1
|
Danamah HM, Al-Hejri TM, Jadhav VV, Shaikh ZA, Siddiqui TAJ, Shaikh SF, Mane RS. Sulfur ion-exchange strategy to obtain Bi 2S 3 nanostructures from Bi 2O 3 for better water splitting performance. Dalton Trans 2024; 53:10318-10327. [PMID: 38832990 DOI: 10.1039/d4dt01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A two-step simple and efficient ion-exchange chemical strategy is proposed to obtain nanostructured Bi2S3 electrodes of different surface morphologies from the Bi2O3. In the first step, nanoplates of the Bi2O3 are obtained on nickel-foam using successive ionic layer adsorption and reaction method at room-temperature (25 °C). In the second phase, as-obtained nanoplates of the Bi2O3 are transferred to the Bi2S3 using four autoclaves containing different sulfur precursor solutions at 120 °C for 8 h for phase change, structural conversion and surface morphological modification (i.e., walnuts, network-type, nanowires, and nanoflowers). Due to higher surface area and conductivity, lower charge transfer resistance, and reduced band gap caused by ionic and phase conversion, the Bi2S3 surpasses the Bi2O3 in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities. The overpotential of 112-370 mV for the Bi2S3 network is much lower than that of the nanoplates of the Bi2O3 (275-543 mV), and walnuts (134-464 mV), nanowires (125-500 mV), and nanoflowers (194-520 mV) of the Bi2S3. The Bi2S3 network-type Bi2S3 electrode shows considerable chemical stability through cycling measurement, suggesting the importance of the present study in obtaining metal sulfides from metal oxide with better water splitting activities.
Collapse
Affiliation(s)
- Hamdan M Danamah
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606-India.
| | - Tariq M Al-Hejri
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606-India.
| | - Vijakumar V Jadhav
- Department of Physics, Shivaji Mahavidyalaya, Udgir, Maharashtra 413517, India
| | - Zeenat A Shaikh
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606-India.
| | - T A J Siddiqui
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606-India.
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Rajaram S Mane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, 431606-India.
| |
Collapse
|
2
|
Li G, Fan X, Deng D, Wu QH, Jia L. Surface charge induced self-assembled nest-like Ni 3S 2/PNG composites for high-performance supercapacitors. J Colloid Interface Sci 2023; 650:913-923. [PMID: 37453315 DOI: 10.1016/j.jcis.2023.06.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
The paper presents a self-assembly approach to synthesize Ni3S2/N, P co-doped graphene (PNG) composite electrode materials for supercapacitors with high energy storage performance and structural stability. Innovatively, the self-assembly approach is induced via the surface charge effect utilizing a two-step hydrothermal method. The doping of nitrogen (N) and phosphorus (P) atoms regulates the surface charge distribution on graphene nanosheets. Therefore, in the synthesized Ni3S2/PNG heterostructures, Ni3S2 nanowires are interwoven into nests and uniformly attached to PNG. The design of the electrode materials with such a special structure not only supports each other to improve the stability of the materials but also facilitates the rapid diffusion of electrolyte ions. Based on the advantages of composition and structure, Ni3S2/PNG has a high specific capacitance of 1117C g-1 at a current density of 1 A/g and excellent rate performance. The asymmetric supercapacitors (ASC) assembled with Ni3S2/PNG and PNG as positive and negative materials respectively have a high energy density of 62 Wh kg-1 at a power density of 158 W kg-1.
Collapse
Affiliation(s)
- Guifang Li
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaohong Fan
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Dingrong Deng
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Qi-Hui Wu
- Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Lishan Jia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
3
|
Shi H, Zhang C, Zhan J, Chen J, Li X, Gao Z, Li Z. Bi Nanosheets on Porous Carbon Cloth Composites for Ultrastable Flexible Nickel-Bismuth Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463433 DOI: 10.1021/acsami.3c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The use of bismuth (Bi) as an anode material in nickel-metal batteries has gained significant attention due to its highly reversible redox reaction and suitable operating conditions. However, the cycling stability and flexibility of nickel-bismuth (Ni//Bi) batteries need to be further improved. This paper employs a facile electrodeposition technique to prepare Bi nanosheets uniformly grown on a porous carbon cloth (PCC), denoted as Bi-PCC electrodes. The Bi-PCC electrode portrays a specific surface area and good wettability that enable fast charge transfer and ion transport channels. Consequently, the Bi-PCC electrode demonstrates a high specific capacity of up to 297.1 mAh g-1 at 2 A g-1, with a capacity retention of up to 71.5% at 2-40 A g-1 and an impressive capacity retention of 79.9% after 1000 cycles at 2-40 A g-1. More importantly, the flexible rechargeable Ni//Bi battery (denoted as Ni(OH)2-PCC//Bi-PCC) with Bi-PCC as the anode and Ni(OH)2-PCC as the cathode has excellent electrochemical performance. The Ni(OH)2-PCC//Bi-PCC battery boasts a remarkable capacity retention of 93.6% after 3000 cycles at 10 A g-1. Further, the cell presents a maximum energy density of 73.1 Wh kg-1 and an impressive power density of 11.9 kW kg-1.
Collapse
Affiliation(s)
- Hongqi Shi
- Suqian University, Suqian, Jiangsu 223800, China
| | | | | | - Jiajia Chen
- Suqian University, Suqian, Jiangsu 223800, China
| | - Xinxing Li
- Suqian University, Suqian, Jiangsu 223800, China
| | - Zhengyuan Gao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhida Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Liu YL, Li MQ, Wang GG, Dang LY, Li F, Yan D, Tan ML, Zhang HY, Yang HY. Bi2O2S nanosheets anchored on reduced graphene oxides as superior anodes for aqueous rechargeable alkaline batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Highly efficient noble metal-free g-C3N4@NixSy nanocomposites for catalytic reduction of nitrophenol, azo dyes and Cr(VI). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wang XL, Jin EM, Chen J, Bandyopadhyay P, Jin B, Jeong SM. Facile In Situ Synthesis of Co(OH) 2-Ni 3S 2 Nanowires on Ni Foam for Use in High-Energy-Density Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:34. [PMID: 35009986 PMCID: PMC8746589 DOI: 10.3390/nano12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/16/2022]
Abstract
Ni3S2 nanowires were synthesized in situ using a one-pot hydrothermal reaction on Ni foam (NF) for use in supercapacitors as a positive electrode, and various contents (0.3-0.6 mmol) of Co(OH)2 shells were coated onto the surfaces of the Ni3S2 nanowire cores to improve the electrochemical properties. The Ni3S2 nanowires were uniformly formed on the smooth NF surface, and the Co(OH)2 shell was formed on the Ni3S2 nanowire surface. By direct NF participation as a reactant without adding any other Ni source, Ni3S2 was formed more closely to the NF surface, and the Co(OH)2 shell suppressed the loss of active material during charging-discharging, yielding excellent electrochemical properties. The Co(OH)2-Ni3S2/Ni electrode produced using 0.5 mmol Co(OH)2 (Co0.5-Ni3S2/Ni) exhibited a high specific capacitance of 1837 F g-1 (16.07 F cm-2) at a current density of 5 mA cm-2, and maintained a capacitance of 583 F g-1 (16.07 F cm-2) at a much higher current density of 50 mA cm-2. An asymmetric supercapacitor (ASC) with Co(OH)2-Ni3S2 and active carbon displayed a high-power density of 1036 kW kg-1 at an energy density of 43 W h kg-1 with good cycling stability, indicating its suitability for use in energy storage applications. Thus, the newly developed core-shell structure, Co(OH)2-Ni3S2, was shown to be efficient at improving the electrochemical performance.
Collapse
Affiliation(s)
- Xuan Liang Wang
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - En Mei Jin
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Jiasheng Chen
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Parthasarathi Bandyopadhyay
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| |
Collapse
|
8
|
Shinde NM, Raut SD, Ghule BG, Gunturu KC, Pak JJ, Mane RS. Recasting Ni-foam into NiF 2 nanorod arrays via a hydrothermal process for hydrogen evolution reaction application. Dalton Trans 2021; 50:6500-6505. [PMID: 33904565 DOI: 10.1039/d1dt00654a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A promising electrode for hydrogen evolution reaction (HER) has been prepared via a reduction process to form NiF2 nanorod arrays directly grown on a 3D nickel foam. We reveal NiF2@Ni nanorod arrays for a stable hydrogen evolution reaction (HER) application. The computational analysis for H2O, OH and H and experimentally in aqueous KOH endow considerable shift in Fermi levels for Ni (111) unlike for NiF2 (110) on account of an effective coalition of p-orbitals of fluorine and d-orbitals of Ni in NiF2, NiF2 under pinning the reduced overpotential of 172 mV at 10 mA cm-2 compared to Ni (242 mV) in same electrolyte. The electrocatalytic mechanism has been proposed using density functional theory (DFT) and is found in well accordance with the experimental findings of the present study. The preparation of self-grown porous nanostructured electrodes on the 3D nickel foam via a displacement reaction is possibly valuable for other metal halides for energy storage and conversion applications as these materials have inherently smaller overpotentials.
Collapse
Affiliation(s)
- Nanasaheb M Shinde
- School of Electrical and Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Siddheshwar D Raut
- School of Physical Sciences, S. R. T. M. University, Nanded-431501, MS, India.
| | - Balaji G Ghule
- School of Physical Sciences, S. R. T. M. University, Nanded-431501, MS, India.
| | | | - James J Pak
- School of Electrical and Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Rajaram S Mane
- School of Physical Sciences, S. R. T. M. University, Nanded-431501, MS, India.
| |
Collapse
|
9
|
Controlled synthesis of a high-performance α-NiS/Ni3S4 hybrid by a binary synergy of sulfur sources for supercapacitor. J Colloid Interface Sci 2021; 581:56-65. [DOI: 10.1016/j.jcis.2020.07.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 01/13/2023]
|
10
|
Zhang X, Li J, Ma Z, Zhang J, Leng B, Liu B. Design and Integration of a Layered MoS 2/GaN van der Waals Heterostructure for Wide Spectral Detection and Enhanced Photoresponse. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47721-47728. [PMID: 32960031 DOI: 10.1021/acsami.0c11021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide (MoS2) as a typical two-dimensional (2D) transition-metal dichalcogenide exhibits great potential applications for the next-generation nanoelectronics such as photodetectors. However, most MoS2-based photodetectors hold obvious disadvantages including a narrow spectral response in the visible region, poor photoresponsivity, and slow response speed. Here, for the first time, we report the design of a two-dimensional MoS2/GaN van der Waals (vdWs) heterostructure photodetector consisting of few-layer p-type MoS2 and very thin n-type GaN flakes. Thanks to the good crystal quality of the 2D-GaN flake and the built-in electric field in the interface depletion region of the MoS2/GaN p-n junction, photogenerated carriers can be rapidly separated and more excitons are collected by electrodes toward the high photoresponsivity of 328 A/W and a fast response time of 400 ms under the illumination of 532 nm light, which is seven times faster than pristine MoS2 flake. Additionally, the response spectrum of the photodetector is also broadened to the UV region with a high photoresponsivity of 27.1 A/W and a fast response time of 300 ms after integrating with the 2D-GaN flake, exhibiting an advantageous synergetic effect. These excellent performances render MoS2/GaN vdWs heterostructure photodetectors as promising and competitive candidates for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Xinglai Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Jing Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Zongyi Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Jian Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| | - Bing Leng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, China
| | - Baodan Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
11
|
Shinde NM, Shinde PV, Yun JM, Mane RS, Kim KH. Room-temperature chemical synthesis of 3-D dandelion-type nickel chloride (NiCl 2@NiF) supercapattery nanostructured materials. J Colloid Interface Sci 2020; 578:547-554. [PMID: 32544626 DOI: 10.1016/j.jcis.2020.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 11/26/2022]
Abstract
A simple, room-temperature operable, glycerol-supported single beaker-inspired, and binder-free soft-chemical protocol has been developed to synthesize 3-D dandelion flower-type nickel chloride (NiCl2) supercapattery (supercapacitor + battery) nanostructured electrode material from solid 3-D nickel-foam (NiF). The dandelion flower-type NiCl2@NiF labeled as B electrode, demonstrates a battery-type electrochemical performance as obtained 1551 F·g-1 specific capacitance (SC) and 95% cyclability over 50,000 cycles is higher than that of a setaria viridis-type NiCl2@NiF electrode, prepared without glycerol labeled as A electrode. As a commercial market product, assembled NiCl2@NiF@ (cathode)// BiMoO3 (anode) pouch-type asymmetric supercapacitor energy storage device demonstrates moderate energy density and power density (28 Wh·kg-1 and 845 W·kg-1). By utilizing three devices in series, three different colored LEDs can be operated at full brightness. The as-proposed low temperature protocol impeccably effective and efficient on account of the low-cost, easy synthesis methodology for scalability, and high crytallinity as well as solvent-free and non-toxic as pyrolated gases were used while synthesis processing.
Collapse
Affiliation(s)
- Nanasaheb M Shinde
- National Core Research Centre for Hybrid Materials Solution, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| | - Pritamkumar V Shinde
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| | - Je Moon Yun
- Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| | - Rajaram S Mane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India.
| | - Kwang Ho Kim
- National Core Research Centre for Hybrid Materials Solution, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea; Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
12
|
Shinde N, Shinde PV, Yun JM, Gunturu KC, Mane RS, O’Dwyer C, Kim KH. NiF 2 Nanorod Arrays for Supercapattery Applications. ACS OMEGA 2020; 5:9768-9774. [PMID: 32391464 PMCID: PMC7203691 DOI: 10.1021/acsomega.9b04219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 05/29/2023]
Abstract
A electrode for energy storage cells is possible directly on Ni foam, using a simple reduction process to form NiF2 nanorod arrays (NA). We demonstrate NiF2@Ni NA for a symmetric electrochemical supercapattery electrode. With an areal specific capacitance of 51 F cm-2 at 0.25 mA cm-2 current density and 94% cycling stability, a NiF2@Ni electrode can exhibit supercapattery behavior, a combination of supercapacitor and battery-like redox. The symmetric electrochemical supercapattery delivers 31 W h m-2 energy density and 797 W m-2 power density with 83% retention in a 1 M KOH electrolyte, constituting a step toward manufacturing a laboratory-scale energy storage device based on metal halides. Producing self-grown hierarchically porous nanostructured electrodes on three-dimensional metal foams by displacement reactions may be useful for other metal halides as electrodes for supercapacitors, supercapatteries, and lithium-ion batteries.
Collapse
Affiliation(s)
- Nanasaheb
M. Shinde
- National
Core Research Centre for Hybrid Materials Solution, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | - Pritamkumar V. Shinde
- Global
Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | - Je Moon Yun
- Global
Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | | | - Rajaram S. Mane
- School
of Physical Sciences, Swami Ramanand Teerth
Marathwada University, Nanded 431606, India
| | - Colm O’Dwyer
- School of
Chemistry, University College Cork, Cork T12 YN60, Ireland
- Micro-Nano
Systems Centre, Tyndall National Institute, Lee Maltings, Cork T12
R5CP, Ireland
- AMBER@CRANN, Trinity College Dublin, Dublin 2, Ireland
- Environmental
Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Kwang Ho Kim
- National
Core Research Centre for Hybrid Materials Solution, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
- Global
Frontier R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
- School
of Materials Science and Engineering, Pusan
National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| |
Collapse
|
13
|
Two-dimensional vanadium carbide (V2CT ) MXene as supercapacitor electrode in seawater electrolyte. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhang J, Liu Y, Zhang X, Ma Z, Li J, Zhang C, Shaikenova A, Renat B, Liu B. High‐Performance Ultraviolet‐Visible Light‐Sensitive 2D‐MoS
2
/1D‐ZnO Heterostructure Photodetectors. ChemistrySelect 2020. [DOI: 10.1002/slct.202000746] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Zhang
- School of Information Science and EngineeringShenyang University of Technology Shenyang 110870 China
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Yiting Liu
- School of Information Science and EngineeringShenyang University of Technology Shenyang 110870 China
| | - Xinglai Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Zongyi Ma
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Jing Li
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Cai Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Altynay Shaikenova
- Department of Engineering PhysicsSatbayev University Almaty 050013 Kazakhstan
| | - Beisenov Renat
- Department of Engineering PhysicsSatbayev University Almaty 050013 Kazakhstan
| | - Baodan Liu
- Shenyang National Laboratory for Materials Science Institute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| |
Collapse
|
15
|
Controllable Synthesis of Three-Dimensional β-NiS Nanostructured Assembly for Hybrid-Type Asymmetric Supercapacitors. NANOMATERIALS 2020; 10:nano10030487. [PMID: 32182678 PMCID: PMC7153257 DOI: 10.3390/nano10030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
The process of energy storage in supercapacitors via the surface reaction of the electrode can lead to a significant perfecting of the electrochemical performance of supercapacitors, for developing the morphologies of materials and increasing the specific surface areas of the electrodes. Three-dimensional nickel sulfide (NiS) superstructures with nanomorphologies, viz. coral-like, urchin-like, flake-like, and flower-like, are synthesized through simple solvothermal methods, without any template. The nanostructured flower-like β-NiS demonstrates, not only a remarkable specific capacitance of 2425.89 F·g−1 at the current densities of 1 A·g−1, but also an excellent cycling stability of approximately 100% (at the current density of 10 A·g−1 over 5000 cycles). Moreover, the hybrid-type asymmetric supercapacitor, constructed from the flower-like β-NiS positive electrode and active carbon negative electrode, exhibits an energy density of 42.12 Wh·kg−1 at a power density of 28.8 kW·kg−1.
Collapse
|
16
|
Hu Q, Li W, Xiang B, Zou X, Hao J, Deng M, Wu Q, Wang Y. Sulfur source-inspired synthesis of β-NiS with high specific capacity and tunable morphologies for hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
High energy and power density of self-grown CuS@Cu2O core-shell supercapattery positrode. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Shinde P, Shinde NM, Yun JM, Mane RS, Kim KH. Facile Chemical Synthesis and Potential Supercapattery Energy Storage Application of Hydrangea-type Bi 2MoO 6. ACS OMEGA 2019; 4:11093-11102. [PMID: 31460207 PMCID: PMC6649262 DOI: 10.1021/acsomega.9b00522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 05/17/2023]
Abstract
Soft chemical synthesis is used to obtain a hydrangea-type bismuth molybdate (Bi2MoO6) supercapattery electrode that demonstrates considerable energy/power density and cycling life. Structure and morphology studies, initially, reveal a phase-pure polycrystalline and hydrangea-type surface appearance for Bi2MoO6, which upon testing in an electrochemical energy storage system displays supercapattery behavior, a combination of a supercapacitor and a battery. From the power law, an applied-potential-dependent charge storage mechanism is established for the Bi2MoO6 electrode material. A Trasatti plot evidences the presence of inner and outer surface charges. The hydrangea-type Bi2MoO6 electrode demonstrates a specific capacitance of 485 F g-1 at 5 A g-1 and a stability of 82% over 5000 cycles. An assembled symmetric supercapattery with a Bi2MoO6//Bi2MoO6 configuration demonstrates energy and power densities of 45.6 W h kg-1 and 989 W kg-1, respectively. A demonstration elucidating the lighting up of three light-emitting diodes, connected in series, by the symmetric supercapattery signifies the practical potentiality of the as-synthesized hydrangea-type Bi2MoO6 electrode in energy storage devices.
Collapse
Affiliation(s)
- Pritamkumar
V. Shinde
- Global Frontier R&D Center for Hybrid Interface
Materials and National Core
Research Center, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| | - Nanasaheb M. Shinde
- Global Frontier R&D Center for Hybrid Interface
Materials and National Core
Research Center, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| | - Je Moon Yun
- Global Frontier R&D Center for Hybrid Interface
Materials and National Core
Research Center, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| | - Rajaram S. Mane
- Global Frontier R&D Center for Hybrid Interface
Materials and National Core
Research Center, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
- School
of Physical Sciences, SRTM University, Nanded 431606, India
| | - Kwang Ho Kim
- Global Frontier R&D Center for Hybrid Interface
Materials and National Core
Research Center, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic of Korea
| |
Collapse
|
19
|
Shinde N, Shinde P, Xia QX, Yun JM, Mane R, Kim KH. Electrocatalytic Water Splitting through the Ni x S y Self-Grown Superstructures Obtained via a Wet Chemical Sulfurization Process. ACS OMEGA 2019; 4:6486-6491. [PMID: 31459781 PMCID: PMC6648555 DOI: 10.1021/acsomega.9b00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
We report water-splitting application of chemically stable self-grown nickel sulfide (Ni x S y ) electrocatalysts of different nanostructures including rods, flakes, buds, petals, etc., synthesized by a hydrothermal method on a three-dimensional Ni foam (NiF) in the presence of different sulfur-ion precursors, e.g., thioacetamide, sodium thiosulfate, thiourea, and sodium sulfide. The S2- ions are produced after decomposition from respective sulfur precursors, which, in general, react with oxidized Ni2+ ions from the NiF at optimized temperatures and pressures, forming the Ni x S y superstructures. These Ni x S y electrocatalysts are initially screened for their structure, morphology, phase purity, porosity, and binding energy by means of various sophisticated instrumentation technologies. The as-obtained Ni x S y electrocatalyst from sodium thiosulfate endows an overpotential of 200 mV. The oxygen evolution overpotential results of Ni x S y electrocatalysts are comparable or superior to those reported previously for other self-grown Ni x S y superstructure morphologies.
Collapse
Affiliation(s)
- Nanasaheb Shinde
- National
Core Research Centre for Hybrid Materials Solution and Global Frontier
R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | - Pritamkumar Shinde
- National
Core Research Centre for Hybrid Materials Solution and Global Frontier
R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | - Qi Xun Xia
- National
Core Research Centre for Hybrid Materials Solution and Global Frontier
R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
- School
of Materials Science and Engineering, Henan
Polytechnic University, Jiaozuo 454000, China
| | - Je Moon Yun
- National
Core Research Centre for Hybrid Materials Solution and Global Frontier
R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | - Rajaram Mane
- National
Core Research Centre for Hybrid Materials Solution and Global Frontier
R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| | - Kwang Ho Kim
- National
Core Research Centre for Hybrid Materials Solution and Global Frontier
R&D Center for Hybrid Interface Materials, Pusan National University, 30, Jangjeon-dong, Geumjung-gu, Busan 609-735, Republic
of Korea
| |
Collapse
|