1
|
Xu Y, Zhang S, Li Z, Li M, Chen M. Mechanical Strengthening and Degradation Regulation of Iron Foam-Polycaprolactone Interpenetrating Composite Scaffolds. ACS APPLIED BIO MATERIALS 2025. [PMID: 40254859 DOI: 10.1021/acsabm.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Porous materials, owing to their unique pore networks, are expected to positively influence the enhancement of mechanical properties and modulation of degradation behavior. Herein, composite scaffolds were fabricated by a combination of triply periodic minimal surfaces (TPMS) design, selective laser sintering (SLS), and hot-pressing technology, in which iron foam (FFe) and polycaprolactone (PCL) were the reinforcing phase and matrix, respectively. Mechanical strengthening was achieved by forming an interpenetrating structure between the continuously porous FFe and TPMS structure PCL. Regarding degradation regulation, a catalytic degradation microcirculation system (CDMS) was constructed through acid-base neutralization reactions between FFe and PCL degradation products. The results indicated that the compressive and tensile moduli of composite scaffolds were increased by an astonishing 1758.8% and 466.0% compared with the PCL scaffold, which is attributed to the synergistic load sharing and stress transmission efficiency of the interpenetrating structures. In addition, the weight loss of the composite scaffold was 3.6 times higher than that of the PCL scaffold, indicating that the constructed CDMS is expected to achieve degradation regulation. Encouragingly, the composite scaffold also exhibited a good apatite induction ability during in vitro culture. Therefore, the constructed composite scaffold realizes the regulation of mechanical and degradation properties, so that it has potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Yong Xu
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China
| | - Shuangjun Zhang
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zonghan Li
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Mengqi Li
- Shaoyang Industry Polytechnic College, Shaoyang 422000, China
| | - Meigui Chen
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
2
|
Bai C, Feng X, Lan L, Zhou C, Zhang H. Recent advances and perspectives in bioresorbable metal coronary drug-eluting stents. Biomed Mater 2025; 20:032001. [PMID: 40081005 DOI: 10.1088/1748-605x/adc058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Intervention without implantation has become a requirement for developing percutaneous coronary intervention for coronary heart disease. In this paper, the recent advances of three representative types of bioresorbable metal coronary drug-eluting stents (DESs) are reviewed, and the material composition, structural design, mechanical properties and degradability of iron-based, magnesium-based and zinc-based bioresorbable metal coronary DES are analyzed. The methods of regulating the radial strength and degradation rate of the coronary stents are summarized, and thein vivo/in vitroperformance evaluation methods and ideal testing systems of the bioresorbable metal coronary DES are analyzed. Advances made in bioresorbable metal coronary DES, the existing shortcomings and optimization methods are proposed, and the future development direction is prospected.
Collapse
Affiliation(s)
- Chengyan Bai
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, People's Republic of China
| | - Xiangyi Feng
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, People's Republic of China
| | - Liang Lan
- Research Center of High-temperature Alloy Precision Forming, School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Chao Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, People's Republic of China
- Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, People's Republic of China
| |
Collapse
|
3
|
Wu H, Feng E, Yin H, Zhang Y, Chen G, Zhu B, Yue X, Zhang H, Liu Q, Xiong L. Biomaterials for neuroengineering: applications and challenges. Regen Biomater 2025; 12:rbae137. [PMID: 40007617 PMCID: PMC11855295 DOI: 10.1093/rb/rbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
Neurological injuries and diseases are a leading cause of disability worldwide, underscoring the urgent need for effective therapies. Neural regaining and enhancement therapies are seen as the most promising strategies for restoring neural function, offering hope for individuals affected by these conditions. Despite their promise, the path from animal research to clinical application is fraught with challenges. Neuroengineering, particularly through the use of biomaterials, has emerged as a key field that is paving the way for innovative solutions to these challenges. It seeks to understand and treat neurological disorders, unravel the nature of consciousness, and explore the mechanisms of memory and the brain's relationship with behavior, offering solutions for neural tissue engineering, neural interfaces and targeted drug delivery systems. These biomaterials, including both natural and synthetic types, are designed to replicate the cellular environment of the brain, thereby facilitating neural repair. This review aims to provide a comprehensive overview for biomaterials in neuroengineering, highlighting their application in neural functional regaining and enhancement across both basic research and clinical practice. It covers recent developments in biomaterial-based products, including 2D to 3D bioprinted scaffolds for cell and organoid culture, brain-on-a-chip systems, biomimetic electrodes and brain-computer interfaces. It also explores artificial synapses and neural networks, discussing their applications in modeling neural microenvironments for repair and regeneration, neural modulation and manipulation and the integration of traditional Chinese medicine. This review serves as a comprehensive guide to the role of biomaterials in advancing neuroengineering solutions, providing insights into the ongoing efforts to bridge the gap between innovation and clinical application.
Collapse
Affiliation(s)
- Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Enduo Feng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huanxin Yin
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuxin Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guozhong Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Beier Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuezheng Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
4
|
Lemke JN, Fiocchi J, Biffi CA, Tuissi A, Copes F, Paternoster C, Mantovani D, Coda A. Design, development and performance of a Fe-Mn-Si-Cu alloy for bioabsorbable medical implants. J Mater Chem B 2025; 13:2737-2752. [PMID: 39851173 DOI: 10.1039/d4tb01635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Bioabsorbable metallic alloys constitute a very challenging and innovative field, mainly aimed to develop the next generation of temporary medical implants. Degradation data, biological in vitro and in vivo tests are of major importance in particular for complex alloys, in which the individual element additions could enhance material performance and add functionalities. In this study, a novel Fe-Mn-Si-Cu alloy was carefully designed for vascular and blood-contact applications, and its microstructure, mechanical behavior, degradation behavior and biological performances were investigated accordingly. In previous studies, Mn and Si were found to be suitable elements to effectively enhance mechanical properties and accelerate corrosion rate in simulated body fluid. Cu was added for further grain refinement by the formation of small Cu-rich particles, potentially impacting mechanical properties and degradation behavior. In addition, the feasibility of inducing antibacterial effects in a Fe-Mn-Si-Cu alloy with low Cu content was investigated. The alloy was prepared firstly on a small scale by vacuum arc remelting, then on a larger scale by vacuum induction melting and converted into sheets by conventional thermomechanical processing techniques. Heat treatments were explored to find optimal microstructure conditions. The results confirm promising mechanical, degradation and biological performance in testing the material in in vitro conditions, showing that the degradation products are neither systematically cytotoxic nor have any hemotoxic effects. On the other hand, the expected antibacterial effects could not be confirmed.
Collapse
Affiliation(s)
- J N Lemke
- SAES Getters S.p. A., Viale Italia 77, 20045 Lainate (MI), Italy.
- CNR ICMATE, National Research Council, Institute of Condensed Matter Chemistry and Technologies for Energy, Via Previati 1/E, 23900 Lecco, Italy
| | - J Fiocchi
- CNR ICMATE, National Research Council, Institute of Condensed Matter Chemistry and Technologies for Energy, Via Previati 1/E, 23900 Lecco, Italy
| | - C A Biffi
- CNR ICMATE, National Research Council, Institute of Condensed Matter Chemistry and Technologies for Energy, Via Previati 1/E, 23900 Lecco, Italy
| | - A Tuissi
- CNR ICMATE, National Research Council, Institute of Condensed Matter Chemistry and Technologies for Energy, Via Previati 1/E, 23900 Lecco, Italy
| | - F Copes
- Laboratory for Biomaterials and Bioengineering (LBB), Canada Research Chair Tier I for the Innovation in Surgery, Department of Mining, Metallurgy, and Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City G1V 0A6, Canada
| | - C Paternoster
- Laboratory for Biomaterials and Bioengineering (LBB), Canada Research Chair Tier I for the Innovation in Surgery, Department of Mining, Metallurgy, and Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City G1V 0A6, Canada
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering (LBB), Canada Research Chair Tier I for the Innovation in Surgery, Department of Mining, Metallurgy, and Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City G1V 0A6, Canada
| | - A Coda
- SAES Getters S.p. A., Viale Italia 77, 20045 Lainate (MI), Italy.
- CNR ICMATE, National Research Council, Institute of Condensed Matter Chemistry and Technologies for Energy, Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
5
|
Zhang W, Gao X, Zhang H, Sun G, Zhang G, Li X, Qi H, Guo J, Qin L, Shi D, Shi X, Li H, Zhang D, Guo W, Ding J. Maglev-fabricated long and biodegradable stent for interventional treatment of peripheral vessels. Nat Commun 2024; 15:7903. [PMID: 39256371 PMCID: PMC11387404 DOI: 10.1038/s41467-024-52288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
While chronic limb-threatening ischemia is a serious peripheral artery disease, the lack of an appropriate stent significantly limits the potential of interventional treatment. In spite of much progress in coronary stents, little is towards peripheral stents, which are expected to be both long and biodegradable and thus require a breakthrough in core techniques. Herein, we develop a long and biodegradable stent with a length of up to 118 mm based on a metal-polymer composite material. To achieve a well-prepared homogeneous coating on a long stent during ultrasonic spraying, a magnetic levitation is employed. In vivo degradation of the stent is investigated in rabbit abdominal aorta/iliac arteries, and its preclinical safety is evaluated in canine infrapopliteal arteries. First-in-man implantation of the stent is carried out in the below-the-knee artery. The 13 months' follow-ups demonstrate the feasibility of the long and biodegradable stent in clinical applications.
Collapse
Affiliation(s)
- Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Guoyi Sun
- Department of Vascular and Endovascular Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Li Qin
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Haifeng Li
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China.
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Cao Y, Wang Z, Wan J, He Y, Li Y, Wang S, Wang Y, Song D, Zhang T. Self-healing and corrosion-sensing multifunctional coatings containing pH-sensitive TiO 2-based composites. J Colloid Interface Sci 2024; 669:912-926. [PMID: 38754144 DOI: 10.1016/j.jcis.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Polyelectrolyte-encapsulated nanocontainers can effectively respond to changes of pH and thus control the on-demand release of corrosion inhibitors. A pH-responsive release system (Phen-Tpp@MTNs-PDDA) was developed based on the cationic polyelectrolyte poly dimethyl diallyl ammonium chloride (PDDA) encapsulated mesoporous TiO2 nanocontainers (MTNs) loaded with 1,10-phenanthroline (Phen) and tripolyphosphate ions (Tpp) corrosion inhibitors. The epoxy coating (EP) embedded with Phen-Tpp@MTNs-PDDA (Phen-Tpp@MTNs-PDDA/EP) demonstrates superior self-healing properties and confers long-term protection on the metal substrate through the cooperative effect of Phen and Tpp. Simultaneously, this hybrid coating is endowed with corrosion sensing capability based on the color development originating from the interaction of Phen and carbon steel. This self-healing and corrosion-sensing multifunctional coating provides an effective strategy for the corrosion protection of metals.
Collapse
Affiliation(s)
- Yangyang Cao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zheng Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jieru Wan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuzhu He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yunqiang Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Sheng Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yanli Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Tao Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
7
|
Gao YN, Yang HT, Qiu ZF, Qi F, Lu QH, Zheng JF, Xi ZW, Wang X, Li L, Zhang G, Zhang DY, Lu YD, Qi HP, Qiu H, Gao RL, Zheng YF. Long-term efficacy, safety and biocompatibility of a novel sirolimus eluting iron bioresorbable scaffold in a porcine model. Bioact Mater 2024; 39:135-146. [PMID: 38783928 PMCID: PMC11112549 DOI: 10.1016/j.bioactmat.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Iron is considered as an attractive alternative material for bioresorbable scaffolds (BRS). The sirolimus eluting iron bioresorbable scaffold (IBS), developed by Biotyx Medical (Shenzhen, China), is the only iron-based BRS with an ultrathin-wall design. The study aims to investigate the long-term efficacy, safety, biocompatibility, and lumen changes during the biodegradation process of the IBS in a porcine model. A total of 90 IBSs and 70 cobalt-chromium everolimus eluting stents (EES) were randomly implanted into nonatherosclerotic coronary artery of healthy mini swine. The multimodality assessments including coronary angiography, optical coherence tomography, micro-computed tomography, magnetic resonance imaging, real-time polymerase chain reaction (PCR), and histopathological evaluations, were performed at different time points. There was no statistical difference in area stenosis between IBS group and EES group at 6 months, 1year, 2 years and 5 years. Although the scaffolded vessels narrowed at 9 months, expansive remodeling with increased mean lumen area was found at 3 and 5 years. The IBS struts remained intact at 6 months, and the corrosion was detectable at 9 months. At 5 years, the iron struts were completely degraded and absorbed in situ, without in-scaffold restenosis or thrombosis, lumen collapse, aneurysm formation, and chronic inflammation. No local or systemic toxicity and abnormal histopathologic manifestation were found in all experiments. Results from real-time PCR indicated that no sign of iron overload was reported in scaffolded segments. Therefore, the IBS shows comparable efficacy, safety, and biocompatibility with EES, and late lumen enlargement is considered as a unique feature in the IBS-implanted vessels.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Department of Cardio-Metabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Tao Yang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Zi-Feng Qiu
- Peking University Health Science Center, Beijing, China
| | - Feng Qi
- Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Qian-Hong Lu
- Department of Cardiology, Coronary Artery Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Feng Zheng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Zi-Wei Xi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xin Wang
- Beijing Key Laboratory of Pre-clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui Zhang
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - De-Yuan Zhang
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - Yu-Die Lu
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - Hai-Ping Qi
- R&D Center, Biotyx Medical (Shenzhen) Co. Ltd., Shenzhen, China
| | - Hong Qiu
- Department of Cardio-Metabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Run-Lin Gao
- Department of Cardiology, Coronary Artery Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| |
Collapse
|
8
|
Rivkin B, Akbar F, Otto M, Beyer L, Paul B, Kosiba K, Gustmann T, Hufenbach J, Medina-Sánchez M. Remotely Controlled Electrochemical Degradation of Metallic Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307742. [PMID: 38326101 DOI: 10.1002/smll.202307742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.
Collapse
Affiliation(s)
- Boris Rivkin
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Farzin Akbar
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Martin Otto
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Lukas Beyer
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Birgit Paul
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Konrad Kosiba
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Tobias Gustmann
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Julia Hufenbach
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Mariana Medina-Sánchez
- Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Center for Molecular Bioengineering (B CUBE), Chair of Micro- and Nano Systems, Technische Universität Dresden, 01307, Dresden, Germany
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
9
|
Ding W, Chen M, Du H, Guo X, Yuan H, Li M, Xu Y. Tetracalcium phosphate/porous iron synergistically improved the mechanical, degradation and biological properties of polylactic acid scaffolds. Int J Biol Macromol 2024; 271:132530. [PMID: 38777005 DOI: 10.1016/j.ijbiomac.2024.132530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Synergistically improving the mechanical and degradable properties of polylactic acid (PLA) scaffolds and endowing them with bioactivity are urgent problems to be solved in deepening their application in tissue engineering. In this work, tetracalcium phosphate (TTCP) and porous iron (pFe) were compounded by stirring and vacuum negative pressure, and then they were blended with polylactic acid and a porous scaffold (named TTCP@pFe/PLA) was prepared by selective laser sintering. On the one hand, molten polylactic acid penetrates the pores of porous iron to form an interlocking network, thereby achieving mechanical strengthening. On the other hand, the alkaline environment generated by the dissolution of tetracalcium phosphate can effectively catalyze the hydrolysis of polylactic acid to accelerate the degradation. Meanwhile, the dissolution of tetracalcium phosphate forms a local calcium-rich microenvironment, which rapidly induces apatite formation, that is, confers bioactivity on scaffolds. As a result, the TTCP@pFe/PLA scaffold exhibited a notable enhancement in mechanical strength, being 2.2 times stronger compared to the polylactic acid scaffold. More importantly, MC3T3E1 cells exhibit good adhesion, stretching, and proliferation on the composite scaffold, demonstrating good cytocompatibility. All these good properties of the TTCP@pFe/PLA scaffold indicate that it has potential applications as a novel alternative in bone tissue regeneration.
Collapse
Affiliation(s)
- Wenhao Ding
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Meigui Chen
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Haocheng Du
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiaoping Guo
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Hai Yuan
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Mengqi Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yong Xu
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China.
| |
Collapse
|
10
|
Van Daele L, Chausse V, Parmentier L, Brancart J, Pegueroles M, Van Vlierberghe S, Dubruel P. 3D-Printed Shape Memory Poly(alkylene terephthalate) Scaffolds as Cardiovascular Stents Revealing Enhanced Endothelialization. Adv Healthc Mater 2024; 13:e2303498. [PMID: 38329408 DOI: 10.1002/adhm.202303498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.
Collapse
Affiliation(s)
- Lenny Van Daele
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| |
Collapse
|
11
|
Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, Wong TW, Hidayat A, Nur H. Evaluation of in vitro corrosion behavior and biocompatibility of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron for bone scaffolds applications. Biotechnol J 2024; 19:e2300464. [PMID: 38509814 DOI: 10.1002/biot.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Wan Fahmin Faiz Wan Ali
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Farah Hidayah Jamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fatihhi Szali Januddi
- Advanced Facilities Engineering Technology Research Cluster (AFET), Plant Engineering Technology (PETech) Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Masai, Johor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of UPM - MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tuck-Whye Wong
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Arif Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Negeri Malang, Malang, Indonesia
| | - Hadi Nur
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
- Center of Advanced Materials for Renewable Energy (CAMRY), Universiti Negeri Malang, Malang, Indonesia
| |
Collapse
|
12
|
Yang S, Wang W, Xu Y, Yuan Y, Hao S. Fe-Zn alloy, a new biodegradable material capable of reducing ROS and inhibiting oxidative stress. Regen Biomater 2024; 11:rbae002. [PMID: 38404619 PMCID: PMC10884730 DOI: 10.1093/rb/rbae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/27/2024] Open
Abstract
Fe-based biodegradable materials have attracted significant attention due to their exceptional mechanical properties and favorable biocompatibility. Currently, research on Fe-based materials mainly focuses on regulating the degradation rate. However, excessive release of Fe ions during material degradation will induce the generation of reactive oxygen species (ROS), leading to oxidative stress and ferroptosis. Therefore, the control of ROS release and the improvement of biocompatibility for Fe-based materials are very important. In this study, new Fe-Zn alloys were prepared by electrodeposition with the intention of using Zn as an antioxidant to reduce oxidative damage during alloy degradation. Initially, the impact of three potential degradation ions (Fe2+, Fe3+, Zn2+) from the Fe-Zn alloy on human endothelial cell (EC) activity and migration ability was investigated. Subsequently, cell adhesion, cell activity, ROS production and DNA damage were assessed at various locations surrounding the alloy. Finally, the influence of different concentrations of Zn2+ in the medium on cell viability and ROS production was evaluated. High levels of ROS exhibited evident toxic effects on ECs and promoted DNA damage. As an antioxidant, Zn2+ effectively reduced ROS production around Fe and improved the cell viability on its surface at a concentration of 0.04 mmol/l. These findings demonstrate that Fe-Zn alloy can attenuate the ROS generated from Fe degradation thereby enhancing cytocompatibility.
Collapse
Affiliation(s)
- Shuaikang Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weiqiang Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yanan Xu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yonghui Yuan
- Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of Dalian University of Technology, Shenyang 110042, PR China
| | - Shengzhi Hao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
13
|
Zhang Y, Roux C, Rouchaud A, Meddahi-Pellé A, Gueguen V, Mangeney C, Sun F, Pavon-Djavid G, Luo Y. Recent advances in Fe-based bioresorbable stents: Materials design and biosafety. Bioact Mater 2024; 31:333-354. [PMID: 37663617 PMCID: PMC10474570 DOI: 10.1016/j.bioactmat.2023.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Fe-based materials have received more and more interests in recent years as candidates to fabricate bioresorbable stents due to their appropriate mechanical properties and biocompatibility. However, the low degradation rate of Fe is a serious limitation for such application. To overcome this critical issue, many efforts have been devoted to accelerate the corrosion rate of Fe-based stents, through the structural and surface modification of Fe matrix. As stents are implantable devices, the released corrosion products (Fe2+ ions) in vessels may alter the metabolism, by generating reactive oxygen species (ROS), which might in turn impact the biosafety of Fe-based stents. These considerations emphasize the importance of combining knowledge in both materials and biological science for the development of efficient and safe Fe-based stents, although there are still only limited numbers of reviews regarding this interdisciplinary field. This review aims to provide a concise overview of the main strategies developed so far to design Fe-based stents with accelerated degradation, highlighting the fundamental mechanisms of corrosion and the methods to study them as well as the reported approaches to accelerate the corrosion rates. These approaches will be divided into four main sections, focusing on (i) increased active surface areas, (ii) tailored microstructures, (iii) creation of galvanic reactions (by alloying, ion implantation or surface coating of noble metals) and (iv) decreased local pH induced by degradable surface organic layers. Recent advances in the evaluation of the in vitro biocompatibility of the final materials and ongoing in vivo tests are also provided.
Collapse
Affiliation(s)
- Yang Zhang
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Charles Roux
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | | | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Fan Sun
- PSL Université, Chimie Paris Tech, IRCP, CNRS UMR 8247, 11, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| |
Collapse
|
14
|
Tang C, Wang X, Zhang Y, Liu N, Hu X. Corrosion behaviors and kinetics of nanoscale zero-valent iron in water: A review. J Environ Sci (China) 2024; 135:391-406. [PMID: 37778814 DOI: 10.1016/j.jes.2022.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 10/03/2023]
Abstract
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron (nZVI) in aquatic environment is particularly significant for understanding the reactivity, longevity and stability of nZVI, as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications. Herein, this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water. Firstly, Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion. The morphological, structural, and compositional evolution of (modified-) nZVI under different environmental conditions, assisted with microscopic and spectroscopic evidence, is then summarized. Afterwards, common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water. Specifically, stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed, emphasizing their capabilities in studying the dynamic iron corrosion processes. Finally, in the future, more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties. We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment.
Collapse
Affiliation(s)
- Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xingyu Wang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nuo Liu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Zhang H, Li X, Qu Z, Zhang W, Wang Q, Cao D, Wang Y, Wang X, Wang Y, Yu L, Ding J. Effects of serum proteins on corrosion rates and product bioabsorbability of biodegradable metals. Regen Biomater 2023; 11:rbad112. [PMID: 38173765 PMCID: PMC10761199 DOI: 10.1093/rb/rbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products. However, the removal of the precipitated products has been unclear and even largely ignored in publications. Herein, we find that albumin, an abundant macromolecule in serum, enhances the solubility of corrosion products of iron in blood mimetic Hank's solution significantly. This is universal for other main biodegradable metals such as magnesium, zinc and polyester-coated iron. Albumin also influences corrosion rates in diverse trends in Hank's solution and normal saline. Based on quantitative study theoretically and experimentally, both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism, and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface. This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine. The improved Hank's solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices, where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin, resulting in the physiological concentration of free calcium ions.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
Rabeeh VPM, Rahim SA, Kinattingara Parambath S, Rajanikant GK, Hanas T. Iron-Gold Composites for Biodegradable Implants: In Vitro Investigation on Biodegradation and Biomineralization. ACS Biomater Sci Eng 2023; 9:4255-4268. [PMID: 37452568 DOI: 10.1021/acsbiomaterials.3c00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The biocompatibility and biodegradation of iron (Fe) make it a suitable candidate for developing biodegradable metallic implants. However, the degradation rate of Fe in a physiological environment is extremely slow and needs to be enhanced to a rate compatible with tissue growth. Incorporating noble metals improves the Fe degradation rate by forming galvanic couples. This study incorporated gold (Au) into Fe at very low concentrations of 1.25 and 2.37 μg/g to improve the degradation rate. The electrochemical corrosion test of the samples revealed that the Au-containing samples showed a four-time and nine-time faster degradation rate than pure Fe. Furthermore, the immersion test and long-term electrochemical impedance spectroscopy conducted in simulated body fluid (SBF) revealed that the Au-incorporated samples exhibited increased bioactivity and degraded faster than pure Fe. Integrating nanogold into a Fe matrix increased the in situ formation of hydroxyapatite on the sample's surface and did not cause toxicity to L929-murine fibroblast cells. It is suggested that Fe-Au composites with low concentrations of Au can be used to tailor the biodegradation rate and promote the biomineralization of Fe-based implants in the physiological environment.
Collapse
Affiliation(s)
- V P Muhammad Rabeeh
- Nanomaterials Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | - Shebeer A Rahim
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | | | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode 673601, India
| | - T Hanas
- Nanomaterials Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| |
Collapse
|
17
|
Pereira HA, da Boit Martinello K, Vieira Y, Diel JC, Netto MS, Reske GD, Lorenzett E, Silva LFO, Burgo TAL, Dotto GL. Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices. CHEMOSPHERE 2023; 325:138384. [PMID: 36931403 DOI: 10.1016/j.chemosphere.2023.138384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The present work synthesized two new materials of functionalized multi-walled carbon nanotubes (MWCNT-OH and MWCNT-COOH) impregnated with magnetite (Fe3O4) using solution precipitation methodology. The resulting MWCNT-OH-Mag and MWCNT-COOH-Mag materials were characterized by scanning electron microscopy coupled with energy dispersion X-ray spectroscopy, Fourier transform infrared, X-ray diffraction, atomic force microscopy, and electrical force microscopy. The characterization results indicate that the -OH functional groups in the MWCNT interact effectively with magnetite iron favoring impregnation and indicating the regular distribution of nanoparticles on the surface of the synthesized materials. The adsorption efficiency of the MWCNT-OH-Mag and MWCNT-COOH-Mag materials was tested using the pollutants 2,4-D and Atrazine. Over batch studies carried out under different pH ranges, it was found that the optimal condition for 2,4-D adsorption was at pH 2, while for Atrazine, it was found at pH 6. The rapid adsorption kinetics of 2,4-D and Atrazine reaches equilibrium within 30 min. The pseudo-first-order model described 2,4-D adsorption well. The General-order model described better atrazine adsorption. The magnetically doped adsorbent functionalized with -OH surface groups (MWCNT-OH-Mag) demonstrated superior adsorption performance and increased Fe-doped sites. The Sips model described the adsorption isotherms accurately. MWCNT-OH-Mag presented the greatest adsorption capacity at 51.4 and 47.7 mg g-1 for 2,4-D and Atrazine, respectively. Besides, electrostatic forces and complexation rule the molecular interactions between metals and pesticides. The leaching and regeneration tests of the synthesized materials indicate high stability in an aqueous solution. Furthermore, experiments with wastewater samples contaminated with the model pollutants indicate that the novel adsorbents are highly promising for enhancing water purification by adsorptive separation.
Collapse
Affiliation(s)
- Hercules A Pereira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | | | - Yasmin Vieira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Júlia C Diel
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Matias S Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Gabriel D Reske
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Ezequiel Lorenzett
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia.
| | - Thiago A L Burgo
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Yang N, Venezuela J, Zhang J, Wang A, Almathami S, Dargusch M. Evolution of degradation mechanism and fixation strength of biodegradable Zn-Cu wire as sternum closure suture: An in vitro study. J Mech Behav Biomed Mater 2023; 138:105658. [PMID: 36610283 DOI: 10.1016/j.jmbbm.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
This work reports the first in vitro study on the in-situ biodegradation behaviour and the evolution of fixation strength of Zn-Cu alloy wires in a simulated sternum closure environment. Zn-Cu wires were used to reapproximate the partial bisected sternum models, and their fixation effect was compared with traditional surgical grade 316 L stainless steel (SS) wires in terms of fixation rigidity, critical load, first/ultimate failure characteristics. The metal sutures were then immersed in Hank's balanced salt solution for 12 weeks immersion period, and their corrosion behaviours assessed. Zn-Cu wires showed similar fixation rigidity at 70.89 ± 6.97 N/mm as SS, but the critical load, first failure and ultimate failure characteristics were inferior to SS. The key challenges that limited the fixation effect of the Zn-Cu wires were poor mechanical strength, short elastic region, and strain softening behaviours, which resulted in poor load-bearing capabilities and reduced the knot security of the sutures. The in-situ biodegradation of the Zn-Cu suture was accompanied by the early onset of localised corrosion within the twisted knot and the section located next to the incision line. Crevice corrosion and strain-induced corrosion were the dominant mechanisms in the observed localised corrosion. The localised corrosion on the Zn-Cu sutures did not lead to a significant shift in fixation rigidity, critical load and the first failure characteristics. The findings suggest that the Zn-based biodegradable metallic wires could be a promising sternum closure suture material once the limitations in mechanical characteristics are addressed.
Collapse
Affiliation(s)
- Nan Yang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Jeffrey Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Jingqi Zhang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Anguo Wang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Sharifah Almathami
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Matthew Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
19
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
21
|
Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery. Bioact Mater 2022; 17:496-505. [PMID: 35415293 PMCID: PMC8976101 DOI: 10.1016/j.bioactmat.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiography, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after implantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products. This study investigated the long-term safety and the total degradative process of nitrided iron scaffold in porcine coronary artery. The safety and biocompatibility of the nitrided iron scaffold were comparable to those of the Vision stent within 12 months after implantation. This ultrathin nitrided iron scaffold can be degraded and bioresorbed completely with long-term biocompatibility in porcine coronary artery. Interestingly, the lymphatic metabolic pathway might serve as the potential absorption route for iron and its corrosion products.
Collapse
|
22
|
Zhang H, Zhang W, Qiu H, Zhang G, Li X, Qi H, Guo J, Qian J, Shi X, Gao X, Shi D, Zhang D, Gao R, Ding J. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions. Adv Healthc Mater 2022; 11:e2201740. [PMID: 36057108 DOI: 10.1002/adhm.202201740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
The new-generation coronary stents are expected to be biodegradable, and then the biocompatibility along with biodegradation becomes more challenging. It is a critical issue to choose appropriate biomimetic conditions to evaluate biocompatibility. Compared with other candidates for biodegradable stents, iron-based materials are of high mechanical strength, yet have raised more concerns about biodegradability and biocompatibility. Herein, a metal-polymer composite strategy is applied to accelerate the degradation of iron-based stents in vitro and in a porcine model. Furthermore, it is found that serum, the main environment of vascular stents, ensured the safety of iron corrosion through its antioxidants. This work highlights the importance of serum, particularly albumin, for an in vitro condition mimicking blood-related physiological condition, when reactive oxygen species, inflammatory response, and neointimal hyperplasia are concerned. The resultant metal-polymer composite stent is implanted into a patient in clinical research via interventional treatment, and the follow-up confirms its safety, efficacy, and appropriate biodegradability.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Qian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
23
|
He J, Shen R, Liu Q, Zheng S, Wang X, Gao J, Wang Q, Huang J, Ding J. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37436-37446. [PMID: 35943249 DOI: 10.1021/acsami.2c10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai 200434, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Wang G, Gao C, Xiao B, Zhang J, Jiang X, Wang Q, Guo J, Zhang D, Liu J, Xie Y, Shu C, Ding J. Research and clinical translation of trilayer stent-graft of expanded polytetrafluoroethylene for interventional treatment of aortic dissection. Regen Biomater 2022; 9:rbac049. [PMID: 35958517 PMCID: PMC9362767 DOI: 10.1093/rb/rbac049] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The aortic dissection (AD) is a life-threatening disease. The transcatheter endovascular aortic repair (EVAR) affords a minimally invasive technique to save lives of these critical patients, and an appropriate stent-graft gets to be the key medical device during an EVAR procedure. Herein, we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease. The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene (ePTFE) membranes. Each of inner and outer surfaces of the stent-graft was covered by an ePTFE membrane, and the two membranes were then sintered together. The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro. Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability. The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo. In 9 canine experiments, the blood vessels of the animals implanted with the stent-grafts were of good patency, and there were no thrombus and obvious stenosis by angiography after implantation for 6 months. Furthermore, all of the 9 clinical cases experienced successful implantation using the stent-graft and its post-release delivery system, and the one-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Benhao Xiao
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jie Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Xunyuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Yuehui Xie
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Chang Shu
- Department of Vascular Surgery, the Second Xiangya Hospital of Central South University , Changsha, 410011, China
- State Key Laboratory of Cardiovascular Diseases, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, 100037, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| |
Collapse
|
25
|
Sun X, Xie J, Zhang J, Sang M, Li Y, Lyu P, Chen D, Zhou H. Hydrophobic Al2O3/SiO2/PDMS Composite Coatings for Anti-corrosion Application of 304 Stainless-Steel. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Lozhkomoev AS, Buyakov AS, Kazantsev SO, Senkina EI, Krinitcyn MG, Ivanyuk VA, Sharipova AF, Lerner MI. Preparation and Properties of Iron Nanoparticle-Based Macroporous Scaffolds for Biodegradable Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4900. [PMID: 35888367 PMCID: PMC9317871 DOI: 10.3390/ma15144900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Fe-based scaffolds are of particular interest in the technology of biodegradable implants due to their high mechanical properties and biocompatibility. In the present work, using an electroexplosive Fe nanopowder and NaCl particles 100-200 µm in size as a porogen, scaffolds with a porosity of about 70 ± 0.8% were obtained. The effect of the sintering temperature on the structure, composition, and mechanical characteristics of the scaffolds was considered. The optimum parameters of the sintering process were determined, allowing us to obtain samples characterized by plastic deformation and a yield strength of up to 16.2 MPa. The degradation of the scaffolds sintered at 1000 and 1100 °C in 0.9 wt.% NaCl solution for 28 days resulted in a decrease in their strength by 23% and 17%, respectively.
Collapse
Affiliation(s)
- Aleksandr S. Lozhkomoev
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 634021 Tomsk, Russia; (A.S.B.); (S.O.K.); (E.I.S.); (M.G.K.); (M.I.L.)
| | - Ales S. Buyakov
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 634021 Tomsk, Russia; (A.S.B.); (S.O.K.); (E.I.S.); (M.G.K.); (M.I.L.)
| | - Sergey O. Kazantsev
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 634021 Tomsk, Russia; (A.S.B.); (S.O.K.); (E.I.S.); (M.G.K.); (M.I.L.)
| | - Elena I. Senkina
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 634021 Tomsk, Russia; (A.S.B.); (S.O.K.); (E.I.S.); (M.G.K.); (M.I.L.)
| | - Maksim G. Krinitcyn
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 634021 Tomsk, Russia; (A.S.B.); (S.O.K.); (E.I.S.); (M.G.K.); (M.I.L.)
| | - Valeria A. Ivanyuk
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Aliya F. Sharipova
- Department of Materials Science and Engineering, Technion, Haifa 3200003, Israel;
| | - Marat I. Lerner
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 634021 Tomsk, Russia; (A.S.B.); (S.O.K.); (E.I.S.); (M.G.K.); (M.I.L.)
| |
Collapse
|
27
|
Yu C, Liu X, Zhang J, Chao Y, Jia X, Wang C, Wallace GG. A Battery Method to Enhance the Degradation of Iron Stent and Regulating the Effect on Living Cells. SMALL METHODS 2022; 6:e2200344. [PMID: 35689331 DOI: 10.1002/smtd.202200344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Iron is a promising material for cardiovascular stent applications, however, the low biodegradation rate presents a challenge. Here, a dynamic method to improve the degradation rate of iron and simultaneously deliver electrical energy that could potentially inhibit cell proliferation on the device is reported. It is realized by pairing iron with a biocompatible hydrogel cathode in a cell culture media-based electrolyte forming an iron-air battery. This system does not show cytotoxicity to human adipose-stem cells over a period of 21 days but inhibits cell proliferation. The combination of enhanced iron degradation and inhibited cell proliferation by this dynamic method suggests it might be an approach for restenosis inhibition of biodegradable stents.
Collapse
Affiliation(s)
- Changchun Yu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Xiao Liu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Jiahao Zhang
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Yunfeng Chao
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| |
Collapse
|
28
|
Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioact Mater 2021; 9:239-250. [PMID: 34820568 PMCID: PMC8586574 DOI: 10.1016/j.bioactmat.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, pure iron (Fe) has attracted significant attention as a promising biodegradable orthopedic implant material due to its excellent mechanical and biological properties. However, in physiological conditions, Fe has an extremely slow degradation rate with localized and irregular degradation, which is problematic for practical applications. In this study, we developed a novel combination of a nanostructured surface topography and galvanic reaction to achieve uniform and accelerated degradation of an Fe implant. The target-ion induced plasma sputtering (TIPS) technique was applied on the Fe implant to introduce biologically compatible and electrochemically noble tantalum (Ta) onto its surface and develop surface nano-galvanic couples. Electrochemical tests revealed that the uniformly distributed nano-galvanic corrosion cells of the TIPS-treated sample (nano Ta–Fe) led to relatively uniform and accelerated surface degradation compared to that of bare Fe. Furthermore, the mechanical properties of nano Ta–Fe remained almost constant during a long-term in vitro immersion test (~40 weeks). Biocompatibility was also assessed on surfaces of bare Fe and nano Ta–Fe using in vitro osteoblast responses through direct and indirect contact assays and an in vivo rabbit femur medullary cavity implantation model. The results revealed that nano Ta–Fe not only enhanced cell adhesion and spreading on its surface, but also exhibited no signs of cellular or tissue toxicity. These results demonstrate the immense potential of Ta-implanted surface nanostructures as an effective solution for the practical application of Fe-based orthopedic implants, ensuring long-term biosafety and clinical efficacy. The degradation rate of nanostructured Fe implants was accelerated by TIPS technique. Ta ions were accelerated strongly toward the Fe surface by TIPS process. Nano Ta–Fe showed long-term mechanical stability and accelerated degradation rate. Nanostructured Ta–Fe surface showed enhanced in vitro and in vivo cellular responses. Ta-implanted Fe is a promising material for biodegradable orthopedic implants.
Collapse
|
29
|
Shen Y, Zhang W, Xie Y, Li A, Wang X, Chen X, Liu Q, Wang Q, Zhang G, Liu Q, Liu J, Zhang D, Zhang Z, Ding J. Surface modification to enhance cell migration on biomaterials and its combination with 3D structural design of occluders to improve interventional treatment of heart diseases. Biomaterials 2021; 279:121208. [PMID: 34749074 DOI: 10.1016/j.biomaterials.2021.121208] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
The dominant source of thromboembolism in heart comes from the left atrial appendage (LAA). An occluder can close LAA and significantly reduce the risk of strokes, particularly for those patients with atrial fibrillation. However, it is technically challenging to fabricate an LAA occluder that is appropriate for percutaneous implantation and can be rapidly endothelialized to accomplish complete closure and avoid severe complication. Hypothesizing that a fast migration rate of endothelial cells on the implant surface would lead to rapid endothelialization, we fabricated an LAA occlusion device for interventional treatment with a well-designed 3D architecture and a nanoscale 2D coating. Through screening of biomaterials surfaces with cellular studies in vitro including cell observations, qPCR, RNA sequencing, and implantation studies in vivo, we revealed that a titanium-nitrogen nanocoating on a NiTi alloy promoted high migration rate of endothelial cells on the surface. The effectiveness of this first nanocoating LAA occluder was validated in animal experiments and a patient case, both of which exhibited successful implantation, fast sealing and long-term safety of the device. The mechanistic insights gained in this study will be useful for the design of medical devices with appropriate surface modification, not necessarily for improved cell adhesion but sometimes for enhanced cell migration.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Yumei Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Anning Li
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xianmiao Chen
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China.
| | - Zhiwei Zhang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Wang Y, Venezuela J, Dargusch M. Biodegradable shape memory alloys: Progress and prospects. Biomaterials 2021; 279:121215. [PMID: 34736144 DOI: 10.1016/j.biomaterials.2021.121215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a 'memorised' shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jeffrey Venezuela
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
31
|
Wang X, Lei X, Yu Y, Miao S, Tang J, Fu Y, Ye K, Shen Y, Shi J, Wu H, Zhu Y, Yu L, Pei G, Bi L, Ding J. Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model. Biomater Sci 2021; 9:5192-5208. [PMID: 34159966 DOI: 10.1039/d1bm00762a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Percutaneous or transcutaneous devices are important and unique, and the corresponding biological sealing at the skin-implant interface is the key to their long-term success. Herein, we investigated the surface modification to enhance biological sealing, using a metal sheet and screw bonded by biomacromolecule fibrinogen mediated via pre-deposited synthetic macromolecule polydopamine (PDA) as a demonstration. We examined the effects of a Ti-6Al-4V titanium alloy modified with fibrinogen (Ti-Fg), PDA (Ti-PDA) or their combination (Ti-PDA-Fg) on the biological sealing and integration with skin and bone tissues. Human epidermal keratinocytes (HaCaT), human foreskin fibroblasts (HFF) and preosteoblasts (MC3T3-E1), which are closely related to percutaneous implants, exhibited better adhesion and spreading on all the three modified sheets compared with the unmodified alloy. After three-week subcutaneous implantation in Sprague-Dawley (SD) rats, the Ti-PDA-Fg sheets could significantly attenuate the soft tissue response and promote angiogenesis compared with other groups. Furthermore, in the model of percutaneous tibial implantation in SD rats, the Ti-PDA-Fg screws dramatically inhibited epithelial downgrowth and promoted new bone formation. Hence, the covalent immobilization of fibrinogen through the precoating of PDA is promising for enhanced biological sealing and osseointegration of metal implants with soft and hard tissues, which is critical for an orthopedic percutaneous medical device.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xing Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Southern University of Science and Technology Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
32
|
Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 2021; 128:42-59. [PMID: 33857694 DOI: 10.1016/j.actbio.2021.04.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Collapse
|
33
|
Biodegradable Iron-Based Materials-What Was Done and What More Can Be Done? MATERIALS 2021; 14:ma14123381. [PMID: 34207249 PMCID: PMC8233976 DOI: 10.3390/ma14123381] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Iron, while attracting less attention than magnesium and zinc, is still one of the best candidates for biodegradable metal stents thanks its biocompatibility, great elastic moduli and high strength. Due to the low corrosion rate, and thus slow biodegradation, iron stents have still not been put into use. While these problems have still not been fully resolved, many studies have been published that propose different approaches to the issues. This brief overview report summarises the latest developments in the field of biodegradable iron-based stents and presents some techniques that can accelerate their biocorrosion rate. Basic data related to iron metabolism and its biocompatibility, the mechanism of the corrosion process, as well as a critical look at the rate of degradation of iron-based systems obtained by several different methods are included. All this illustrates as the title says, what was done within the topic of biodegradable iron-based materials and what more can be done.
Collapse
|
34
|
Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater 2021; 127:1-23. [PMID: 33823325 DOI: 10.1016/j.actbio.2021.03.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, significant advancements have been made regarding the material formulation, iterative design, and clinical translation of metallic bioresorbable stents. Currently, magnesium-based (Mg) stent devices have remained at the forefront of bioresorbable stent material development and use. Despite substantial advances, the process of developing novel absorbable stents and their clinical translation is time-consuming, expensive, and challenging. These challenges, coupled with the continuous refinement of alternative bioresorbable metallic bulk materials such as iron (Fe) and zinc (Zn), have intensified the search for an ideal absorbable metallic stent material. Here, we discuss the most recent pre-clinical and clinical evidence for the efficacy of bioresorbable metallic stents and material candidates. From this perspective, strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations. STATEMENT OF SIGNIFICANCE: Recent efforts in using Mg, Fe, and Zn based materials for bioresorbable stents include elemental profile changes as well as surface modifications to improve each of the three classes of materials. Although a variety of alloys for absorbable metallic stents have been developed, the ideal absorbable stent material has not yet been discovered. This review focuses on the state of the art for bioresorbable metallic stent development. It covers the three bulk materials used for degradable stents (Mg, Fe, and Zn), and discusses their advances from a translational perspective. Strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations.
Collapse
|
35
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
36
|
Theerasilp M, Crespy D. Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings. NANO LETTERS 2021; 21:3604-3610. [PMID: 33818088 DOI: 10.1021/acs.nanolett.1c00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Replacing metallic structures before critical damage is beneficial for safety and for saving energy and resources. One simple approach consists in visually monitoring the early stage of corrosion, and related change of pH, of coated metals. We prepare smart nanoparticle additives for coatings which act as a pH sensor. The nanoparticles are formed with a terpolymer containing two dyes as side chains, acting as donor and acceptor for a FRET process. Real time monitoring of the extent of localized corrosion on metallic structures is then carried out with a smartphone camera. Colored pH mapping can be then manually retrieved by an operator or automatically recorded by a surveillance camera.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
37
|
Biodegradable polymeric occluder for closure of atrial septal defect with interventional treatment of cardiovascular disease. Biomaterials 2021; 274:120851. [PMID: 33965798 DOI: 10.1016/j.biomaterials.2021.120851] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The next-generation closure device for interventional treatment of congenital heart disease is regarded to be biodegradable, yet the corresponding biomaterial technique is still challenging. Herein, we report the first fully biodegradable atrial septal defect (ASD) occluder finally coming into clinical use, which is made of biodegradable poly(l-lactic acid) (PLLA). We characterized the physico-chemical properties of PLLA fibers as well as the raw polymer and the operability of the as-fabricated occluders. Cell behaviors on material were observed, and in vivo fiber degradation and inflammatory responses were examined. ASD models in piglets were created, and 44 PLLA ASD occluders were implanted via catheter successfully. After 36 months, the PLLA ASD occluders almost degraded without any complications. The mechanical properties and thickness between newborn and normal atrial septum showed no significant difference. We further accomplished the first clinical implantation of the PLLA ASD occluder in a four-year boy, and the two-year follow-up up to date preliminarily indicated safety and feasibility of such new-generation fully biodegradable occluder made of synthetic polymers.
Collapse
|
38
|
Khodakarami S, Zhao H, Rabbi KF, Miljkovic N. Scalable Corrosion-Resistant Coatings for Thermal Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4519-4534. [PMID: 33440119 DOI: 10.1021/acsami.0c19683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Corrosion of metallic substrates is a problem for a variety of applications. Corrosion can be mitigated with the use of an electrically insulating coating protecting the substrate. Thick millimetric coatings, such as paints, are generally more corrosion-resistant when compared to nanoscale coatings. However, for thermal systems, thick coatings are undesirable due to the resulting decrease in the overall heat transfer stemming from the added coating thermal resistance. Hence, the development of ultrathin (<10 μm) coatings is of great interest. Ultrathin inorganic silicon dioxide (SiO2) coatings applied by sol-gel chemistries or chemical vapor deposition, as well as organic coatings such as Parylene C, have great anticorrosion performance due to their high dielectric breakdown and low moisture permeability. However, their application to arbitrarily shaped metals is difficult or expensive. Here, we develop a sol-gel solution capable of facile and controllable dip coating on arbitrary metals, resulting in a very smooth (<5 nm roughness), thin (∼3 μm), and conformal coating of dense SiO2. To benchmark our material, we compared the corrosion performance with in-house synthesized superhydrophobic aluminum and copper samples, Parylene C-coated substrates, and smooth hydrophobic surfaces functionalized with a hydrophobic self-assembled monolayer. For comparison with state-of-the-art commercial coatings, copper substrates were coated with an organo-ceramic SiO2 layer created by an elevated temperature and atmospheric pressure metal organic chemical vapor deposition process. To characterize corrosion performance, we electrochemically investigated the corrosion resistance of all samples through potentiodynamic polarization studies and electrochemical impedance spectroscopy. To benchmark the coating durability and to demonstrate scalability, we tested internally coated copper tubes in a custom-built corrosion flow loop to simulate realistic working conditions with shear and particulate saltwater flow. The sol-gel and Parylene C coatings demonstrated a 95% decrease in corrosion rate during electrochemical tests. Copper tube weight loss was reduced by 75% for the sol-gel SiO2-coated tubes when seawater was used as the corrosive fluid in the test loop. This work not only demonstrates scalable coating methodologies for applying ultrathin anticorrosion coatings but also develops mechanistic understanding of corrosion mechanisms on a variety of functional surfaces and substrates.
Collapse
Affiliation(s)
- Siavash Khodakarami
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hanyang Zhao
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kazi Fazle Rabbi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61810, United States
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Dargusch MS, Venezuela J, Dehghan‐Manshadi A, Johnston S, Yang N, Mardon K, Lau C, Allavena R. In Vivo Evaluation of Bioabsorbable Fe-35Mn-1Ag: First Reports on In Vivo Hydrogen Gas Evolution in Fe-Based Implants. Adv Healthc Mater 2021; 10:e2000667. [PMID: 33135365 DOI: 10.1002/adhm.202000667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This work investigates the influence of Ag (1 wt%) on the mechanical properties, in vitro and in vivo corrosion, and biocompatibility of Fe-35Mn. The microstructure of Fe-35Mn-1Ag possesses a uniform dispersion of discrete silver particles. Slight improvements in compressive properties are attributed to enhanced density and low porosity volume. Fe-35Mn-1Ag exhibits good in vitro and in vivo corrosion rate of Fe-35Mn due to an increase in microgalvanic corrosion. Gas pockets, which originate from an inflammatory response to the implants, are observed in the rats after 4 weeks implantation but are undetectable after 12 weeks. No chronic toxicity is observed with the Fe-35Mn-1Ag, suggesting acceptable in vivo biocompatibility. The high corrosion rate of the alloy triggers an increased level of nonadverse tissue inflammatory responses 4 weeks after implantation, which subsequently subsides at 12 weeks. The Fe-35Mn-1Ag displays properties that are suitable for orthopedic applications.
Collapse
Affiliation(s)
- Matthew Simon Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Jeffrey Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Ali Dehghan‐Manshadi
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Sean Johnston
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Nan Yang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering Advanced Engineering Building Bldg 49 The University of Queensland Staff House Rd St Lucia QLD 4072 Australia
| | - Karine Mardon
- National Imaging Facility, Centre for Advanced Imaging The University of Queensland Brisbane QLD 4072 Australia
| | - Cora Lau
- The University of Queensland Biological Resources Brisbane QLD 4072 Australia
| | - Rachel Allavena
- School of Veterinary Science Building 8114 The University of Queensland Gatton QLD 4343 Australia
| |
Collapse
|
40
|
In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater 2020; 6:1028-1039. [PMID: 33102944 PMCID: PMC7566209 DOI: 10.1016/j.bioactmat.2020.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Detection of in vivo biodegradation is critical for development of next-generation medical devices such as bioresorbable stents or scaffolds (BRSs). In particular, it is urgent to establish a nondestructive approach to examine in vivo degradation of a new-generation coronary stent for interventional treatment based on mammal experiments; otherwise it is not available to semi-quantitatively monitor biodegradation in any clinical trial. Herein, we put forward a semi-quantitative approach to measure degradation of a sirolimus-eluting iron bioresorbable scaffold (IBS) based on optical coherence tomography (OCT) images; this approach was confirmed to be consistent with the present weight-loss measurements, which is, however, a destructive approach. The IBS was fabricated by a metal-polymer composite technique with a polylactide coating on an iron stent. The efficacy as a coronary stent of this new bioresorbable scaffold was compared with that of a permanent metal stent with the name of trade mark Xience, which has been widely used in clinic. The endothelial coverage on IBS was found to be greater than on Xience after implantation in a rabbit model; and our well-designed ultrathin stent exhibited less individual variation. We further examined degradation of the IBSs in both minipig coronary artery and rabbit abdominal aorta models. The present result indicated much faster iron degradation of IBS in the rabbit model than in the porcine model. The semi-quantitative approach to detect biodegradation of IBS and the finding of the species difference might be stimulating for fundamental investigation of biodegradable implants and clinical translation of the next-generation coronary stents. A semi-quantitative OCT method was suggested to evaluate in vivo biodegradation of an iron based coronary stent IBS in a nondestructive manner. The in vivo biodegradation of IBS exhibited dependence on animal species. The endothelial coverage on the biodegradable stent IBS was better than on the commercialized nonbiodegradable stent Xience in rabbits.
Collapse
|
41
|
Paim TC, Wermuth DP, Bertaco I, Zanatelli C, Naasani LIS, Slaviero M, Driemeier D, Schaeffer L, Wink MR. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111129. [PMID: 32600726 DOI: 10.1016/j.msec.2020.111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Biodegradable metallic materials (BMMs) are expected to corrode gradually in vivo after providing the structural support to the tissue during its regeneration and healing processes. These characteristics make them promising candidates for use in stents. These endoprostheses are produced from metal alloys by casting and thermomechanical treatment. Since porous alloys and metals have less corrosion resistance than dense ones, the use of powder metallurgy becomes an option to produce them. Among the metals, iron has been proposed as a material in the manufacturing of stents because of its mechanical properties. However, even then it is unclear what toxicity threshold is safe to the body. Thus, the objective of this research was to verify the biocompatibility of sintered 99.95% and 99.5% pure iron by powder metallurgy in vitro with Adipose-derived mesenchymal stromal cells (ADSCs) and in vivo with a Wistar rat model. Herein, characterizations of iron powder samples produced by the powder metallurgy and the process parameters as compression pressure, atmosphere, sintering time and temperature were determined to evaluate the potential of production of biodegradable implants. The samples obtained from pure iron were submitted to tests of green and sintered density, porosity, microhardness, hardness and metallography. The biocompatibility study was performed by indirect and direct cell culture with iron. The effects of corrosion products of iron on morphology, viability, and proliferation of ADSCs were evaluated in vitro. Hemolysis assay was performed to verify the hemocompatibility of the samples. In vivo biocompatibility was evaluated after pure iron discs were implanted subcutaneously into the dorsal area of Wistar rats that were followed up to 6 months. The results presented in this paper validated the potential to produce biodegradable medical implants by powder metallurgy. Both iron samples were hemocompatible and biocompatible in vitro and in vivo, although the 99.95% iron had better performance in vitro than 99.5%.
Collapse
Affiliation(s)
- Thaís Casagrande Paim
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Diego Pacheco Wermuth
- Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Isadora Bertaco
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Carla Zanatelli
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Mônica Slaviero
- Setor de Patologia Veterinária, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, 91540-000 Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, 91540-000 Porto Alegre, RS, Brazil
| | - Lirio Schaeffer
- Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Habib S, Fayyad E, Nawaz M, Khan A, Shakoor RA, Kahraman R, Abdullah A. Cerium Dioxide Nanoparticles as Smart Carriers for Self-Healing Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E791. [PMID: 32326038 PMCID: PMC7221694 DOI: 10.3390/nano10040791] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/16/2022]
Abstract
The utilization of self-healing cerium dioxide nanoparticles (CeO2), modified with organic corrosion inhibitors (dodecylamine (DDA) and n-methylthiourea (NMTU)), in epoxy coating is an efficient strategy for enhancing the protection of the epoxy coating and increasing its lifetime. Fourier transform infrared (FTIR) spectroscopy analysis was used to confirm the loading and presence of inhibitors in the nanoparticles. Thermal gravimetric analysis (TGA) measurement studies revealed the amount of 25% and 29.75% w/w for NMTU and DDA in the nanoparticles, respectively. The pH sensitive and self-release behavior of modified CeO2 nanoparticles is confirmed through UV-vis spectroscopy and Zeta potential. It was observed, through scanning electron microscopy (SEM), that a protective layer had been formed on the defect site separating the steel surface from the external environment and healed the artificially created scratch. This protective film played a vital role in the corrosion inhibition of steel by preventing the aggressiveness of Cl- in the solution. Electrochemical impedance spectroscopy (EIS) measurements exhibited the exceptional corrosion inhibition efficiency, reaching 99.8% and 95.7% for the modified coating with DDA and NMTU, respectively, after five days of immersion time.
Collapse
Affiliation(s)
- Sehrish Habib
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; (S.H.); (E.F.); (M.N.); (A.K.); (A.A.)
| | - Eman Fayyad
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; (S.H.); (E.F.); (M.N.); (A.K.); (A.A.)
| | - Muddasir Nawaz
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; (S.H.); (E.F.); (M.N.); (A.K.); (A.A.)
| | - Adnan Khan
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; (S.H.); (E.F.); (M.N.); (A.K.); (A.A.)
| | - Rana A. Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; (S.H.); (E.F.); (M.N.); (A.K.); (A.A.)
| | - Ramazan Kahraman
- Department of Chemical Engineering, Qatar University, Doha 2713, Qatar;
| | - Aboubakr Abdullah
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; (S.H.); (E.F.); (M.N.); (A.K.); (A.A.)
| |
Collapse
|
43
|
Li X, Zhang W, Lin W, Qiu H, Qi Y, Ma X, Qi H, He Y, Zhang H, Qian J, Zhang G, Gao R, Zhang D, Ding J. Long-Term Efficacy of Biodegradable Metal-Polymer Composite Stents After the First and the Second Implantations into Porcine Coronary Arteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15703-15715. [PMID: 32159942 DOI: 10.1021/acsami.0c00971] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A biodegradable coronary stent is expected to eliminate the adverse events of an otherwise eternally implanting material after vessel remodeling. Both biocorrodible metals and biodegradable polymers have been tried as the matrix of the new-generation stent. Herein, we utilized a metal-polymer composite material to combine the advantages of the high mechanical strength of metals and the adjustable degradation rate of polymers to prepare the biodegradable stent. After coating polylactide (PLA) on the surface of iron, the degradation of iron was accelerated significantly owing to the decrease of local pH resulting from the hydrolysis of PLA, etc. We implanted the metal-polymer composite stent (MPS) into the porcine artery and examined its degradation in vivo, with the corresponding metal-based stent (MBS) as a control. Microcomputed tomography (micro-CT), coronary angiography (CA), and optical coherence tomography (OCT) were performed to observe the stents and vessels during the animal experiments. The MPS exhibited faster degradation than MBS, and the inflammatory response of MPS was acceptable 12 months after implantation. Additionally, we implanted another MPS after 1-year implantation of the first MPS to investigate the result of the MPS in the second implantation. The feasibility of the biodegradable MPS in second implantation in mammals was also confirmed.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Hong Qiu
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xun Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haiping Qi
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Qian
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Runlin Gao
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
44
|
Chen J, Wang S, Wu Z, Wei Z, Zhang W, Li W. Anti-CD34-Grafted Magnetic Nanoparticles Promote Endothelial Progenitor Cell Adhesion on an Iron Stent for Rapid Endothelialization. ACS OMEGA 2019; 4:19469-19477. [PMID: 31763571 PMCID: PMC6868894 DOI: 10.1021/acsomega.9b03016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Iron stents, with superior mechanical properties and controllable degradation behavior, have potential for use as feasible substitutes for nondegradable stents in the treatment of coronary artery occlusion. However, corrosion renders the iron surface hard to modify with biological molecules to accelerate endothelialization and solve restenosis. The objective of this study is to demonstrate the feasibility of using endothelial progenitor cells (EPCs) to rapidly adhere onto iron surfaces with the assistance of anti-CD34-modified magnetic nanoparticles. Transmission electron microscopy, Fourier transform infrared spectroscopy, Thermogravimetric analysis, XRD, and anti-CD34 immunofluorescence suggested that anti-CD34 and citric acid were successfully modified onto Fe3O4, and Prussian blue staining demonstrated the selectivity of the as-prepared nanoparticles for EPCs. Under an external magnetic field (EMF), numerous nanoparticles or EPCs attached onto the surface of iron pieces, particularly the side of the iron pieces exposed to flow conditions, because iron could be magnetized under the EMF, and the magnetized iron has an edge effect. However, the uniform adhesion of EPCs on the iron stent was completed because of the weakening edge effect, and the sum of adherent EPCs was closely linked with the magnetic field (MF) intensity, which was validated by the complete covering of EPCs on the iron stent upon exposure to a 300 mT EMF within 3 h, whereas almost no cells were observed on the iron stent without an EMF. These results verify that this method can efficiently promote EPC capture and endothelialization of iron stents.
Collapse
Affiliation(s)
- Jialong Chen
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuang Wang
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - ZiChen Wu
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhangao Wei
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weibo Zhang
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Li
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
45
|
Yu D, Qiu H, Mou X, Dou Z, Zhou N, Guo Q, Lyu N, Lu L, Yang Z, Huang N. One-Pot but Two-Step Vapor-Based Amine- and Fluorine-Bearing Dual-Layer Coating for Improving Anticorrosion and Biocompatibility of Magnesium Alloy. ACS Biomater Sci Eng 2019; 5:4331-4340. [PMID: 33417789 DOI: 10.1021/acsbiomaterials.9b00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hydrophobic coating is of great interest to enhance the corrosion resistance of magnesium alloy implants, which always suffer from rapid corrosion that leads to the failing application under physiological conditions. Plasma-polymerized fluorocarbon (C-F) coating has been widely studied as a substrate protection layer; however, the precise control of the deposition rate of C-F coating with fluorinated alkanes has been a challenge. In this study, a thin, uniform, pinhole-free, polymerlike, and hydrophobic C-F coating was successfully prepared using acetylene (C2H2) as a cross-linking agent, which endows the coating with tunable properties of deposition rate by incorporation of unsaturated bonds. Electrochemical corrosion and in vitro immersion test demonstrated that the C-F coating significantly slows down the corrosion rate of MgZnMn in phosphate-buffered saline solution at 37 °C. Furthermore, an additional layer of PPAam was deposited on the C-F coating to eliminate the adverse effect of C-F surface on cytocompatibility. Thus, such a stacked coating imparts MgZnMn with a significantly improved corrosion resistance and promotes cell adhesion and viability. Therefore, the strategy of acetylene-mediated C-F-based coating shows a great potential for tailoring ideal surface functionalities of magnesium-based medical devices.
Collapse
Affiliation(s)
- Donghai Yu
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hua Qiu
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaohui Mou
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhenglong Dou
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ningling Zhou
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qianru Guo
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Lyu
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Lu
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
46
|
Liang X, Gao J, Xu W, Wang X, Shen Y, Tang J, Cui S, Yang X, Liu Q, Yu L, Ding J. Structural mechanics of 3D-printed poly(lactic acid) scaffolds with tetragonal, hexagonal and wheel-like designs. Biofabrication 2019; 11:035009. [DOI: 10.1088/1758-5090/ab0f59] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|