1
|
Ji MJ, Zhao WL, Li M, Chen CF. Circularly polarized luminescence with high dissymmetry factors for achiral organic molecules in solutions. Nat Commun 2025; 16:2940. [PMID: 40133332 PMCID: PMC11937319 DOI: 10.1038/s41467-025-58355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Circularly polarized luminescence (CPL) in solution offers several advantages. However, it remains challenging for organic molecules to achieve circularly polarized luminescence with high dissymmetry factor (glum) in solution. Herein, a general strategy is developed by placing chiral nematic liquid crystals (N*-LCs) behind the solution of achiral organic molecules. The selective reflection-transmission mechanism of solution-N*-LC composite system enables the generation of full-color and white circularly polarized light with |glum| even reaching 2.0. This strategy demonstrates versatility, being applicable to both aqueous and organic solutions, and effectively achieving the circularly polarized luminescence of multiple molecules with high glum values. Additionally, CPL switching and logic gate applications are successfully realized by leveraging the selective reflection-transmission mechanism of N*-LCs and the reversible acid-base responsiveness of the solution systems. This work provides a general and robust strategy for achiral organic molecules to achieve circularly polarized luminescence with high |glum| values in solutions.
Collapse
Affiliation(s)
- Ming-Jun Ji
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
Zhang W, Li Y, Zhang G, Yang X, Chang X, Xing G, Dong H, Wang J, Wang D, Mai Z, Jiang X. Advances in Host-Free White Organic Light-Emitting Diodes Utilizing Thermally Activated Delayed Fluorescence: A Comprehensive Review. MICROMACHINES 2024; 15:703. [PMID: 38930673 PMCID: PMC11205739 DOI: 10.3390/mi15060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The ever-growing prominence and widespread acceptance of organic light-emitting diodes (OLEDs), particularly those employing thermally activated delayed fluorescence (TADF), have firmly established them as formidable contenders in the field of lighting technology. TADF enables achieving a 100% utilization rate and efficient luminescence through reverse intersystem crossing (RISC). However, the effectiveness of TADF-OLEDs is influenced by their high current density and limited device lifetime, which result in a significant reduction in efficiency. This comprehensive review introduces the TADF mechanism and provides a detailed overview of recent advancements in the development of host-free white OLEDs (WOLEDs) utilizing TADF. This review specifically scrutinizes advancements from three distinct perspectives: TADF fluorescence, TADF phosphorescence and all-TADF materials in host-free WOLEDs. By presenting the latest research findings, this review contributes to the understanding of the current state of host-free WOLEDs, employing TADF and underscoring promising avenues for future investigations. It aims to serve as a valuable resource for newcomers seeking an entry point into the field as well as for established members of the WOLEDs community, offering them insightful perspectives on imminent advancements.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Yaxin Li
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Gang Zhang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Xiaotian Yang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China;
| | - Xi Chang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Guoliang Xing
- Jilin Special Equipment Inspection Center, Jilin Special Equipment Accident Investigation Service Center, No. 866 Huadan Street, Longtan District, Jilin 132013, China;
| | - He Dong
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Jin Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Dandan Wang
- Hubei Jiufengshan Laboratory, Wuhan 430206, China; (D.W.); (Z.M.)
| | - Zhihong Mai
- Hubei Jiufengshan Laboratory, Wuhan 430206, China; (D.W.); (Z.M.)
| | - Xin Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
4
|
Zhao W, Hu X, Kong F, Tang J, Yan D, Wang J, Liu Y, Sun Y, Sheng R, Chen P. Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers. MICROMACHINES 2024; 15:626. [PMID: 38793199 PMCID: PMC11123088 DOI: 10.3390/mi15050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
White organic light-emitting diodes (WOLEDs) hold vast prospects in the fields of next-generation displays and solid-state lighting. Ultrathin emitting layers (UEMLs) have become a research hotspot because of their unique advantage. On the basis of simplifying the device structure and preparation process, they can achieve electroluminescent performance comparable to that of doped devices. In this review, we first discuss the working principles and advantages of WOLEDs based on UEML architecture, which can achieve low cost and more flexibility by simplifying the device structure and preparation process. Subsequently, the successful applications of doping and non-doping technologies in fluorescent, phosphorescent, and hybrid WOLEDs combined with UEMLs are discussed, and the operation mechanisms of these WOLEDs are emphasized briefly. We firmly believe that this article will bring new hope for the development of UEML-based WOLEDs in the future.
Collapse
Affiliation(s)
- Wencheng Zhao
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Xiaolin Hu
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Fankang Kong
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Jihua Tang
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Duxv Yan
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Jintao Wang
- Institute of Information Engineering, Yantai Institute of Technology, Yantai 264005, China;
| | - Yuru Liu
- Institute of Engineering Training Center, Yantai University, Yantai 264005, China;
| | - Yuanping Sun
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Ren Sheng
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| | - Ping Chen
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (W.Z.); (X.H.); (F.K.); (J.T.); (D.Y.); (Y.S.)
| |
Collapse
|
5
|
Guo S, Jin X, Zhang D, Zhou H, Yu C, Huang J, Zhang Z, Su J. Exploring Efficient Dual-Phase Emissive Fluorophores with High Mobility by Integrating a Rigid Donor and Flexible Acceptor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10407-10416. [PMID: 38365193 DOI: 10.1021/acsami.3c18176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Developing luminogens with a high emission efficiency in both single-molecule and aggregate states, as well as high mobility, shows promise for advancing the iteration and update of organic optoelectronic materials. However, achieving a delicate balance between the plane configuration of luminophores and the strong exciton interactions of aggregates is a formidable task from the molecular design perspective. This dilemma was overcome by integrating a rigid donor and flexible acceptor to establish donor-acceptor (D-A) type emitters. The π-conjugate-extended donor ensures the substantial planarity of these molecules, allowing strong emission in solution with photoluminescence quantum yield values of 86% and 75%. Furthermore, the restricted molecular motion of the aggregation-induced emission moiety and the formation of J-aggregates reduce the quenching effect, leading to a high emissive efficiency of 85% and 91% in the aggregate state. The mildly distorted D-A geometry builds moderate electrostatic interaction, resulting in high mobility with μM,h of 7.12 × 10-5 and 3.27 × 10-4 cm2/V s. Additionally, an improved synthesized procedure for terminal E-configured acrylonitrile with metal-free and concise reaction conditions is presented. The successful application of the synthesized compounds in organic light-emitting diode devices demonstrates the practicability of the molecular design strategy with connecting a rigid donor and flexible acceptor.
Collapse
Affiliation(s)
- Shiyan Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Daheng Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Haitao Zhou
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Chao Yu
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Jinhai Huang
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Liu Z, Chen J, Chen L, Liu H, Yang D, Ma D, Tang BZ, Zhao Z. Simultaneously Realizing High Efficiency and High Color Rendering Index for Hybrid White Organic Light-Emitting Diodes by Ultra-Thin Design of Delayed Fluorescence Sensitized Phosphorescent Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305589. [PMID: 37828633 DOI: 10.1002/smll.202305589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Indexed: 10/14/2023]
Abstract
In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.
Collapse
Affiliation(s)
- Zhangshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
7
|
Li H, Ren H, Wang J, Liu D, Li J. Cyano Decoration of π-Bridge to Boost Photoluminescence and Electroluminescence Quantum Yields of Triazine/Carbazole Based Blue TADF Emitter. Chemistry 2024; 30:e202303169. [PMID: 37965803 DOI: 10.1002/chem.202303169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
In general, a large donor-acceptor dihedral angle is required to guarantee sufficient frontier molecular orbitals separation for thermally activated delayed fluorescence (TADF) emitters, which is intrinsically unfavorable for the radiative transition. We present a molecular design method favoring both reverse intersystem crossing (RISC) and radiative transitions even at a moderate D-A angle. A blue TADF emitter TrzBuCz-CN was designed with triazine/tert-butylcarbazole as donor/acceptor and cyano (CN) incorporated on the phenylene bridge. In comparison with the methyl decoration in similar way (TrzBuCz-Me), CN decoration reduced the D-A dihedral angle from 70° to 60°, which is intrinsically not favorable for sufficient FMO separation, but unexpectedly reduced the singlet and triplet energy gap (ΔEST ) and thus facilitated TADF feature by pulling down the lowest singlet state energy. While the reduced distorsion instead improved the HOMO-LUMO overlap and boosted the fluorescence quantum yield from 41 % to 94 %. The blue organic light-emitting diode of TrzBuCz-CN exhibited an external quantum efficiency of 13.7 % with emission peak at 466 nm, greatly superior to 6.0 % of TrzBuCz-Me. The result provides a feasible design strategy to facilitate both RISC and radiation processes by CN decoration of the linking bridge of TADF emitters.
Collapse
Affiliation(s)
- Huiting Li
- Key Laboratory of Natural Product Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials, Inner Mongolia Minzu University, West Huolinhe Street, Tongliao, 028000, China
- Frontiers Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Huicai Ren
- Yantai Sunera Limited Liability Company, Yantai Economic and Technological Development Zone, No. 7 Shaoxing Road, Yantai, China
| | - Jiahui Wang
- Frontiers Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Di Liu
- Frontiers Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jiuyan Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Economic and Technological Development Zone, 300 Changjiang Road, Yantai, China
| |
Collapse
|
8
|
Zhang YB, Li YN, Zhang CF, Liu JB, Li JR, Bian HD, Zhu LQ, Ou JZ, Cui LS, Liu Y. High-efficiency all fluorescence white OLEDs with high color rendering index by manipulating excitons in co-host recombination layers. NANOSCALE 2023; 15:14249-14256. [PMID: 37602367 DOI: 10.1039/d3nr02568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
All fluorescence white organic light-emitting diodes (WOLEDs) based on thermally activated delayed fluorescence (TADF) emitters are an attractive route to realize highly efficient and high color quality white light sources. However, harvesting triplet excitons in these devices remains a formidable challenge, particularly for WOLEDs involving conventional fluorescent emitters. Herein, we report a universal design strategy based on a co-host system and a cascaded exciton transfer configuration. The co-host system furnishes a broad and charge-balanced exciton generation zone, which simultaneously endows the devices with low efficiency roll-off and good color stability. A yellow TADF layer is put forward as an intermediate sensitizer layer between the blue TADF light-emitting layer (EML) and the red fluorescence EML, which not only constructs an efficient cascaded Förster energy transfer route but also blocks the triplet exciton loss channel through Dexter energy transfer. With the proposed design strategy, three-color all fluorescence WOLEDs reach a maximum external quantum efficiency (EQE) of 22.4% with a remarkable color rendering index (CRI) of 92 and CIE coordinates of (0.37, 0.40). Detailed optical simulation confirms the high exciton utilization efficiency. Finally, by introducing an efficient blue emitter 5Cz-TRZ, a maximum EQE of 30.1% is achieved with CIE coordinates of (0.42, 0.42) and a CRI of 84 at 1000 cd m-2. These outstanding results demonstrate the great potential of all fluorescence WOLEDs in solid-state lighting and display panels.
Collapse
Affiliation(s)
- Yuan-Bo Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Ya-Nan Li
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Chun-Fang Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Jia-Bo Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Jia-Rui Li
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Hao-Dong Bian
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Lian-Qing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Jian-Zhen Ou
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| |
Collapse
|
9
|
Raikwar MM, Kim SC, Sun J, Chu C, Lee JY. Highly Efficient Phosphorescent Organic Light-Emitting Diodes Using Benzo[4',5']imidazo[2',1':2,3]imidazo[4,5,1- jk]carbazole as a Rigid and Effective Electron Acceptor in Bipolar Host. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40809-40816. [PMID: 37584658 DOI: 10.1021/acsami.3c08099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A novel bipolar host architecture was investigated to improve the external quantum efficiency (EQE) of green phosphorescent organic light-emitting diodes (PhOLEDs). The host was developed by incorporating carbazole as a hole-transport unit and fused rigid benzo[4',5']imidazo[2',1':2,3]imidazo[4, 5, 1-jk]carbazole (BzICz) as a new electron transport unit. The primary goal of the BzICz-based host design was to achieve a high triplet energy and bipolar charge transport characteristics. The green PhOLEDs fabricated using the new BzICz and carbazole-based host demonstrated a high EQE of 26.6% due to their high triplet energy and good bipolar charge transporting characteristics.
Collapse
Affiliation(s)
- Manish Mannulal Raikwar
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Jinwon Sun
- Materials Research Team, Display Research Center, Samsung Display, Yongin, Gyeonggi 17102, Republic of Korea
| | - Changwoong Chu
- Materials Research Team, Display Research Center, Samsung Display, Yongin, Gyeonggi 17102, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
10
|
Mahmoudi M, Urbonas E, Volyniuk D, Gudeika D, Dabrovolskas K, Simokaitiene J, Dabuliene A, Keruckiene R, Leitonas K, Guzauskas M, Skhirtladze L, Stanitska M, Grazulevicius JV. Indolocarbazoles with Sterically Unrestricted Electron-Accepting Anchors Showcasing Aggregation-Induced Thermally Activated Delayed Mechanoluminescence for Host-Free Organic Light-Emitting Diodes. Molecules 2023; 28:5999. [PMID: 37630259 PMCID: PMC10457976 DOI: 10.3390/molecules28165999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the effects of sterically nonrestricted electron-accepting substituents of three isomeric indolocarbazole derivatives on their aggregation-induced emission enhancement, mechanochromic luminescence and thermally activated delayed fluorescence. The compounds are potentially efficient emitters for host-free organic light-emitting diodes. The films of indolocarbazole derivatives exhibit emissions with wavelengths of fluorescence intensity maxima from 483 to 500 nm and photoluminescence quantum yields from 31 to 58%. The ionization potentials of the solid samples, measured by photoelectron emission spectrometry, are in the narrow range of 5.78-5.99 eV. The electron affinities of the solid samples are in the range of 2.99-3.19 eV. The layers of the derivatives show diverse charge-transporting properties with maximum hole mobility reaching 10-4 cm2/Vs at high electric fields. An organic light-emitting diode with a light-emitting layer of neat compound shows a turn-on voltage of 4.1 V, a maximum brightness of 24,800 cd/m2, a maximum current efficiency of 12.5 cd/A and an external quantum efficiency of ca. 4.8%. When the compounds are used as hosts, green electroluminescent devices with an external quantum efficiency of ca. 11% are obtained. The linking topology of the isomeric derivatives of indolo[2,3-a]carbazole and indolo[3,2-b]carbazole and the electron-accepting anchors influences their properties differently, such as aggregation-induced emission enhancement, mechanochromic luminescence, thermally activated delayed fluorescence, charge-transporting, and electroluminescent properties. The derivative indolo[3,2-b]carbazole displays good light-emitting properties, while the derivatives of indolo[2,3-a]carbazole show good hosting properties, which make them useful for application in electroluminescent devices.
Collapse
Affiliation(s)
| | | | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Barsausko g. 59, 51423 Kaunas, Lithuania (K.D.); (J.S.)
| | | | | | | | | | | | | | | | | | | | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Barsausko g. 59, 51423 Kaunas, Lithuania (K.D.); (J.S.)
| |
Collapse
|
11
|
Skhirtladze L, Bezvikonnyi O, Keruckienė R, Dvylys L, Mahmoudi M, Labanauskas L, Ariffin A, Grazulevicius JV. Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1294. [PMID: 36770299 PMCID: PMC9919726 DOI: 10.3390/ma16031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Two compounds based on pyridazine as the acceptor core and 9,9-dimethyl-9,10-dihydroacridine or phenoxazine donor moieties were designed and synthesized by Buchwald-Hartwig cross-coupling reaction. The electronic, photophysical, and electrochemical properties of the compounds were studied by ultraviolet-visible spectroscopy (UV-vis), photoluminescence spectrometry, differential scanning calorimetry, thermogravimetric analysis, and cyclic voltammetry. The compounds are characterized by high thermal stabilities. Their 5% weight loss temperatures are 314 and 336 °C. Complete weight loss of both pyridazine-based compounds was detected by TGA, indicating sublimation. The derivative of pyridazine and 9,9-dimethyl-9,10-dihydroacridine is capable of glass formation. Its glass transition temperature is 80 °C. The geometries and electronic characteristics of the compounds were substantiated using density functional theory (DFT). The compounds exhibited emission from the intramolecular charge transfer state manifested by positive solvatochromism. The emission in the range of 534-609 nm of the toluene solutions of the compounds is thermally activated delayed fluorescence with lifetimes of 93 and 143 ns, respectively.
Collapse
Affiliation(s)
- Levani Skhirtladze
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| | - Oleksandr Bezvikonnyi
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
- Department of Physics, Faculty of Mathematics and Natural Science, Kaunas University of Technology, LT-51369 Kaunas, Lithuania
| | - Rasa Keruckienė
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| | - Lukas Dvylys
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| | - Malek Mahmoudi
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| | - Linas Labanauskas
- Center for Physical Sciences & Technology, Department of Organic Chemistry, LT-10257 Vilnius, Lithuania
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Juozas V. Grazulevicius
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania
| |
Collapse
|
12
|
All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W ‒1 and small roll-offs. Nat Commun 2022; 13:5154. [PMID: 36056014 PMCID: PMC9440051 DOI: 10.1038/s41467-022-32967-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Improving power efficiency (PE) and reducing roll-off are of significant importance for the commercialization of white organic light-emitting diodes (WOLEDs) in consideration of energy conservation. Herein, record-beating PE of 130.7 lm W−1 and outstanding external quantum efficiency (EQE) of 31.1% are achieved in all-fluorescence two-color WOLEDs based on a simple sandwich configuration of emitting layer consisting of sky-blue and orange delayed fluorescence materials. By introducing a red fluorescence dopant, all-fluorescence three-color WOLEDs with high color rendering index are constructed based on an interlayer sensitization configuration, furnishing ultrahigh PE of 110.7 lm W−1 and EQE of 30.8%. More importantly, both two-color and three-color WOLEDs maintain excellent PEs at operating luminance with smaller roll-offs than the reported state-of-the-art WOLEDs, and further device optimization realizes outstanding comprehensive performances of low driving voltages, large luminance, high PEs and long operational lifetimes. The underlying mechanisms of the impressive device performances are elucidated by host-tuning effect and electron-trapping effect, providing useful guidance for the development of energy-conserving all-fluorescence WOLEDs. High power efficiency and low roll-off values are essential to the commercialization of white organic light-emitting diodes. Here, the authors construct all-fluorescence devices with an orange emitting layer sandwiched between two sky-blue emitting layers, achieving figure-of-merit of 130.7 lm/W.
Collapse
|
13
|
Wei Z, Lin S, Zuo T, Li Q, Jiang S, Qi F, Yang M, Gu J, Meng L, Lu CZ. Thermally activated delayed fluorescence materials with aggregation-induced emission properties: a QM/MM study. Phys Chem Chem Phys 2021; 23:25789-25796. [PMID: 34766607 DOI: 10.1039/d1cp04190h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic molecules with thermally activated delayed fluorescence (TADF) and aggregation induced emission (AIE) properties have attracted increasing research interest due to their great potential applications in organic light emitting diodes (OLEDs), especially for those with multicolor mechanochromic luminescence (MCL) features. Theoretical research on the luminescence characteristics of organic TADF emitters based on the aggregation states is highly desired to quantify the relationship between the TADF properties and aggregation states. In this work, we study the 4,4'-(6-(9,9-dimethylacridine-10(9H)-yl)quinoline-2,3-dibenzonitrile (DMAC-CNQ) emitter with TADF and AIE properties, and calculate the photophysical properties in gas, solid and amorphous states by using the quantum mechanics and molecular mechanics (QM/MM) method. Our simulations demonstrate that the aggregation states enhance obviously the reverse intersystem crossing rates and transition dipole moments of the DMAC-CNQ emitter, and suppress the non-radiative rates from the lowest excited singlet state (S1) to ground state (S0). Specifically, the molecular stacking of DMAC-CNQ in solid phases can mainly restrict the geometric torsion of the DMAC moiety for decreasing non-radiative decay rates, and the torsion of the CNQ moiety for increasing the reverse intersystem crossing rates. As a result, the calculated fluorescence efficiencies of the DMAC-CNQ emitter in the crystal and amorphous states are 67% and 26% respectively, and in good agreement with the experimental results.
Collapse
Affiliation(s)
- Zhuangzhuang Wei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shiyun Lin
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Tao Zuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Qikai Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shanshan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Fangfang Qi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Jin R, Xin J. Rational Design of π-Conjugated Tricoordinated Organoboron Derivatives With Thermally Activated Delayed Fluorescent Properties for Application in Organic Light-Emitting Diodes. Front Chem 2020; 8:577834. [PMID: 33195067 PMCID: PMC7554541 DOI: 10.3389/fchem.2020.577834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
A series of donor–acceptor (D–A) tricoordinated organoboron derivatives (1–10) have been systematically investigated for thermally activated delayed fluorescent (TADF)-based organic light-emitting diode (OLED) materials. The calculated results show that the designed molecules exhibit small singlet-triplet energy gap (ΔEST) values. Density functional theory (DFT) analysis indicated that the designed molecules display an efficient separation between donor and acceptor fragments because of a small overlap between donor and acceptor fragments on HOMOs and LUMOs. Furthermore, the delayed fluorescence emission color can be tuned effectively by introduction of different polycyclic aromatic fragments in parent molecule 1. The calculated results show that molecules 2, 3, and 4 possess more significant Stokes shifts and red emission with small ΔEST values. Nevertheless, other molecules exhibit green (1, 7, and 8), light green (6 and 10), and blue (5 and 9) emissions. Meanwhile, they are potential ambipolar charge transport materials except that 4 and 10 can serve as electron and hole transport materials only, respectively. Therefore, we proposed a rational way for the design of efficient TADF materials as well as charge transport materials for OLEDs simultaneously.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
- *Correspondence: Ruifa Jin
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
| |
Collapse
|
15
|
Wang Q, Lucas F, Quinton C, Qu YK, Rault-Berthelot J, Jeannin O, Yang SY, Kong FC, Kumar S, Liao LS, Poriel C, Jiang ZQ. Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes. Chem Sci 2020; 11:4887-4894. [PMID: 34122944 PMCID: PMC8159222 DOI: 10.1039/d0sc01238f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the field of phosphorescent organic light-emitting diodes (PhOLEDs), designing high-efficiency universal host materials for red, green and blue (RGB) phosphors has been quite a challenge. To date, most of the high-efficiency universal hosts reported incorporate heteroatoms, which have a crucial role in the device performance. However, the introduction of different kinds of heterocycles increases the design complexity and cost of the target material and also creates potential instability in the device performance. In this work, we show that pure aromatic hydrocarbon hosts designed with the 9,9′-spirobifluorene scaffold are high-efficiency and versatile hosts for PhOLEDs. With external quantum efficiencies of 27.3%, 26.0% and 27.1% for RGB PhOLEDs respectively, this work not only reports the first examples of high-efficiency pure hydrocarbon materials used as hosts in RGB PhOLEDs but also the highest performance reported to date for a universal host (including heteroatom-based hosts). This work shows that the PHC design strategy is promising for the future development of the OLED industry as a high-performance and low-cost option. In this work, we propose pure hydrocarbon materials as universal hosts for high-efficiency red, green and blue phosphorescent organic light-emitting diodes.![]()
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Fabien Lucas
- Univ. Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - Yang-Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | | | | | - Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Fan-Cheng Kong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Sarvendra Kumar
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Cyril Poriel
- Univ. Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
16
|
Ding D, Wang Z, Li C, Zhang J, Duan C, Wei Y, Xu H. Highly Efficient and Color-Stable Thermally Activated Delayed Fluorescence White Light-Emitting Diodes Featured with Single-Doped Single Emissive Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906950. [PMID: 31990429 DOI: 10.1002/adma.201906950] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Indexed: 05/15/2023]
Abstract
Despite their merits of environmental friendliness, low cost, and large-scale production, thermally activated delayed fluorescence (TADF) based white organic light-emitting diodes (WOLEDs) for daily lighting applications still face the formidable challenges of structural simplification and controllable exciton allocation. Here, the state-of-the-art full-TADF WOLEDs with features of the single-doped single emissive layers (EMLs) and ultrasimple trilayer structure are demonstrated. The EMLs are binary systems as yellow TADF emitter (4CzTPNBu) doped blue TADF matrix (ptBCzPO2 TPTZ) with the large steric hindrance and mismatched frontier molecular orbital energy levels to effectively restrain excessive blue-to-yellow triplet exciton transfer and host-dopant interaction induced triplet quenching. Simultaneously, Förster resonance energy transfer is utilized to optimize exciton allocation for the balance of blue and yellow emissions, giving rise to the photoluminescence quantum yield beyond 90%. Consequently, these single-doped EMLs endow their cool white, pure white, and warm white diodes with the high-quality and ultrastable white light and the 100% exciton utilization efficiencies through the extremely simple structures, making them competent for the diverse daily lighting applications.
Collapse
Affiliation(s)
- Dongxue Ding
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Zicheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chenyu Li
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Ying Wei
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
17
|
Li X, Li J, Liu D, Li D, Dong R. A donor design strategy for triazine-carbazole blue thermally activated delayed fluorescence materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj00905a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing the delayed emission proportion by incorporating bulky substituent at the 1-site of carbazole donors is proved to be effective and practical strategy to improve the EL performance of cyaphenine-carbazole type blue TADF emitters.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Fine Chemicals
- College of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jiuyan Li
- State Key Laboratory of Fine Chemicals
- College of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Di Liu
- State Key Laboratory of Fine Chemicals
- College of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Deli Li
- State Key Laboratory of Fine Chemicals
- College of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Ruizhi Dong
- State Key Laboratory of Fine Chemicals
- College of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
18
|
Min H, Park IS, Yasuda T. Dipolar and Quadrupolar Luminophores Based on 1,8‐Dimethylcarbazole−Triazine Conjugates for High‐Efficiency Blue Thermally Activated Delayed Fluorescence OLEDs. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hyukgi Min
- INAMORI Frontier Research Center (IFRC)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - In Seob Park
- INAMORI Frontier Research Center (IFRC)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
19
|
Liu J, Zhou K, Wang D, Deng C, Duan K, Ai Q, Zhang Q. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate. Front Chem 2019; 7:312. [PMID: 31165054 PMCID: PMC6536661 DOI: 10.3389/fchem.2019.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023] Open
Abstract
Metal-free thermally activated delayed fluorescence (TADF) emitters have emerged as promising candidate materials for highly efficient and low-cost organic light-emitting diodes (OLEDs). Here, a novel acceptor 2-cyanopyrazine is selected for the construction of blue TADF molecules via computer-assisted molecular design. Both theoretical prediction and experimental photophysical data indicate a small S1-T1 energy gap (ΔEST) and a relative large fluorescence rate (kF) in an o-phenylene-bridged 2-cyanopyrazine/3,6-di-tert-butylcarbazole compound (TCzPZCN). The kF value of 3.7 × 107 s−1 observed in a TCzPZCN doped film is among the highest in the TADF emitters with a ΔEST smaller than 0.1 eV. Blue TADF emission is observed in a TCzPZCN doped film with a short TADF lifetime of 1.9 μs. The OLEDs using TCzPZCN as emitter exhibit a maximum external quantum efficiency (EQE) of 7.6% with low-efficiency roll-off. A sky-blue device containing a derivative of TCzPZCN achieves an improved EQE maximum of 12.2% by suppressing the non-radiative decay at T1.
Collapse
Affiliation(s)
- Junyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Keren Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qi Ai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|