimulated by LIFU at the tumor site, phase-transformable PFH was vaporized in the core of the integration offering contrast-enhanced ultrasound imaging. The stimuli led to encapsulated DOX's initial burst release and subsequent sustained release for anti-tumor therapy which was verified to be more effective and have less adverse effects than free DOX. Conclusion DPP-R combined with LIFU provides a novel theranostic modality for GC treatment with potent therapeutic effect, including prominent performance of targeting, ultrasound imaging, and accurate drug release.
Collapse
Affiliation(s)
- Zhangluxi Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haitao Ran
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shiji Zhou
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yaxu Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
9
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|