1
|
Mohammadi L, Vaezi M. Preparation of gold nanoparticles decorated UiO-66-NH 2 incorporated epichlorohydrin and cyclodextrin as novel efficient catalyst in cross coupling and carbonylative reactions. Sci Rep 2025; 15:14544. [PMID: 40280973 PMCID: PMC12032121 DOI: 10.1038/s41598-025-97624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
This study presents a new, highly effective, and reusable catalyst: UiO-66-NH2@Epichlorohydrin@Cyclodextrin@Au-NPs. This innovative catalyst starts with the Zr-based UiO-66 material, which is functionalized with amino groups (-NH2). We enhanced its surface compatibility by modifying it with epichlorohydrin and cyclodextrin via a post-synthesis modification method. Gold nanoparticles were then stabilized on this modified composite, resulting in the UiO-66-NH2@Epichlorohydrin@Cyclodextrin@Au-NPs complex. We used this catalyst for C-C coupling and Carbonylative Sonogashira reactions in mild conditions. Its effectiveness was underscored by various analytical techniques, including XRD, EDS, SEM, FT-IR, TEM, BET, ICP, TGA, and elemental mapping. The catalyst exhibited exceptional performance in Sonogashira, Heck, Suzuki coupling, and Carbonylative reactions, achieving good to excellent yields. It proved to be highly recyclable, maintaining its catalytic activity for up to nine cycles with minimal loss.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran.
| | - Mohammadreza Vaezi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran.
| |
Collapse
|
2
|
Toral V, Gómez-Gijón S, Romero FJ, Morales DP, Castillo E, Rodríguez N, Rojas S, Molina-Lopez F, Rivadeneyra A. Future Trends in Alternative Sustainable Materials for Low-Temperature Thermoelectric Applications. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:8640-8654. [PMID: 39735570 PMCID: PMC11673103 DOI: 10.1021/acsaelm.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 12/31/2024]
Abstract
In the evolution of pervasive electronics, it is imperative to significantly reduce the energy consumption of power systems and embrace sustainable materials and fabrication processes with minimal carbon footprint. Within this context, thermoelectric generators (TEGs) have garnered substantial attention in recent years because of the readily available thermal gradients in the environment, making them a promising energy-harvesting technology. Current commercial room-temperature thermoelectrics are based on scarce, expensive, and/or toxic V-VI chalcogenide materials, which limit their widespread use. Thermoelectric polymers partially address this issue, and as such, they have been intensively studied in the field in the past decade. However, less popular materials have recently appeared to respond to the challenges of room-temperature thermoelectrics in terms of sustainability and cost. In this contribution, we comprehensively review the latest advancements in emerging alternative materials with the potential to pave the way for the next generation of sustainable TEGs. This upcoming generation includes flexible and printed TEGs for applications like wearables or the Internet of Things.
Collapse
Affiliation(s)
- Víctor Toral
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Sonia Gómez-Gijón
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Francisco J. Romero
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Diego P. Morales
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Encarnación Castillo
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Noel Rodríguez
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Sara Rojas
- Department
of Inorganic Chemistry, University of Granada, Granada 18071, Spain
| | - Francisco Molina-Lopez
- Department
of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P.O. Box 2450, Leuven B-3001, Belgium
| | - Almudena Rivadeneyra
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| |
Collapse
|
3
|
Lin MH, Hong SH, Ding JF, Liu CL. Organic Porous Materials and Their Nanohybrids for Next-Generation Thermoelectric Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67116-67133. [PMID: 39576145 DOI: 10.1021/acsami.4c12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Thermoelectricity offers a promising solution for reducing carbon emissions by efficiently converting waste heat into electrical energy. However, high-performance thermoelectric materials predominantly consist of rare, toxic, and costly inorganic compounds. Therefore, the development of alternating material systems for high-performance thermoelectric materials is crucial for broader applications. A significant challenge in this field is the strong interdependence of the various thermoelectric parameters, which complicates their simultaneous optimization. Consequently, the methods for decoupling these parameters are required. In this respect, composite technology has emerged as an effective strategy that leverages the advantages of diverse components to enhance the overall performance. After elaborating on the fundamental concepts of thermoelectricity and the challenges in enhancing the thermoelectric performance, the present review provides a comparative analysis of inorganic and organic materials and explores various methods for decoupling the thermoelectric parameters. In addition, the benefits of composite systems are emphasized and a range of low thermal conductivity materials with microporous to macroporous structures are introduced, highlighting their potential thermoelectric applications. Furthermore, the current development obstacles are discussed, and several cutting-edge studies are highlighted, with a focus on the role of high electrical conductivity fillers in enhancing the performance and mechanical properties. Finally, by combining low thermal conductivity materials with high electrical conductivity fillers can achieve superior thermoelectric performance. These insights are intended to guide future research and development in the field of organic porous materials and their nanohybrids in order to promote more sustainable and efficient energy solutions.
Collapse
Affiliation(s)
- Meng-Hao Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Fa Ding
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
5
|
Mohtasham H, Bahari D, Keihan AH, Salimi A, Mehrebani RT, Rahimi-Nasrabadi M. Magnetic N-doped carbon derived from mixed ligands MOF as effective electrochemiluminescence coreactor for performance enhancement of SARS-CoV-2 immunosensor. Talanta 2024; 277:126252. [PMID: 38805948 DOI: 10.1016/j.talanta.2024.126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
COVID-19 as an infectious disease with rapid transmission speed is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), so, early and accurate diagnostics of COVID-19 is quite challenging. In this work, the selective and sensitive self-enhanced ECL method to detect of SARS-CoV-2 protein was designed with magnetic N-doped carbon derived from dual-ligand metal-organic frameworks (MOF) (CoO@N-C) with the primary and tertiary amino groups as a novel coreactant that covalently combined with Ru(bpy)2(phen-NH2)2+ as electrochemiluminescence (ECL) emitter. Mixed-ligand strategy and selected nitrogen-containing ligands, 4,4',4''-((1,3,5-triazine-2,4,6-triyl) tris-(azanediyl)) tribenzoic acid (H3TATAB) with 2-aminoterephthalic acid (BDC-NH2) were used for synthesis of the proposed MOF. Also, magnetic CoO@N-C with high synergistically charge transfer kinetics and good stability can be used as an effective platform/coreactor on the ITO electrode which load more Ru-complex as signal producing compound and SARS-CoV-2 N protein antibody to increase the sensitivity of the immunosensor. Furthermore, (CoO@N-C) as coreactor improved the ECL signal of the Ru (II)-complex more than 2.1 folds compared to tripropylamine. In view of these competences, the novel "on-off" ECL biosensor performed with great stability and repeatability for detection of SARS-CoV-2 protein, which exhibited a broad linearity from 8 fg. mL-1 to 4 ng. mL-1 (6 order of magnitude) and an ultra-low limit of detection 1.6 fg. mL-1. Finally, this proposed method was successfully applied to detect of SARS-CoV-2 N protein in serum sample with satisfactory results, indicating the proposed immunosensor has the potential for quick analysis of SARS-CoV-2.
Collapse
Affiliation(s)
- Hamed Mohtasham
- Student Research Committee, Baqiytallah University of Medical Sciences, Tehran, Iran
| | - Delnia Bahari
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Reza Tarbiat Mehrebani
- Organic and Nano Group (ONG), Department of Chemistry, University of Maragheh, 55181-83111 Maragheh, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Lu X, Chen Z, Chen G, Liu Z. Metal-organic framework based self-powered devices for human body energy harvesting. Chem Commun (Camb) 2024; 60:7843-7865. [PMID: 38967500 DOI: 10.1039/d4cc02110j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The shift from traditional bulky electronics to smart wearable devices represents a crucial trend in technological advancement. In recent years, the focus has intensified on harnessing thermal and mechanical energy from human activities to power small wearable electronics. This vision has attracted considerable attention from researchers, with an emphasis on the development of suitable materials that can efficiently convert human body energy into usable electrical form. Metal-organic frameworks (MOFs), with their unique tunable structures, large surface areas, and high porosity, emerge as a promising material category for human body energy harvesting due to their ability to be precisely engineered at the molecular level, which allows for the optimization of their properties to suit specific energy harvesting needs. This article explores the progressive development of MOF materials, highlighting their potential in the realm of self-power devices for wearable applications. It first introduces the typical energy harvesting routes that are particularly suitable for harvesting human body energy, including thermoelectric, triboelectric, and piezoelectric techniques. Then, it delves into various research advances that have demonstrated the efficacy of MOFs in capturing and converting body-generated energy into electrical energy, emphasizing on the conceptual design, device fabrication, and applications in medical health monitoring, human-computer interaction, and motion monitoring. Furthermore, it discusses potential future directions for research in MOF-based self-powered devices and outlines perspectives that could drive breakthroughs in the efficiency and practicality of these devices.
Collapse
Affiliation(s)
- Xin Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhi Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Guangming Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
Ebrahim A, Ghali M, El-Moneim AA. Microporous Zr-metal-organic frameworks based-nanocomposites for thermoelectric applications. Sci Rep 2024; 14:13067. [PMID: 38844480 PMCID: PMC11156915 DOI: 10.1038/s41598-024-62317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
In the area of energy storage and conversion, Metal-Organic Frameworks (MOFs) are receiving more and more attention. They combine organic nature with long-range order and low thermal conductivity, giving them qualities to be potentially attractive for thermoelectric applications. To make the framework electrically conductive so far, thermoelectricity in this class of materials requires infiltration by outside conductive guest molecules. In this study, an in-situ polymerization of conductive polyaniline inside the porous structure of MOF-801 was conducted to synthesize PANi@MOF-801 nanocomposites for thermoelectrical applications. The growth of polyaniline chains of different loadings inside the host MOF matrix generally enhanced bulk electrical conductivity by about 6 orders of magnitude, leading to Seebeck coefficient value of -141 µVK-1 and improved thermal stability. The unusual increase in electrical conductivity was attributed to the formation of highly oriented conductive PANi chains inside the MOF pores, besides host-guest physical interaction, while the Seebeck coefficient enhancement was because of the energy filtering effect of the developed structure. Modulating the composition of PANi@MOF-801 composites by varying the aniline: MOF-801 ratio in the synthesis bath from 2:1 and 1:1 to 1:2 leads to a change in the semiconductor properties from p-type semiconductor to n-type. Among the examined composites with n-type semiconducting properties exhibited the highest ZT value, 0.015, and lowest thermal conductivity, 0.24 Wm-1 K-1. The synthesized composites have better performance than those recently reported for a similar category of thermoelectric materials related to MOF-based composites.
Collapse
Affiliation(s)
- Asmaa Ebrahim
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria, 21934, Egypt.
- Graphene Center of Excellence for Energy and Electronic Applications, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria, 21934, Egypt.
| | - Mohsen Ghali
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria, 21934, Egypt
- Physics Department, Faculty of Science, Kafrelshiekh University, Kafr el-Sheikh, Egypt
| | - A A El-Moneim
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria, 21934, Egypt
- Graphene Center of Excellence for Energy and Electronic Applications, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
8
|
Wachholz Junior D, Hryniewicz BM, Tatsuo Kubota L. Advanced Hybrid materials in electrochemical sensors: Combining MOFs and conducting polymers for environmental monitoring. CHEMOSPHERE 2024; 352:141479. [PMID: 38367874 DOI: 10.1016/j.chemosphere.2024.141479] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The integration of conducting polymers (CPs) with metal-organic frameworks (MOFs) has arisen as a dynamic and innovative approach to overcome some intrinsic limitations of both materials, representing a transformative method to address the pressing need for high-performance environmental monitoring tools. MOFs, with their intricate structures and versatile functional groups, provide tuneable porosity and an extensive surface area, facilitating the selective adsorption of target analytes. Conversely, CPs, characterized by their exceptional electrical conductivity and redox properties, serve as proficient signal transducers. By combining these two materials, a novel class of hybrid materials emerges, capitalizing on the unique attributes of both components. These MOF/CP hybrids exhibit heightened sensitivity, selectivity, and adaptability, making them primordial in detecting and quantifying environmental contaminants. This review examines the synergy between MOFs and CPs, highlighting recent advancements, challenges, and prospects, thus offering a promising solution for developing advanced functional materials with tailored properties and multifunctionality to be applied in electrochemical sensors for environmental monitoring.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Bruna M Hryniewicz
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| |
Collapse
|
9
|
Vello TP, Albano LGS, Dos Santos TC, Colletti JC, Santos Batista CV, Leme VFC, Dos Santos TC, Miguel MPDC, de Camargo DHS, Bof Bufon CC. Electrical Conductivity Boost: In Situ Polypyrrole Polymerization in Monolithically Integrated Surface-Supported Metal-Organic Framework Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305501. [PMID: 37752688 DOI: 10.1002/smll.202305501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1 . The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies.
Collapse
Affiliation(s)
- Tatiana Parra Vello
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Department of Physical Chemistry, Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| | - Luiz Gustavo Simão Albano
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Thamiris Cescon Dos Santos
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| | - Julia Cantovitz Colletti
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Carlos Vinícius Santos Batista
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| | - Vitória Fernandes Cintra Leme
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Thamiris Costa Dos Santos
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Maria Paula Dias Carneiro Miguel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Davi Henrique Starnini de Camargo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Carlos César Bof Bufon
- Department of Physical Chemistry, Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
- Mackenzie Evangelical Faculty of Paraná (FEMPAR), Curitiba, Paraná, 80730-000, Brazil
- Mackenzie Presbyterian Institute (IPM), São Paulo, São Paulo, 01302-907, Brazil
| |
Collapse
|
10
|
Benrashid A, Habibi D, Beiranvand M, Gilan MM. The L-proline modified Zr-based MOF (Basu-proline) catalyst for the one-pot synthesis of dihydropyrano[3,2-c]chromenes. Sci Rep 2023; 13:17608. [PMID: 37848542 PMCID: PMC10582120 DOI: 10.1038/s41598-023-44774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
A novel, reusable, and efficient L-proline-modified Zr-based metal-organic framework (Basu-proline) was designed, synthesized, and characterized by Fourier Transform-Infrared spectroscopy (FT-IR), Energy-Dispersive X-ray spectroscopy (EDX), elemental mapping, Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction analysis (XRD), Thermo-Gravimetric-Differential Thermal Analysis (TGA-DTA), and N2 adsorption-desorption isotherms. Then, its catalytic performance was assessed in the synthesis of dihydropyrano[3,2-c]chromenes via the one-pot, three-component tandem condensation reaction of 4-hydroxycoumarin, aromatic aldehydes and malononitrile. The Basu-proline catalyst exhibited a better efficiency than some reported protocols regarding higher yields, lower reaction times, and simple separation.
Collapse
Affiliation(s)
- Amin Benrashid
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | - Masoumeh Beiranvand
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|
11
|
Li K, Qin Y, Li ZG, Guo TM, An LC, Li W, Li N, Bu XH. Elastic properties related energy conversions of coordination polymers and metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Rajakumaran R, Shen CH, Satilmis B, Kung CW. Metal-organic framework functionalized poly-cyclodextrin membranes confining polyaniline for charge storage. Chem Commun (Camb) 2022; 58:6590-6593. [PMID: 35611701 DOI: 10.1039/d2cc02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystals of a metal-organic framework, UiO-66, are grown on electrospun crosslinked poly-cyclodextrin (poly-CD) fibrous membranes with an ultrahigh coverage, and polyaniline (PANI) is further confined within the MOF pores. The obtained PANI@UiO-66/poly-CD membranes are used as free-standing electrodes towards use in wearable energy-storage devices.
Collapse
Affiliation(s)
- Ramachandran Rajakumaran
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Cheng-Hui Shen
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Bekir Satilmis
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan. .,Department of Medical Services and Techniques, Vocational School of Health Services, Kirsehir Ahi Evran University, Kirsehir, 40100, Turkey.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
13
|
Liu X, Hu C, Wu J, Cui P, Wei F. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Fan Y, Liu Z, Chen G. Recent Progress in Designing Thermoelectric Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100505. [PMID: 34047067 DOI: 10.1002/smll.202100505] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Thermoelectrics that enable direct heat-electricity conversion possess unique advantages for green and renewable energy revolution and have received rapidly growing attention in the past decade. Among various thermoelectric materials, metal-organic frameworks (MOFs) with intrinsic high porosity and tunable physical/chemical properties are emerging as a promising class of materials that have been demonstrated to exhibit many unique merits for thermoelectric applications. Their structural topologies and thermoelectric properties can be facilely regulated by precisely selecting and arranging metal centers and organic ligands. Besides, a large variety of guest molecules can be incorporated within their pores, giving rise to novel avenues of raising energy-conversion efficiency. This review focuses on the recent advances in designing conductive MOFs and MOF-based composites for thermoelectric applications. It first introduces the fundamental thermoelectric parameters and the underlying regulation mechanisms specifically effective for MOFs, then summarizes the related studies conducted in recent years, where the structural design strategies of tuning thermoelectric properties are demonstrated and discussed. In the final part, conclusions and perspectives with the envision of an outlook for this promising area are presented.
Collapse
Affiliation(s)
- Yuan Fan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
15
|
Xu W, Zhao Y, Wang H, Wang H, Pan F, Xu R, Hou H. Postsynthetic‐Modified PANI/MOF Composites with Tunable Thermoelectric and Photoelectric Properties. Chemistry 2021; 27:5011-5018. [DOI: 10.1002/chem.202005474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Wenjuan Xu
- The College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Yujie Zhao
- The College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Huarui Wang
- The College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471022 China
| | - Hongfei Wang
- The College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Fangfang Pan
- College of Chemistry Central China Normal University Wuhan 430079 China
| | - Ruixue Xu
- The College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hongwei Hou
- The College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
16
|
Song YD, Ho WH, Chen YC, Li JH, Wang YS, Gu YJ, Chuang CH, Kung CW. Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chemistry 2021; 27:3560-3567. [PMID: 33166095 DOI: 10.1002/chem.202004516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/10/2022]
Abstract
In this study, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal-organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2 , is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS). Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.
Collapse
Affiliation(s)
- Yi-Da Song
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Wei Huan Ho
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Jun-Hong Li
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yi-Sen Wang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yu-Juan Gu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| |
Collapse
|
17
|
Yang CY, Ding YF, Huang D, Wang J, Yao ZF, Huang CX, Lu Y, Un HI, Zhuang FD, Dou JH, Di CA, Zhu D, Wang JY, Lei T, Pei J. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat Commun 2020; 11:3292. [PMID: 32620924 PMCID: PMC7335177 DOI: 10.1038/s41467-020-17063-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022] Open
Abstract
N-doping plays an irreplaceable role in controlling the electron concentration of organic semiconductors thus to improve performance of organic semiconductor devices. However, compared with many mature p-doping methods, n-doping of organic semiconductor is still of challenges. In particular, dopant stability/processability, counterion-semiconductor immiscibility and doping induced microstructure non-uniformity have restricted the application of n-doping in high-performance devices. Here, we report a computer-assisted screening approach to rationally design of a triaminomethane-type dopant, which exhibit extremely high stability and strong hydride donating property due to its thermally activated doping mechanism. This triaminomethane derivative shows excellent counterion-semiconductor miscibility (counter cations stay with the polymer side chains), high doping efficiency and uniformity. By using triaminomethane, we realize a record n-type conductivity of up to 21 S cm-1 and power factors as high as 51 μW m-1 K-2 even in films with thicknesses over 10 μm, and we demonstrate the first reported all-polymer thermoelectric generator.
Collapse
Affiliation(s)
- Chi-Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dazhen Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jue Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chun-Xi Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hio-Ieng Un
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin-Hu Dou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ting Lei
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Abstract
Coordination polymers (CPs) are potential thermoelectric (TE) materials to replace the sometimes costly, brittle and toxic heavy metal inorganic TEs for near-ambient-temperature applications. Air-stable and highly conductive p-type thermoelectric CPs are relatively well known, but the their n-type counterparts are only now emerging and both are needed for most practical applications. This perspective reviews recent advances in the development of n-type thermoelectric CPs, particularly the 1D and 2D metal bisdithiolenes, and introduces a relatively new class of guest@metal-organic framework(MOF)-based composites. Low dimensional CPs with reasonable n-type thermoelectric performance are emerging with good charge mobility and air-stability but still relatively low electrical conductivity.
Collapse
Affiliation(s)
- Yannan Lu
- College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, Northern Territory, Australia 0909.
| | | |
Collapse
|
19
|
Patterson N, Xiao B, Ignaszak A. Polypyrrole decorated metal-organic frameworks for supercapacitor devices. RSC Adv 2020; 10:20162-20172. [PMID: 35520395 PMCID: PMC9054202 DOI: 10.1039/d0ra02154g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Due to their large specific surface areas and porosity, metal-organic frameworks (MOFs) have found many applications in catalysis, gas separation, and gas storage. However, their use as electronic components such as supercapacitors is stunted due to their poor electrical conductivity. We report a remedy for this by combining the MOF structure with polypyrrole (PPy), a well-known conductive polymer. Three MOFs are studied for modification to this end: CPO-27-Ni and CPO-27-Co (M2DOBDC, M = Ni2+, Co2+, DOBDC = 2,5-dihydroxy-1,4-benzenedicarboxylate) and HKUST-1 (Cu3(BTC)2, BTC = 1,3,5 benzenetricarboxylate). The gravimetric capacitance of pure MOFs is boosted several orders of magnitude after reinforcement of PPy (e.g., from 0.679 to 185 F g-1 for HKUST-1 and PPy-HKUST-1, respectively), and is much higher than reported for pure PPy. In total, these PPy-d-MOFs exhibit specific capacitances up to 354 F g-1, retaining 70% of this value even after 2500 cycles. Among them, the highest capacitance is found for PPy-CPO-27-Ni (354 F g-1), followed by PPy-CPO-27-Co (263 F g-1) and PPy-HKUST-1 (185 F g-1). The maximum operating potential for these electrodes is 0.5 V, which is restricted by the contact of MOF with aqueous electrolyte and with extremely low PPy content. As a solution, higher PPy loading and rational adjustment of particle size and porosity of both MOF and PPy are recommended so that the MOF/electrolyte interface is limited, leading to more robust electrode. The work completed here describes a highly promising approach to tackling the electrically insulating nature of MOFs, paving the way for their use in electrochemical energy storage devices.
Collapse
Affiliation(s)
- Nigel Patterson
- Department of Chemistry, University of New Brunswick 30 Dineen Drive (Toole Hall) Fredericton NB Canada
| | - Bo Xiao
- School of Chemistry and Chemical Engineering, Queen's University Belfast Stranmillis Road (David Kier Building) Belfast BT9 5AG UK
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick 30 Dineen Drive (Toole Hall) Fredericton NB Canada
| |
Collapse
|
20
|
Huang L, Chen J, Yu Z, Tang D. Self-Powered Temperature Sensor with Seebeck Effect Transduction for Photothermal–Thermoelectric Coupled Immunoassay. Anal Chem 2020; 92:2809-2814. [DOI: 10.1021/acs.analchem.9b05218] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lingting Huang
- Key Laboratory for Analytical Science of Food Safety
and Biology, Ministry of Education and Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jialun Chen
- Key Laboratory for Analytical Science of Food Safety
and Biology, Ministry of Education and Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Zhonghua Yu
- Key Laboratory for Analytical Science of Food Safety
and Biology, Ministry of Education and Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety
and Biology, Ministry of Education and Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
21
|
Jin H, Li J, Iocozzia J, Zeng X, Wei PC, Yang C, Li N, Liu Z, He JH, Zhu T, Wang J, Lin Z, Wang S. Hybrid Organic-Inorganic Thermoelectric Materials and Devices. Angew Chem Int Ed Engl 2019; 58:15206-15226. [PMID: 30785665 DOI: 10.1002/anie.201901106] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 11/09/2022]
Abstract
Hybrid organic-inorganic materials have been considered as a new candidate in the field of thermoelectric materials since the last decade owing to their great potential to enhance the thermoelectric performance by utilizing the low thermal conductivity of organic materials and the high Seebeck coefficient, and high electrical conductivity of inorganic materials. Herein, we provide an overview of interfacial engineering in the synthesis of various organic-inorganic thermoelectric hybrid materials, along with the dimensional design for tuning their thermoelectric properties. Interfacial effects are examined in terms of nanostructures, physical properties, and chemical doping between the inorganic and organic components. Several key factors which dictate the thermoelectric efficiency and performance of various electronic devices are also discussed, such as the thermal conductivity, electric transportation, electronic band structures, and band convergence of the hybrid materials.
Collapse
Affiliation(s)
- Huile Jin
- College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jun Li
- College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - James Iocozzia
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xin Zeng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada.,College of Chemistry, Beijing Institute of Technology, Beijing, 100081, China
| | - Pai-Chun Wei
- Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chao Yang
- College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Nan Li
- College of Chemistry, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaoping Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jr Hau He
- Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiejun Zhu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shun Wang
- College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
22
|
Jin H, Li J, Iocozzia J, Zeng X, Wei P, Yang C, Li N, Liu Z, He JH, Zhu T, Wang J, Lin Z, Wang S. Hybride organisch‐anorganische thermoelektrische Materialien und Baueinheiten. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huile Jin
- College of Chemistry and Materials Engineering Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Jun Li
- College of Chemistry and Materials Engineering Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - James Iocozzia
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Xin Zeng
- Department of Chemistry and Biochemistry University of Windsor Windsor ON N9B 3P4 Kanada
- College of Chemistry Beijing Institute of Technology Beijing 100081 China
| | - Pai‐Chun Wei
- Computer, Electrical, and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi-Arabien
| | - Chao Yang
- College of Chemistry and Materials Engineering Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Nan Li
- College of Chemistry Beijing Institute of Technology Beijing 100081 China
| | - Zhaoping Liu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Jr Hau He
- Computer, Electrical, and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi-Arabien
| | - Tiejun Zhu
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jichang Wang
- Department of Chemistry and Biochemistry University of Windsor Windsor ON N9B 3P4 Kanada
| | - Zhiqun Lin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Shun Wang
- College of Chemistry and Materials Engineering Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
23
|
Le KN, Hendon CH. Pressure-induced metallicity and piezoreductive transition of metal-centres in conductive 2-dimensional metal–organic frameworks. Phys Chem Chem Phys 2019; 21:25773-25778. [DOI: 10.1039/c9cp04797b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure of two electrically conductive metal–organic frameworks are dependent on external pressure.
Collapse
Affiliation(s)
- Khoa N. Le
- Department of Chemistry and Biochemistry
- University of Oregon
- Eugene
- USA
| | | |
Collapse
|