1
|
Wang M, Liu H, Huang J, Cai T, Xu ZP, Zhang L. Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems. J Nanobiotechnology 2025; 23:362. [PMID: 40394591 PMCID: PMC12090605 DOI: 10.1186/s12951-025-03433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Gene therapy holds immense potential due to its ability to precisely target oncogenes, making it a promising strategy for cancer treatment. Advances in genetic science and bioinformatics have expanded the applications of gene delivery technologies beyond detection and diagnosis to potential therapeutic interventions. However, traditional gene therapy faces significant challenges, including limited therapeutic efficacy and the rapid degradation of genetic materials in vivo. To address these limitations, multifunctional nanoparticles have been engineered to encapsulate and protect genetic materials, enhancing their stability and therapeutic effectiveness. Nanoparticles are being extensively explored for their ability to deliver various genetic payloads-including plasmid DNA, messenger RNA, and small interfering RNA-directly to cancer cells. This review highlights key gene modulation strategies such as RNA interference, gene editing systems, and chimeric antigen receptor (CAR) technologies, alongside a diverse array of nanoscale delivery systems composed of polymers, lipids, and inorganic materials. These nanoparticle-based delivery platforms aim to improve targeted transport of genetic material into cancer cells, ultimately enhancing the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Maoze Wang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
| | - Jinling Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
| | - Zhi Ping Xu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
2
|
Liu W, Wang W. LncRNA in gastric cancer drug resistance: deciphering the therapeutic strategies. Front Oncol 2025; 15:1552773. [PMID: 40236651 PMCID: PMC11996845 DOI: 10.3389/fonc.2025.1552773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Gastric cancer (GC) is an exceedingly aggressive disease and ranks as the third leading cause of cancer-related deaths, which poses a huge health burden globally. Chemotherapy is commonly employed during the middle to advanced stages of cancer, although it faces frequent treatment failures attributed to drug resistance. Thus, it is imperative for researchers to identify potential targets for overcoming therapeutic resistance, thereby facilitating the development of novel anti-cancer agents for GC patients with advanced stages. Long noncoding RNAs (lncRNAs) are a diverse group of transcripts with limited protein-coding capacity, which have been recognized for functional molecules for regulating cancer progression including cell proliferation, metastasis, and drug resistance in GC. In this review, we examine the intricate molecular networks on the role of lncRNAs in drug resistance of GC. LncRNAs conferred cancer cell resistance to anti-cancer drug through various molecular mechanisms, therefore functioning as promising therapeutic targets for GC patients. Additionally, we discuss current advancements of strategies targeting lncRNAs in cancer therapy, which may pave the way for lncRNA-mediated precision medicine for this malignant disease.
Collapse
Affiliation(s)
| | - WeiFa Wang
- Department of Gastrointestinal Surgery, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Andavar A, Bhagavathi VR, Cousin J, Parekh N, Razavi ZS, Tan B. Current Research in Drug-Free Cancer Therapies. Bioengineering (Basel) 2025; 12:341. [PMID: 40281701 PMCID: PMC12024433 DOI: 10.3390/bioengineering12040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer treatment has historically depended on conventional methods like chemotherapy, radiation, and surgery; however, these strategies frequently present considerable limitations, including toxicity, resistance, and negative impacts on healthy tissues. In addressing these challenges, drug-free cancer therapies have developed as viable alternatives, utilizing advanced physical and biological methods to specifically target tumor cells while reducing damage to normal tissues. This review examines several drug-free cancer treatment strategies, such as high-intensity focused energy beams, nanosecond pulsed electric fields, and photothermal therapy as well as the use of inorganic nanoparticles to promote selective apoptosis. We also investigate the significance of targeting the tumor microenvironment, precision medicine, and immunotherapy in the progression of personalized cancer therapies. Although these approaches demonstrate significant promise, challenges including scalability, safety, and regulatory obstacles must be resolved for clinical application. This paper presents an overview of current research in drug-free cancer therapies, emphasizing recent advancements, underlying scientific principles, and the steps required for clinical implementation.
Collapse
Affiliation(s)
- Akshaya Andavar
- Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | | | - Justine Cousin
- École Publique d’Ingénieurs de la Santé et du Numérique (EPISEN), Université Paris-Est Créteil (UPEC), 94000 Créteil, France;
| | - Nirvi Parekh
- Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India;
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran 1416634793, Iran;
| | - Bo Tan
- Institute of Biomedical Engineering Science and Technology (iBEST), Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
5
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies. Exp Cell Res 2025; 445:114434. [PMID: 39921031 DOI: 10.1016/j.yexcr.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | | | - Sejal Shah
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
6
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
7
|
Jen I, Lin C, Wang K, Wu C, Lee C, Wu H. Avoided Crossing Phonons Realizes High-Performance Single-Crystalline β-Zn 4Sb 3 Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411498. [PMID: 39661498 PMCID: PMC11791943 DOI: 10.1002/advs.202411498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/25/2024] [Indexed: 12/13/2024]
Abstract
This study reveals the mechanisms behind the ultralow lattice thermal conductivity κL in β-Zn4Sb3 single crystals through inelastic neutron scattering (INS). Analyzing phonon behaviors and the interaction between acoustic phonons and rattling modes, the first experimental evidence of avoided crossing in β-Zn4Sb3 is provided. The rattler-phonon avoided crossings contribute to the low κL in a β-Zn4Sb3 single crystal, enhancing the thermoelectric figure-of-merit (zT). TEM characterizations of the β-Zn4Sb3 single crystal with intrinsic and ultralow κL reveal a grain-boundary-free structure with uniformly dispersed rotation moiré fringes that contribute to low lattice thermal conductivity while maintaining a uniform elemental distribution. Additionally, the significant impact of crystallinity control coupled with dilute doping on boosting thermoelectric performance, with single-crystalline single leg outperforming their polycrystalline counterparts is demonstrated. Notably, the conversion efficiency η of the undoped β-Zn4Sb3 single leg achieves 1.4% under a temperature gradient of 200 K.
Collapse
Grants
- NSTC-111-2112-M-029-010-MY3 Ministry of Science and Technology, Taiwan
- 113-2112-M-008-015 Ministry of Science and Technology, Taiwan
- 113-2112-M-029-006 Ministry of Science and Technology, Taiwan
- 112-2223-E-002-021-MY5 Ministry of Science and Technology, Taiwan
- 111-2628-E-002-024-MY4 Ministry of Science and Technology, Taiwan
- 113-2221-E-007-038 Ministry of Science and Technology, Taiwan
- MOST 111-2628-E-A49-017-MY4 Ministry of Science and Technology, Taiwan
- NSTC 112-2223-E-A49-003-MY5 Ministry of Science and Technology, Taiwan
- NSTC 112-2112-M-008-028 Ministry of Science and Technology, Taiwan
- NSTC 112-2221-E-007-081 Ministry of Science and Technology, Taiwan
- NSTC 112-2224-E-008-001 Ministry of Science and Technology, Taiwan
- Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- I‐Lun Jen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Cheng‐Yen Lin
- Department of Applied PhysicsTunghai UniversityTaichung407224Taiwan
| | - Kuang‐Kuo Wang
- Department of Materials and Optoelectronic ScienceNational Sun Yat‐sen UniversityKaohsiung80424Taiwan
| | - Chun‐Ming Wu
- National Synchrotron Radiation Research CenterHsinchu300092Taiwan
| | - Chi‐Hung Lee
- Department of Applied PhysicsTunghai UniversityTaichung407224Taiwan
| | - Hsin‐Jay Wu
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| |
Collapse
|
8
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
9
|
Garcia CJC, Grisetti L, Tiribelli C, Pascut D. The ncRNA-AURKA Interaction in Hepatocellular Carcinoma: Insights into Oncogenic Pathways, Therapeutic Opportunities, and Future Challenges. Life (Basel) 2024; 14:1430. [PMID: 39598228 PMCID: PMC11595987 DOI: 10.3390/life14111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major public health concern and ranks among the leading cancer-related mortalities globally. Due to the frequent late-stage diagnosis of HCC, therapeutic options remain limited. Emerging evidence highlights the critical role of non-coding RNAs (ncRNAs) in the regulation of Aurora kinase A (AURKA), one of the key hub genes involved in several key cancer pathways. Indeed, the dysregulated interaction between ncRNAs and AURKA contributes to tumor development, progression, and therapeutic resistance. This review delves into the interplay between ncRNAs and AURKA and their role in hepatocarcinogenesis. Recent findings underscore the involvement of the ncRNAs and AURKA axis in tumor development and progression. Furthermore, this review also discusses the clinical significance of targeting ncRNA-AURKA axes, offering new perspectives that could lead to innovative therapeutic strategies aimed at improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Clarissa Joy C. Garcia
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Luca Grisetti
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| |
Collapse
|
10
|
Ammad M, Javed Z, Sadia H, Ahmed R, Akbar A, Nadeem T, Calina D, Sharifi-Rad J. Advancements in long non-coding RNA-based therapies for cancer: targeting, delivery, and clinical implications. Med Oncol 2024; 41:292. [PMID: 39428417 DOI: 10.1007/s12032-024-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been in the spotlight for the past two decades due to their extensive role in regulating a wide range of cellular processes. Development, differentiation, regulation, and modulation are some of the vital cellular cascades coordinated by these molecules. Despite their importance, there has been limited literature on their practical implications in cancer prevention. Advancements in lncRNA biology have enabled the characterization of numerous secondary structures and sequence motifs, which could serve as potential targets for cellular therapies. Several studies have highlighted the involvement of lncRNAs in human pathologies, where they can be targeted by small molecules or antisense oligonucleotides to prevent diseases. However, progress has been hindered by the challenge of developing specific delivery vehicles for targeted delivery. Recent improvements in sequence optimization and nucleotide modification have enhanced drug stability and reduced the immunogenicity of lncRNA-based therapies, yet further advances are needed to fully realize their potential in treating complex diseases like cancer. This review aims to explore current lncRNA biology, their mechanisms of action, nanoformulation strategies, and the clinical trials focused on lncRNA delivery systems.
Collapse
Affiliation(s)
- Muhammad Ammad
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Zeeshan Javed
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Rais Ahmed
- Department of Microbiology, Cholistan University of Veterniary and Animal Sciences Bahawalpur, Bahawalpur, Pakistan
| | - Ali Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Tariq Nadeem
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, 092301, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9244. [PMID: 39273193 PMCID: PMC11395304 DOI: 10.3390/ijms25179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Lipid disorders increase the risk for the development of cardiometabolic disorders, including type 2 diabetes, atherosclerosis, and cardiovascular disease. Lipids levels, apart from diet, smoking, obesity, alcohol consumption, and lack of exercise, are also influenced by genetic factors. Recent studies suggested the role of long noncoding RNAs (lncRNAs) in the regulation of lipid formation and metabolism. Despite their lack of protein-coding capacity, lncRNAs are crucial regulators of various physiological and pathological processes since they affect the transcription and epigenetic chromatin remodelling. LncRNAs act as molecular signal, scaffold, decoy, enhancer, and guide molecules. This review summarises available data concerning the impact of lncRNAs on lipid levels and metabolism, as well as impact on cardiovascular disease risk. This relationship is significant because altered lipid metabolism is a well-known risk factor for cardiovascular diseases, and lncRNAs may play a crucial regulatory role. Understanding these mechanisms could pave the way for new therapeutic strategies to mitigate cardiovascular disease risk through targeted modulation of lncRNAs. The identification of dysregulated lncRNAs may pose promising candidates for therapeutic interventions, since strategies enabling the restoration of their levels could offer an effective means to impede disease progression without disrupting normal biological functions. LncRNAs may also serve as valuable biomarker candidates for various pathological states, including cardiovascular disease. However, still much remains unknown about the functions of most lncRNAs, thus extensive studies are necessary elucidate their roles in physiology, development, and disease.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Aleksandra Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation in Warsaw, 02-637 Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
12
|
Çakan E, Lara OD, Szymanowska A, Bayraktar E, Chavez-Reyes A, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers (Basel) 2024; 16:2940. [PMID: 39272802 PMCID: PMC11394571 DOI: 10.3390/cancers16172940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in our comprehension of tumor biology and chemoresistance have spurred the development of treatments that precisely target specific molecules within the body. Despite the expanding landscape of therapeutic options, there persists a demand for innovative approaches to address unmet clinical needs. RNA therapeutics have emerged as a promising frontier in this realm, offering novel avenues for intervention such as RNA interference and the utilization of antisense oligonucleotides (ASOs). ASOs represent a versatile class of therapeutics capable of selectively targeting messenger RNAs (mRNAs) and silencing disease-associated proteins, thereby disrupting pathogenic processes at the molecular level. Recent advancements in chemical modification and carrier molecule design have significantly enhanced the stability, biodistribution, and intracellular uptake of ASOs, thereby bolstering their therapeutic potential. While ASO therapy holds promise across various disease domains, including oncology, coronary angioplasty, neurological disorders, viral, and parasitic diseases, our review manuscript focuses specifically on the application of ASOs in targeted cancer therapies. Through a comprehensive examination of the latest research findings and clinical developments, we delve into the intricacies of ASO-based approaches to cancer treatment, shedding light on their mechanisms of action, therapeutic efficacy, and prospects.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Olivia D Lara
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
13
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
14
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
15
|
Ye J, Wu Q, Ji Q, You S, Gao S, Zhao G, Xu Q, Liu K, Li P. Au/Doc/Quer@PDA/A10-3.2 Nanoparticles for targeted treatment of docetaxel-resistant prostate cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1631-1655. [PMID: 38769597 DOI: 10.1080/09205063.2024.2346395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Abstract
Docetaxel (Doc), as a first-line chemotherapy drug for prostate cancer (PC), often loses its therapeutic efficacy due to acquired resistance and lack of targeting specificity. Therefore, there is a need to develop a novel drug that can overcome Doc resistance and enhance its targeting ability to inhibit PC progression. In this study, we prepared Au/Doc/Quer@PDA/A10-3.2 nanoparticles (NPs) composite drug by encapsulating Doc and quercetin (Quer) within polydopamine (PDA)-coated Au NPs and further modifying them with RNA oligonucleotide aptamer A10-3.2. A10-3.2 was used for specific targeting of prostate-specific membrane antigen (PSMA)-positive PC cells (LNCaP). Quer was employed to reverse the resistance of Doc-resistant cell line (LNCaP/R) to Doc. Physical characterization using ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) confirmed the successful preparation of Au/Doc/Quer@PDA/A10-3.2 NPs. Fluorescence imaging and flow cytometry experiments demonstrated the targeting ability of Au/Doc/Quer@PDA/A10-3.2 NPs towards PSMA-positive LNCaP/R cells. Cell proliferation, apoptosis, invasion, and migration experiments revealed that Quer reversed the resistance of LNCaP/R cells to Doc. Immunoblotting experiments further confirmed the mechanism behind sensitization of chemotherapy by Quer. Finally, we evaluated the therapeutic efficacy of Au/Doc/Quer@PDA/A10-3.2 NPs in a mouse model of PC. In conclusion, this study synthesized and validated a novel nano-composite drug (Au/Doc/Quer@PDA/A10-3.2 NPs) for combating Doc-resistant PC, which could potentially be applied in clinical treatment of PC.
Collapse
Affiliation(s)
- Junjie Ye
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Qi Wu
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Qingfen Ji
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Shengjie You
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Song Gao
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Guanan Zhao
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Qiangqiang Xu
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Ken Liu
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Peng Li
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| |
Collapse
|
16
|
Johari B, Tavangar-Roosta S, Gharbavi M, Sharafi A, Kaboli S, Rezaeejam H. Suppress the cell growth of cancer stem-like cells (NTERA-2) using Sox2-Oct4 decoy oligodeoxynucleotide-encapsulated niosomes-zinc hybrid nanocarriers under X-irradiation. Heliyon 2024; 10:e34096. [PMID: 39071677 PMCID: PMC11277410 DOI: 10.1016/j.heliyon.2024.e34096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sox2 and Oct4 dysregulations could significantly increase in the cancer stem cell (CSC) population in some cancer cells and resistance to common treatments. In this study, the synergistic effects of Sox2-Oct4 decoy oligodeoxynucleotides-encapsulated Niosomes-zinc hybrid nanocarriers along with X-irradiation conditions as a combinational therapy tool were investigated in the treatment of cancer-like stem cells (NTERA-2). The NTERA-2 cell line known as a cancer-like stem cell line was used in this investigation. Sox2-Oct4 decoy oligodeoxynucleotides were designed based on the sequence of the Sox2 promoter and synthesized. Physicochemical characteristics of ODNs-encapsulated niosomes-zinc hybrid nanocarriers (NISM@BSA-DEC-Zn) investigated with FT-IR, DLS, FESEM, and ODNs release kinetic estimation assays. Further investigations such as hemolysis, uptake, cell viability, apoptosis, cell cycle, and scratch repair tests were performed. All the above assays were completed with and without X-ray exposure conditions (fractionated 2Gy). Physicochemical characteristics results showed that the Niosomes-Zn nanocarriers were successfully synthesized. NISM@BSA-DEC-Zn was efficiently taken up by NTERA-2 cells and significantly inhibited cell growth, increased apoptosis, and reduced cell migration in both conditions (with and without X-ray exposure). Furthermore, NISM@BSA-DEC-Zn treatment resulted in G1 and G2/M cell cycle arrest without and with X-irradiation, respectively. The prepared nanocarrier system can be a promising tool for drug delivery in cancer treatment. Decoy ODN strategy along with zinc nanoparticles could increase the sensitivity of cancer cells toward irradiation, which has the potential for combinational cancer therapies.
Collapse
Affiliation(s)
- Behrooz Johari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shabnam Tavangar-Roosta
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Scinces Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
17
|
Dong Y, Yu R, Su G, Ma Z, He Z, Wang R, Zhang Y, Yang J, Gong Y, Li M, Tan Z. Interface Reactive Sputtering of Transparent Electrode for High-Performance Monolithic and Stacked Perovskite Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312704. [PMID: 38615260 DOI: 10.1002/adma.202312704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability. Polyethylenimine (PEI) is chosen as the interface reactant that can react with sputtered ITO nanoparticles, so that, coordination compounds can be formed during the deposition process, facilitating the carrier transport at the interface of C60/PEI/ITO. Besides, the impact force of energetic ITO particles is greatly alleviated, and the intactness of the underlying C60 layer and perovskite layer is guaranteed. Thus, the prepared semitransparent subcells achieve a significantly enhanced power conversion efficiency (PCE) of 19.17%, surpassing those based on C60/ITO (11.64%). Moreover, the PEI-based devices demonstrate excellent storage stability, which maintains 98% of their original PCEs after 2000 h. On the strength of the interface reactive sputtering ITO electrode, a stacked all-perovskite TSC with a PCE of 26.89% and a monolithic perovskite-organic TSC with a PCE of 24.33% are successfully fabricated.
Collapse
Affiliation(s)
- Yiman Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gangfeng Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruyue Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuling Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Yang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Yongshuai Gong
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Minghua Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
19
|
Liu Y, Wang Y, Liu B, Liu W, Ma Y, Cao Y, Yan S, Zhang P, Zhou L, Zhan Q, Wu N. Targeting lncRNA16 by GalNAc-siRNA conjugates facilitates chemotherapeutic sensibilization via the HBB/NDUFAF5/ROS pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:663-679. [PMID: 38155279 DOI: 10.1007/s11427-023-2434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 12/30/2023]
Abstract
Chemoresistance is a significant barrier to effective cancer treatment. Potential mechanisms for chemoresistance include reactive oxygen species (ROS) accumulation and expression of chemoresistance-promoting genes. Here, we report a novel function of lncRNA16 in the inhibition of ROS generation and the progression of chemoresistance. By analyzing the serum levels of lncRNA16 in a cohort of 35 patients with non-small cell lung cancer (NSCLC) and paired serum samples pre- and post-treatment from 10 NSCLC patients receiving neoadjuvant platinum-based chemotherapy, performing immunohistochemistry (IHC) assays on 188 NSCLC tumor samples, using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) assays, as well as RNA immunoprecipitation (RIP) and RNA pull-down analyses, we discovered that patients with increased serum levels of lncRNA16 exhibited a poor response to platinum-based chemotherapy. The expression of hemoglobin subunit beta (HBB) and NDUFAF5 significantly increases with the development of chemoresistance. LncRNA16 binds to HBB and promotes HBB accumulation by inhibiting autophagy. LncRNA16 can also inhibit ROS generation via the HBB/NDUFAF5 axis and function as a scaffold to facilitate the colocalization of HBB and NDUFAF5 in the mitochondria. Importantly, preclinical studies in mouse models of chemo-resistant NSCLC have suggested that lncRNA16 targeting by trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA restores chemosensitivity and results in tumor growth inhibition with no detectable toxicity in vivo. Overall, lncRNA16 is a promising therapeutic target for overcoming chemoresistance, and the combination of first-line platinum-based chemotherapy with lncRNA16 intervention can substantially enhance anti-tumor efficacy.
Collapse
Affiliation(s)
- Yanfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
20
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
21
|
Shivakumar KM, Mahendran G, Brown JA. Locked Nucleic Acid Oligonucleotides Facilitate RNA•LNA-RNA Triple-Helix Formation and Reduce MALAT1 Levels. Int J Mol Sci 2024; 25:1630. [PMID: 38338910 PMCID: PMC10855403 DOI: 10.3390/ijms25031630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and multiple endocrine neoplasia-β (MENβ) are two long noncoding RNAs upregulated in multiple cancers, marking these RNAs as therapeutic targets. While traditional small-molecule and antisense-based approaches are effective, we report a locked nucleic acid (LNA)-based approach that targets the MALAT1 and MENβ triple helices, structures comprised of a U-rich internal stem-loop and an A-rich tract. Two LNA oligonucleotides resembling the A-rich tract (i.e., A9GCA4) were examined: an LNA (L15) and a phosphorothioate LNA (PS-L15). L15 binds tighter than PS-L15 to the MALAT1 and MENβ stem loops, although both L15 and PS-L15 enable RNA•LNA-RNA triple-helix formation. Based on UV thermal denaturation assays, both LNAs selectively stabilize the Hoogsteen interface by 5-13 °C more than the Watson-Crick interface. Furthermore, we show that L15 and PS-L15 displace the A-rich tract from the MALAT1 and MENβ stem loop and methyltransferase-like protein 16 (METTL16) from the METTL16-MALAT1 triple-helix complex. Human colorectal carcinoma (HCT116) cells transfected with LNAs have 2-fold less MALAT1 and MENβ. This LNA-based approach represents a potential therapeutic strategy for the dual targeting of MALAT1 and MENβ.
Collapse
Affiliation(s)
| | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (K.M.S.); (G.M.)
| |
Collapse
|
22
|
Li H, Lin R, Zhang Y, Zhu Y, Huang S, Lan J, Lu N, Xie C, He S, Zhang W. N6-methyladenosine-modified circPLPP4 sustains cisplatin resistance in ovarian cancer cells via PIK3R1 upregulation. Mol Cancer 2024; 23:5. [PMID: 38184597 PMCID: PMC10770956 DOI: 10.1186/s12943-023-01917-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) is the first-line chemotherapeutic strategy to treat patients with ovarian cancer (OC). The development of CDDP resistance remains an unsurmountable obstacle in OC treatment and frequently induces tumor recurrence. Circular RNAs (circRNAs) are noncoding RNAs with important functions in cancer progression. Whether circRNAs function in CDDP resistance of OC is unclear. METHODS Platinum-resistant circRNAs were screened via circRNA deep sequencing and examined using in situ hybridization (ISH) in OC. The role of circPLPP4 in CDDP resistance was assessed by clone formation and Annexin V assays in vitro, and by OC patient-derived xenografts and intraperitoneal tumor models in vivo. The mechanism underlying circPLPP4-mediated activation of miR-136/PIK3R1 signaling was examined by luciferase reporter assay, RNA pull-down, RIP, MeRIP and ISH. RESULTS circPLPP4 was remarkably upregulated in platinum resistant OC. circPLPP4 overexpression significantly enhanced, whereas circPLPP4 silencing reduced, OC cell chemoresistance. Mechanistically, circPLPP4 acts as a microRNA sponge to sequester miR-136, thus competitively upregulating PIK3R1 expression and conferring CDDP resistance. The increased circPLPP4 level in CDDP-resistant cells was caused by increased RNA stability, mediated by increased N6-methyladenosine (m6A) modification of circPLPP4. In vivo delivery of an antisense oligonucleotide targeting circPLPP4 significantly enhanced CDDP efficacy in a tumor model. CONCLUSIONS Our study reveals a plausible mechanism by which the m6A -induced circPLPP4/ miR-136/ PIK3R1 axis mediated CDDP resistance in OC, suggesting that circPLPP4 may serve as a promising therapeutic target against CDDP resistant OC. A circPLPP4-targeted drug in combination with CDDP might represent a rational regimen in OC.
Collapse
Affiliation(s)
- Han Li
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Run Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yanna Zhang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China
| | - Yanni Zhu
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuting Huang
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Lan
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nian Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China
| | - Chuanmiao Xie
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China.
| | - Shanyang He
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Weijing Zhang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China.
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
23
|
Hussein MA, Valinezhad K, Adel E, Munirathinam G. MALAT-1 Is a Key Regulator of Epithelial-Mesenchymal Transition in Cancer: A Potential Therapeutic Target for Metastasis. Cancers (Basel) 2024; 16:234. [PMID: 38201661 PMCID: PMC10778055 DOI: 10.3390/cancers16010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long intergenic non-coding RNA (lncRNA) located on chr11q13. It is overexpressed in several cancers and controls gene expression through chromatin modification, transcriptional regulation, and post-transcriptional regulation. Importantly, MALAT-1 stimulates cell proliferation, migration, and metastasis and serves a vital role in driving the epithelial-to-mesenchymal transition (EMT), subsequently acquiring cancer stem cell-like properties and developing drug resistance. MALAT-1 modulates EMT by interacting with various intracellular signaling pathways, notably the phosphoinositide 3-kinase (PI3K)/Akt and Wnt/β-catenin pathways. It also behaves like a sponge for microRNAs, preventing their interaction with target genes and promoting EMT. In addition, we have used bioinformatics online tools to highlight the disparities in the expression of MALAT-1 between normal and cancer samples using data from The Cancer Genome Atlas (TCGA). Furthermore, the intricate interplay of MALAT-1 with several essential targets of cancer progression and metastasis renders it a good candidate for therapeutic interventions. Several innovative approaches have been exploited to target MALAT-1, such as short hairpin RNAs (shRNAs), antisense oligonucleotides (ASOs), and natural products. This review emphasizes the interplay between MALAT-1 and EMT in modulating cancer metastasis, stemness, and chemoresistance in different cancers.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, Cairo 57357, Egypt;
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA;
| | - Eman Adel
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA;
| |
Collapse
|
24
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
25
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
26
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
27
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
28
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
29
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 PMCID: PMC10298523 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
30
|
Feichtenschlager V, Zheng YJ, Ho W, Chen L, Callanan C, Chen C, Lee A, Ortiz J, Rappersberger K, Ortiz-Urda S. Deconstructing the role of MALAT1 in MAPK-signaling in melanoma: insights from antisense oligonucleotide treatment. Oncotarget 2023; 14:543-560. [PMID: 37235843 DOI: 10.18632/oncotarget.28447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
The long non-coding RNA (lncRNA) MALAT1 is a regulator of oncogenesis and cancer progression. MAPK-pathway upregulation is the main event in the development and progression of human cancer, including melanoma and recent studies have shown that MALAT1 has a significant impact on the regulation of gene and protein expression in the MAPK pathway. However, the role of MALAT1 in regulation of gene and protein expression of the MAPK-pathway kinases RAS, RAF, MEK and ERK in melanoma is largely unknown. We demonstrate the impacts of antisense oligonucleotide (ASO)-based MALAT1-inhibition on MAPK-pathway gene regulation in melanoma. Our results showed that MALAT1-ASO treatment decreased BRAF RNA expression and protein levels, and MALAT1 had increased correlation with MAPK-pathway associated genes in melanoma patient samples compared to healthy skin. Additionally, drug-induced MAPK inhibition upregulated MALAT1-expression, a finding that resonates with a paradigm of MALAT1-expression presented in this work: MALAT1 is downregulated in melanoma and other cancer types in which MALAT1 seems to be associated with MAPK-signaling, while MALAT1-ASO treatment strongly reduced the growth of melanoma cell lines, even in cases of resistance to MEK inhibition. MALAT1-ASO treatment significantly inhibited colony formation in vitro and reduced tumor growth in an NRAS-mutant melanoma xenograft mouse model in vivo, while showing no aberrant toxic side effects. Our findings demonstrate new insights into MALAT1-mediated MAPK-pathway gene regulation and a paradigm of MALAT1 expression in MAPK-signaling-dependent cancer types. MALAT1 maintains essential oncogenic functions, despite being downregulated.
Collapse
Affiliation(s)
- Valentin Feichtenschlager
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Dermatology, Clinic Landstrasse Vienna, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Yixuan James Zheng
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
- School of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Wilson Ho
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Linan Chen
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Ciara Callanan
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Christopher Chen
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Albert Lee
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jose Ortiz
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Klemens Rappersberger
- Department of Dermatology, Clinic Landstrasse Vienna, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
31
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
32
|
Arriaga-Canon C, Contreras-Espinosa L, Aguilar-Villanueva S, Bargalló-Rocha E, García-Gordillo JA, Cabrera-Galeana P, Castro-Hernández C, Jiménez-Trejo F, Herrera LA. The Clinical Utility of lncRNAs and Their Application as Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087426. [PMID: 37108589 PMCID: PMC10138835 DOI: 10.3390/ijms24087426] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Given their tumor-specific and stage-specific gene expression, long non-coding RNAs (lncRNAs) have demonstrated to be potential molecular biomarkers for diagnosis, prognosis, and treatment response. Particularly, the lncRNAs DSCAM-AS1 and GATA3-AS1 serve as examples of this because of their high subtype-specific expression profile in luminal B-like breast cancer. This makes them candidates to use as molecular biomarkers in clinical practice. However, lncRNA studies in breast cancer are limited in sample size and are restricted to the determination of their biological function, which represents an obstacle for its inclusion as molecular biomarkers of clinical utility. Nevertheless, due to their expression specificity among diseases, such as cancer, and their stability in body fluids, lncRNAs are promising molecular biomarkers that could improve the reliability, sensitivity, and specificity of molecular techniques used in clinical diagnosis. The development of lncRNA-based diagnostics and lncRNA-based therapeutics will be useful in routine medical practice to improve patient clinical management and quality of life.
Collapse
Affiliation(s)
- Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Sergio Aguilar-Villanueva
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Enrique Bargalló-Rocha
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - José Antonio García-Gordillo
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Paula Cabrera-Galeana
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
| | | | - L A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C.P. 64710, Mexico
| |
Collapse
|
33
|
Liu B, Qu X, Wang J, Xu L, Zhang L, Xu B, Su J, Bian X. LINC00365 functions as a tumor suppressor by inhibiting HIF-1α-mediated glucose metabolism reprogramming in breast cancer. Exp Cell Res 2023; 425:113514. [PMID: 36804531 DOI: 10.1016/j.yexcr.2023.113514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in regulating several physiological processes and have been implicated in several pathologies including cancer. LncRNAs have been found to regulate key cellular pathways involved in cancer development, and their aberrant expression plays critical roles in the onset or progression of disease. The role of lncRNAs in breast cancer (BC) has become a hot topic of research in recent years. We previously showed that LINC00365 inhibits BC survival. In the current study, based on the important role of energy metabolism and HIF-1α for tumor cell proliferation, we investigated the role and mechanism of the LINC00365/HIF-1α axis in affecting tumor growth through glycolysis using the breast cancer cell lines MCF-7 and HCC-1937. We found that LINC00365 inhibited BC cell proliferation. Furthermore, LINC00365 overexpression suppressed aerobic glycolysis in BC cells. RNA-sequencing identified hypoxia-inducible factor-1α (HIF-1α), which has been linked with glycolysis and upregulates glycolysis-related genes, as a potential target gene of LINC00365. Accordingly, we found that LINC00365 overexpression resulted in decreased expression of key glycolytic enzymes such as downstream hexokinase 2 (HK2), recombinant pyruvate kinase isozymes M2 (PKM2) and lactate dehydrogenase A (LDHA). Our results suggest that targeting LINC00365 may reverse the glucose metabolism pattern of BC and effectively inhibit BC survival both in vitro and in vivo.
Collapse
Affiliation(s)
- Buhan Liu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Labor-atory of Surgical Translational Medicine, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lichao Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bo Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuehai Bian
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Labor-atory of Surgical Translational Medicine, Changchun, China.
| |
Collapse
|
34
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Gao B, Wang X, Wang M, Liu W, Li Y, Xia S, Zhang W, Feng Y. "Intercellular Mass Transport" Mimic Enables ASO Entry Completely into the Cell Nucleus for Enhanced Ischemia Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12777-12786. [PMID: 36854063 DOI: 10.1021/acsami.2c21691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, the development of a new therapeutic technology is focused on antisense oligonucleotides (ASOs), where ASOs are used to complementarily pair with DNA, messenger RNA, or long noncoding RNA (lncRNA) to regulate the cell behavior by inhibiting the target gene expression. However, the targeted regulation toward nuclear genes still faces great challenges in ASO delivery for clinical applications, i.e., two essential criteria (high nuclear entry and delivery vehicle safety/simplification) generally compromise each other and are not simultaneously satisfactory. Herein, for the first time, inspired by "intercellular-mass-transport", we report an important discovery that the cell membrane of endothelial cells (ECs) serving as the biointerface enables ASOs to rapidly and completely enter the EC nucleus. Thereby, we innovatively fabricate a nanosystem only by sequential self-assembly of natural/off-the-shelf biomaterials to well overcome the above-mentioned contradiction. The efficacy is strikingly superior to that of the previous delivery vehicles. Furthermore, our technology is applied to successfully silence lncRNA MEG3 in the EC nucleus, significantly augmenting EC morphogenesis. More importantly, this nanosystem is applicable for in vivo intramuscular injection to enhance the therapeutic outcome in a critical limb ischemia mouse model. This work brings a new hope for the technological innovation of ASO nuclear delivery and opens a new avenue to explore natural/off-the-shelf materials for cargo delivery into subcellular compartments.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
36
|
Wang L, Fu H, Song L, Wu Z, Yu J, Guo Q, Chen C, Yang X, Zhang J, Wang Q, Duan Y, Yang Y. Overcoming AZD9291 Resistance and Metastasis of NSCLC via Ferroptosis and Multitarget Interference by Nanocatalytic Sensitizer Plus AHP-DRI-12. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204133. [PMID: 36420659 DOI: 10.1002/smll.202204133] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The acquired resistance to Osimertinib (AZD9291) greatly limits the clinical benefit of patients with non-small cell lung cancer (NSCLC), whereas AZD9291-resistant NSCLCs are prone to metastasis. It's challenging to overcome AZD9291 resistance and suppress metastasis of NSCLC simultaneously. Here, a nanocatalytic sensitizer (VF/S/A@CaP) is proposed to deliver Vitamin c (Vc)-Fe(II), si-OTUB2, ASO-MALAT1, resulting in efficient inhibition of tumor growth and metastasis of NSCLC by synergizing with AHP-DRI-12, an anti-hematogenous metastasis inhibitor by blocking the amyloid precursor protein (APP)/death receptor 6 (DR6) interaction designed by our lab. Fe2+ released from Vc-Fe(II) generates cytotoxic hydroxyl radicals (•OH) through Fenton reaction. Subsequently, glutathione peroxidase 4 (GPX4) is consumed to sensitize AZD9291-resistant NSCLCs with high mesenchymal state to ferroptosis due to the glutathione (GSH) depletion caused by Vc/dehydroascorbic acid (DHA) conversion. By screening NSCLC patients' samples, metastasis-related targets (OTUB2, LncRNA MALAT1) are confirmed. Accordingly, the dual-target knockdown plus AHP-DRI-12 significantly suppresses the metastasis of AZD9291-resistant NSCLC. Such modality leads to 91.39% tumor inhibition rate in patient-derived xenograft (PDX) models. Collectively, this study highlights the vulnerability to ferroptosis of AZD9291-resistant tumors and confirms the potential of this nanocatalytic-medicine-based modality to overcome critical AZD9291 resistance and inhibit metastasis of NSCLC simultaneously.
Collapse
Affiliation(s)
- Liting Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
37
|
Fasolo F, Paloschi V, Maegdefessel L. Long non-coding RNAs at the crossroad of vascular smooth muscle cell phenotypic modulation in atherosclerosis and neointimal formation. Atherosclerosis 2022:S0021-9150(22)01542-8. [PMID: 36513554 DOI: 10.1016/j.atherosclerosis.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Despite extraordinary advances in the comprehension of the pathophysiology of atherosclerosis and the employment of very effective treatments, cardiovascular diseases are still a major cause of mortality and represent a large share of health expenditure worldwide. Atherosclerosis is a disease affecting the medium and large arteries, which consists of a progressive accumulation of fatty substances, cellular waste products and fibrous elements, which culminates in the buildup of a plaque obstructing the blood flow. Endothelial dysfunction represents an early pathological event, favoring immune cells recruitment and triggering local inflammation. The release of inflammatory cytokines and other signaling molecules stimulates phenotypic modifications in the underlying vascular smooth muscle cells, which, in physiological conditions, are responsible for the maintenance of vessels architecture while regulating vascular tone. Vascular smooth muscle cells are highly plastic and may respond to disease stimuli by de-differentiating and losing their contractility, while increasing their synthetic, proliferative, and migratory capacity. This phenotypic switching is considered a pathological hallmark of atherogenesis and is ruled by the activation of selective gene programs. The advent of genomics and the improvement of sequencing technologies deepened our knowledge of the complex gene expression regulatory networks mediated by non-coding RNAs, and favored the rise of innovative therapeutic approaches targeting the non-coding transcriptome. In the context of atherosclerosis, long non-coding RNAs have received increasing attention as potential translational targets, due to their contribution to the molecular dynamics modulating the expression of vascular smooth muscle cells contractile/synthetic gene programs. In this review, we will focus on the most well-characterized long non-coding RNAs contributing to atherosclerosis by controlling expression of the contractile apparatus and genes activated in perturbed vascular smooth muscle cells.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany.
| | - Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany; Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. J Control Release 2022; 352:861-878. [PMID: 36397636 DOI: 10.1016/j.jconrel.2022.10.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Cancer, infectious diseases, and metabolic and hereditary genetic disorders are a global health burden affecting millions of people, with contemporary treatments offering limited relief. Antisense technology treats diseases by targeting their causal agents using its ability to alter or inhibit endogenous or malfunctioning genes. Nine antisense oligonucleotide (ASO) drugs that represent four different chemical classes have been approved for the treatment of rare diseases, including nusinersen, the first new oligonucleotide-based drug. Advances in medicinal chemistry, understanding the molecular pathways, and the availability of vast genetic data have resulted in enormous improvements in the therapeutic performance of ASO drugs; however, their susceptibility to degradation in the circulation, rapid renal clearance, and immunostimulatory adverse effects greatly limit their clinical applications. An increasing number of ASO-based therapeutics is being tested in clinical trials. Improvements to the delivery of ASO drugs could potentially change the therapeutic landscape for many conditions in the near future. This review describes the technological advances and developments in drug delivery systems pertaining to ASO therapeutics.
Collapse
|
39
|
Han S, Chen X, Huang L. The tumor therapeutic potential of long non-coding RNA delivery and targeting. Acta Pharm Sin B 2022; 13:1371-1382. [PMID: 37139413 PMCID: PMC10149988 DOI: 10.1016/j.apsb.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) is a type of RNA over 200 nt long without any protein coding ability, which has been investigated relating to crucial biological function in cells. There are many key lncRNAs in tumor/normal cells that serve as a biological marker or a new target for tumor treatment. However, compared to some small non-coding RNA, lncRNA-based drugs are limited in clinical application. Different from other non-coding RNA, like microRNAs, most lncRNAs have a high molecular weight and conserved secondary structure, making the delivery of lncRNAs more complex than the small non-coding RNAs. Considering that lncRNAs constitute the most abundant part of the mammalian genome, it is critical to further explore lncRNA delivery and the subsequent functional studies for potential clinical application. In this review, we will discuss the function and mechanism of lncRNAs in diseases, especially cancer, and different approaches for lncRNA transfection using multiple biomaterials.
Collapse
|
40
|
Huang Z, Liu S, Lu N, Xu L, Shen Q, Huang Z, Huang Z, Saw PE, Xu X. Nucleus-specific RNAi nanoplatform for targeted regulation of nuclear lncRNA function and effective cancer therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20220013. [PMID: 37325502 PMCID: PMC10191018 DOI: 10.1002/exp.20220013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/15/2022] [Indexed: 06/17/2023]
Abstract
In the context of cancer therapy, a recently identified therapeutic target is represented by the essential subtype of RNA transcripts - the long noncoding RNAs (lncRNA). While this is the case, it is especially difficult to successfully regulate the expression of this subtype in vivo, particularly due to the protection granted by the nuclear envelope of nuclear lncRNAs. This study documents the development of a nucleus-specific RNA interference (RNAi) nanoparticle (NP) platform for the targeted regulation of the nuclear lncRNA function, in order to effectuate successful cancer therapy. An NTPA (nucleus-targeting peptide amphiphile) and an endosomal pH-responsive polymer make up the novel RNAi nanoplatform in development, which is capable of complexing siRNA. The nanoplatform is capable of accumulating greatly in the tumor tissues and being internalized by tumor cells, following intravenous administration. The exposed complexes of the NTPA/siRNA may conveniently escape from the endosome with the pH-triggered NP disassociation, following which it can target the nucleus by specifically interacting with the importin α/β heterodimer. In orthotopic and subcutaneous xenograft tumor models, this would result in a notable suppression of the expression of nuclear lncNEAT2 as well as greatly impede the growth of tumors in liver cancer.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Shaomin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenP. R. China
| | - Nan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Qian Shen
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Zhuoshan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| |
Collapse
|
41
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
42
|
Xie J, Hu Y, Sun D, Liu C, Li Z, Zhu J. Targeting non-coding RNA H19: A potential therapeutic approach in pulmonary diseases. Front Pharmacol 2022; 13:978151. [PMID: 36188624 PMCID: PMC9523668 DOI: 10.3389/fphar.2022.978151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNA is still one of the most popular fields in biology research. In recent years, people paid more attention to the roles of H19 in lung diseases, which expressed abnormally in various pathological process. Therefore, this review focus on the regulatory role of H19 in asthma, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), lung injury, pneumonia, lung cancer, etc. And the potential therapeutic agents and molecular treatments of H19 are collected. The aim is to demonstrate its underlying mechanism in pulmonary diseases and to guide the basic research targeting H19 into clinical drug translation.
Collapse
Affiliation(s)
- Jinghui Xie
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dengdi Sun
- The Key Laboratory of Intelligent Computing and Signal Processing (ICSP), Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, China
| | - Changan Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, Cheng SY. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022; 10:2031. [PMID: 36009578 PMCID: PMC9405925 DOI: 10.3390/biomedicines10082031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Marie Tiek
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
44
|
Cao J, Kuang D, Luo M, Wang S, Fu C. Targeting circNCLN/miR-291a-3p/TSLP signaling axis alleviates lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2022; 617:60-67. [PMID: 35679712 DOI: 10.1016/j.bbrc.2022.05.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease caused by the severe and acute response of the lungs to a variety of direct and indirect insults. Patients with ALI are currently treated mainly with respiratory support due to inadequate understanding of ALI progression. Alveolar epithelial cells produced thymic stromal lymphopoietin (TSLP) has been proved to worsen ALI by triggering airway inflammation. However, the regulation mechanism of TSLP expression remains unclear. In this study, we identified the crucial role played by circNCLN in lipopolysaccharide (LPS)-induced ALI. We demonstrated for the first time that miR-291a-3p could directly bind to the 3'UTR of TSLP and suppress TSLP expression in alveolar epithelial cells. Mechanistically, our data identified that circNCLN acts as a molecular sponge to antagonize miR-291a-3p and thereby maintaining the expression of TSLP in alveolar epithelial cells. Importantly, targeting circNCLN by its antisense oligonucleotide (ASO) markedly alleviated LPS-induced ALI. Therefore, our results suggested that circNCLN/miR-291a-3p/TSLP axis may be an important signaling in LPS-induced ALI and circNCLN inhibition may serve as a potential treatment of ALI.
Collapse
Affiliation(s)
- Jianwei Cao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Ming Luo
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Shanzhong Wang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Chunlai Fu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
45
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
46
|
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC, Kashyap VK. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes (Basel) 2022; 13:genes13071254. [PMID: 35886037 PMCID: PMC9317009 DOI: 10.3390/genes13071254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/06/2022] Open
Abstract
Cervical cancer (CC) is a preventable disease using proven interventions, specifically prophylactic vaccination, pervasive disease screening, and treatment, but it is still the most frequently diagnosed cancer in women worldwide. Patients with advanced or metastatic CC have a very dismal prognosis and current therapeutic options are very limited. Therefore, understanding the mechanism of metastasis and discovering new therapeutic targets are crucial. New sequencing tools have given a full visualization of the human transcriptome's composition. Non-coding RNAs (NcRNAs) perform various functions in transcriptional, translational, and post-translational processes through their interactions with proteins, RNA, and even DNA. It has been suggested that ncRNAs act as key regulators of a variety of biological processes, with their expression being tightly controlled under physiological settings. In recent years, and notably in the past decade, significant effort has been made to examine the role of ncRNAs in a variety of human diseases, including cancer. Therefore, shedding light on the functions of ncRNA will aid in our better understanding of CC. In this review, we summarize the emerging roles of ncRNAs in progression, metastasis, therapeutics, chemo-resistance, human papillomavirus (HPV) regulation, metabolic reprogramming, diagnosis, and as a prognostic biomarker of CC. We also discussed the role of ncRNA in the tumor microenvironment and tumor immunology, including cancer stem cells (CSCs) in CC. We also address contemporary technologies such as antisense oligonucleotides, CRISPR-Cas9, and exosomes, as well as their potential applications in targeting ncRNAs to manage CC.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, MI 53226, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| | - Anupam Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur 572107, Karnataka, India;
| | - Manish K. Sharma
- Department of Biotechnology, IP College, Bulandshahr 203001, Uttar Pradesh, India;
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| |
Collapse
|
47
|
Shen Q, Zhou H, Zhang M, Wu R, Wang L, Wang Y, Chen J. Super enhancer-LncRNA SENCR promoted cisplatin resistance and growth of NSCLC through upregulating FLI1. J Clin Lab Anal 2022; 36:e24460. [PMID: 35500152 PMCID: PMC9169188 DOI: 10.1002/jcla.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 01/21/2023] Open
Abstract
Background Super enhancer‐lncRNA smooth muscle and endothelial cell‐enriched migration/differentiation‐associated lncRNA (SENCR) were highly overexpressed in cisplatin‐resistant A549/DDP cells, while the mechanism was unclear. Methods SE‐lncRNA SENCR and FLI1 mRNA expression in A549/DDP cell, LAD tissues were detected. SENCR knockdown of A549/DDP cell and SENCR overexpression of cisplatin‐sensitive A549 cell were constructed. Experiments of cell‐confirmed function of SENCR and the correlation between SENCR and FLI1 were validated. Results The expression of SENCR and FLI1 mRNA in A549/DDP cell were both upregulated and mainly localized in the nucleus. Compared with DDP‐sensitive tissues with disease relief, SENCR expression was higher in DDP‐resistant tissues with disease progression from LAD. Knockdown of SENCR in A549/DDP reduced proliferation ability and cisplatin resistance, consistent with the decreased levels of proteins PCNA, MDMX, and P‐gp. Besides, whatever without cisplatin or with 2 μg/ml cisplatin, knockdown of SENCR reduced the migration, invasion, and colony formation abilities of A549/DDP cell and promoted apoptosis. However, when SENCR was overexpressed in A549 cell, all above results were reversed. Mechanistically, FLI1 expression was reduced after knocking down SENCR, while overexpressing SENCR increased FLI1 expression. Conclusion SE‐LncRNA SENCR was upregulated in A549/DDP, which could promote cisplatin resistance and growth of NSCLC cell through upregulating FLI1 expression.
Collapse
Affiliation(s)
- Qiang Shen
- First People's Hospital of Linping District, Hangzhou, China
| | - Huixin Zhou
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Ruihao Wu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Zhejiang, China
| | - Liangxing Wang
- First People's Hospital of Linping District, Hangzhou, China
| | - Yumin Wang
- Department of Respiratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Zhang YN, Hou X, Piao J, Yuan W, Zhou BN, Zhao X, Hao Z, Zhuang Y, Xu L, Dong Y, Liu D. Delivery and Controllable Release of Anti-Sense DNA Based on Frame-Guided Assembly Strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Li H, Ho LWC, Lee LKC, Liu S, Chan CKW, Tian XY, Choi CHJ. Intranuclear Delivery of DNA Nanostructures via Cellular Mechanotransduction. NANO LETTERS 2022; 22:3400-3409. [PMID: 35436127 DOI: 10.1021/acs.nanolett.2c00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA nanostructures are attractive gene carriers for nanomedicine applications, yet their delivery to the nucleus remains inefficient. We present the application of extracellular mechanical stimuli to activate cellular mechanotransduction for boosting the intranuclear delivery of DNA nanostructures. Treating mammalian cells with polythymidine-rich spherical nucleic acids (poly(T) SNAs) under gentle compression by a single coverslip leads to up to ∼50% nuclear accumulation without severe endosomal entrapment, cytotoxicity, or long-term membrane damage; no chemical modification or transfection reagent is needed. Gentle compression activates Rho-ROCK mechanotransduction and causes nuclear translocation of YAP. Joint compression and treatment with poly(T) oligonucleotides upregulate genes linked to myosin, actin filament, and nuclear import. In turn, Rho-ROCK, myosin, and importin mediate the nuclear entry of poly(T) SNAs. Treatment of endothelioma cells with poly(T) SNAs bearing antisense oligonucleotides under compression inhibits an intranuclear oncogene. Our data should inspire the marriage of DNA nanotechnology and cellular biomechanics for intranuclear applications.
Collapse
|
50
|
Non-coding RNAs in ferroptotic cancer cell death pathway: meet the new masters. Hum Cell 2022; 35:972-994. [PMID: 35415781 DOI: 10.1007/s13577-022-00699-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Despite the recent advances in cancer therapy, cancer chemoresistance looms large along with radioresistance, a major challenge in dire need of thorough and minute investigation. Not long ago, cancer cells were reported to have proven refractory to the ferroptotic cell death, a newly discovered form of regulated cell death (RCD), conspicuous enough to draw attention from scholars in terms of targeting ferroptosis as a prospective therapeutic strategy. However, our knowledge concerning the underlying molecular mechanisms through which cancer cells gain immunity against ferroptosis is still in its infancy. Of late, the implication of non-coding RNAs (ncRNAs), including circular RNAs (circRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) in ferroptosis has been disclosed. Nevertheless, precisely explaining the molecular mechanisms behind the contribution of ncRNAs to cancer radio/chemotherapy resistance remains a challenge, requiring further clarification. In this review, we have presented the latest available information on the ways and means of regulating ferroptosis by ncRNAs. Moreover, we have provided important insights about targeting ncRNAs implicated in ferroptosis with the hope of opening up new horizons for overcoming cancer treatment modalities. Though a long path awaits until we make this ambitious dream come true, recent progress in gene therapy, including gene-editing technology will aid us to be optimistic that ncRNAs-based ferroptosis targeting would soon be on stream as a novel therapeutic strategy for treating cancer.
Collapse
|