1
|
Sohel A, Kovilakath MSN, Gogoi PJ, Ansari H, Phukan P, Bag S, John NS, Baksi A. Mechanistic Insights into the Stabilization of In Situ Formed γ-NiOOH Species on Ni 60Nb 40 Nanoglass for Effective Urea Electro-Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405160. [PMID: 39109948 DOI: 10.1002/smll.202405160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Indexed: 11/22/2024]
Abstract
The formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ-formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface-formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic Ni60Nb40 Nanoglass showing stability toward the γ-NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X-ray photoelectron spectroscopy in contrast with the β-NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ-NiOOH predominantly follows a direct UOR mechanism while β-NiOOH favors indirect UOR from time-dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec-1 and stability for prolonged electrolysis (≈38 mA cm-2 for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ-NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni-based UOR catalysts and sheds light on the UOR mechanism.
Collapse
Affiliation(s)
- Amir Sohel
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Palash J Gogoi
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasem Ansari
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Plabana Phukan
- Department of Industrial Chemistry, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Soumabha Bag
- Department of Industrial Chemistry, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Neena S John
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ananya Baksi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
2
|
Huang Y, Xu H, Wang Y, Xing Z, Fang R, Lai H, Qian M, Dong M, Carraro M, Skrydstrup T, Daasbjerg K, Xin Z. Hierarchical Superhydrophilic/Superaerophobic Ni 3S 2/VS 2 Nanorod-Based Bifunctional Electrocatalyst Supported on Nickel Foam for Overall Urea Electrolysis. Inorg Chem 2024; 63:19002-19010. [PMID: 39323084 DOI: 10.1021/acs.inorgchem.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The design and preparation of effective nonprecious metal-based catalysts for the urea oxidation reaction (UOR) coupled with the hydrogen evolution reaction (HER) are of great significance to solve both energy shortage and environmental pollution problems. In this study, a novel hierarchical superhydrophilic and superaerophobicity three-dimensional nanorod-like bifunctional catalyst with a heterostructure (Ni3S2/VS2) was prepared on nickel foam via a simple one-step hydrothermal method, serving as an excellent electrocatalyst for both UOR and HER. The formed heterostructure significantly alters the electronic structure, optimizing charge transfer and increasing the number of active sites, which enhances the electrocatalytic performance of Ni3S2/VS2. As a result, this catalyst requires an extremely low potential of 1.396 V at the current density of 100 mA cm-2 for UOR and only 164 mV overpotential at -10 mA cm-2 for HER. Notably, a constructed two-electrode electrolyzer system (Ni3S2/VS2∥Ni3S2/VS2) demonstrates extraordinary activity and long-term stability, achieving a current density of 10 mA cm-2 at a low cell voltage of 1.48 V, which is superior to majority of the reported catalysts. This work demonstrates that the formation of heterostructures can effectively enhance the catalytic activity of nanomaterials toward UOR and HER and provides a feasible strategy for fabricating highly efficient nonprecious metal overall urea electrocatalysts.
Collapse
Affiliation(s)
- Yuxing Huang
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Hui Xu
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yamei Wang
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Ziyan Xing
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Ruochao Fang
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Huihuang Lai
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Man Qian
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova and ITM-CNR, UOS of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej14, Aarhus C DK-8000, Denmark
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Zhuo Xin
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
3
|
Zheng W, Duan N, Yang Y, Wang P, Qu Y, Zong C, Chen Q. 4f-2p-3d Orbital Coupling in Ce-Ni 3S 2 Enhancing the Urea Oxidation Reaction. Inorg Chem 2024; 63:14602-14608. [PMID: 39037614 DOI: 10.1021/acs.inorgchem.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The electrocatalytic urea oxidation reaction (UOR) provides a promising alternative to the oxygen evolution reaction (OER) for various renewable energy-related systems owing to its lower thermodynamic barriers. However, its optimization and commercial utilization were hampered due to a lack of mechanistic understanding. Here, we demonstrate a Ce-doped Ni3S2 catalyst supported on Ni foam (Ce-Ni3S2/NF) with superior activity toward UOR. The resultant Ce-Ni3S2/NF catalyst exhibits a lower Tafel slope of 20.3 mV dec-1, a higher current density of 100 mA cm-2 at 1.39 V versus RHE, and better durability than those for Ni3S2/NF. Based on in situ synchrotron radiation X-ray absorption spectroscopy, in situ Fourier transform infrared (FTIR), and in situ Raman spectroscopy, we observe the structural reconstruction of sulfide and identify the adsorbed intermediates during UOR. Density functional theory (DFT) calculations reveal that Ce can regulate the electronic structure of Ni through Ce(4f)-O(2p)-Ni(3d) orbital electronic coupling. The modulated Ni sites have weaker adsorption of carbonaceous intermediates, thus accelerating the UOR. This work provides a promising route for the design of high-activity UOR catalysts.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Naiyuan Duan
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang Yang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yafei Qu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cichang Zong
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qianwang Chen
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Liu H, Wang P, Qi X, Yin A, Wang Y, Ye Y, Luo J, Ren Z, Chen L, Yu S, Wei J. Insights into the Understanding of the Nickel-Based Pre-Catalyst Effect on Urea Oxidation Reaction Activity. Molecules 2024; 29:3321. [PMID: 39064899 PMCID: PMC11279396 DOI: 10.3390/molecules29143321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nickel-based catalysts are regarded as the most excellent urea oxidation reaction (UOR) catalysts in alkaline media. Whatever kind of nickel-based catalysts is utilized to catalyze UOR, it is widely believed that the in situ-formed Ni3+ moieties are the true active sites and the as-utilized nickel-based catalysts just serve as pre-catalysts. Digging the pre-catalyst effect on the activity of Ni3+ moieties helps to better design nickel-based catalysts. Herein, five different anions of OH-, CO32-, SiO32-, MoO42-, and WO42- were used to bond with Ni2+ to fabricate the pre-catalysts β-Ni(OH)2, Ni-CO3, Ni-SiO3, Ni-MoO4, and Ni-WO4. It is found that the true active sites of the five as-fabricated catalysts are the same in situ-formed Ni3+ moieties and the five as-fabricated catalysts demonstrate different UOR activity. Although the as-synthesized five catalysts just serve as the pre-catalysts, they determine the quantity of active sites and activity per active site, thus determining the catalytic activity of the catalysts. Among the five catalysts, the amorphous nickel tungstate exhibits the most superior activity per active site and can catalyze UOR to reach 158.10 mA·cm-2 at 1.6 V, exceeding the majority of catalysts. This work makes for a deeper understanding of the pre-catalyst effect on UOR activity and helps to better design nickel-based UOR catalysts.
Collapse
Affiliation(s)
- Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi Ren
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
5
|
Du C, Wang Z, Wang Y, Xu W, Huo Y, Sun H, Xu G. Barium-induced lattice expansion of Ni(OH) 2: enhancing catalytic urea oxidation activity for energy-saving H 2 production. Dalton Trans 2024; 53:9021-9027. [PMID: 38726731 DOI: 10.1039/d4dt00595c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Constructing an environmentally friendly and efficient electrocatalyst holds important and profound significance for energy-efficient hydrogen production. Replacing the oxygen evolution reaction with a lower potential urea oxidation reaction (UOR) may save energy in water electrolysis to produce hydrogen. The UOR is characterized by its high energy barrier, which results in slow reaction kinetics. In this study, we introduced Ba(OH)2 into Ni(OH)2 to form uniform nanosheets. Due to the introduction of Ba2+, the lattice expansion of Ni(OH)2 was triggered, leading to significant improvement in UOR activity. The catalyst achieved a current density of 100 mA cm-2 at only 1.316 V and exhibited remarkable stability over time. Density functional theory (DFT) calculations demonstrate that the Ba-Ni(OH)2 site significantly reduces the energy barrier for urea adsorption, intermediate steps, and desorption. This work provides a novel and environmentally friendly strategy for constructing energy-efficient and highly efficient catalysts through the doping of alkaline earth metals.
Collapse
Affiliation(s)
- Cengceng Du
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Zhenyu Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Wenjuan Xu
- Central R&D Institute, LONGi Green Energy Technology Co. Ltd., Xi'an, China.
| | - Yuqiu Huo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Hongbin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, China
- Laboratory of Engineering Thermochemistry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
6
|
Li L, Zhao HF, Gan MX, Zhang T, Li JN, Tao S, Peng J, Yu HB, Peng X. Amorphous conversion in pyrolytic symmetric trinuclear nickel clusters trigger trifunctional electrocatalysts. Chem Sci 2024; 15:7689-7697. [PMID: 38784754 PMCID: PMC11110135 DOI: 10.1039/d4sc01696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The pursuit of multifunctional electrocatalysts holds significant importance due to their comprehension of material chemistry. Amorphous materials are particularly appealing, yet they pose challenges in terms of rational design due to their structural disorder and thermal instability. Herein, we propose a strategy that entails the tandem (low-temperature/250-350 °C) pyrolysis of molecular clusters, enabling preservation of the local short-range structures of the precursor Schiff base nickel (Ni3[2(C21H24N3Ni1.5O6)]). The temperature-dependent residuals demonstrate exceptional activity and stability for at least three distinct electrocatalytic processes, including the oxygen evolution reaction (η10 = 197 mV), urea oxidation reaction (η10 = 1.339 V), and methanol oxidation reaction (1358 mA cm-2 at 0.56 V). Three distinct nickel atom motifs are discovered for three efficient electrocatalytic reactions (Ni1 and Ni1' are preferred for UOR/MOR, while Ni2 is preferred for OER). Our discoveries pave the way for the potential development of multifunctional electrocatalysts through disordered engineering in molecular clusters under tandem pyrolysis.
Collapse
Affiliation(s)
- Li Li
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui-Feng Zhao
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Mei-Xing Gan
- College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Tao Zhang
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jia-Ning Li
- College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Shi Tao
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology Changshu 215500 China
| | - Jing Peng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, School of Physic, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xu Peng
- College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| |
Collapse
|
7
|
Wang M, Ma W, Tan C, Qiu Z, Hu L, Lv X, Li Q, Dang J. Designing Efficient Non-Precious Metal Electrocatalysts for High-Performance Hydrogen Production: A Comprehensive Evaluation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306631. [PMID: 37988645 DOI: 10.1002/smll.202306631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Developing abundant Earth-element and high-efficient electrocatalysts for hydrogen production is crucial in effectively reducing the cost of green hydrogen production. Herein, a strategy by comprehensively considering the computational chemical indicators for H* adsorption/desorption and dehydrogenation kinetics to evaluate the hydrogen evolution performance of electrocatalysts is proposed. Guided by the proposed strategy, a series of catalysts are constructed through a dual transition metal doping strategy. Density Functional Theory (DFT) calculations and experimental chemistry demonstrate that cobalt-vanadium co-doped Ni3N is an exceptionally ideal catalyst for hydrogen production from electrolyzed alkaline water. Specifically, Co,V-Ni3N requires only 10 and 41 mV in alkaline electrolytes and alkaline seawater, respectively, to achieve a hydrogen evolution current density of 10 mA cm-2. Moreover, it can operate steadily at a large industrial current density of 500 mA cm-2 for extended periods. Importantly, this evaluation strategy is extended to single-metal-doped Ni3N and found that it still exhibits significant universality. This study not only presents an efficient non-precious metal-based electrocatalyst for water/seawater electrolysis but also provides a significant strategy for the design of high-performance catalysts of electrolyzed water.
Collapse
Affiliation(s)
- Meng Wang
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Wansen Ma
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Chaowen Tan
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Zeming Qiu
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Liwen Hu
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Xuewei Lv
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Qian Li
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jie Dang
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
8
|
Zhang J, Fang Y, Chen Y, Gao Y, Zhang X, Tang T, Tian B, Xiao H, Zhao M, Luo E, Hu T, Jia J, Wu H. Fe-induced crystalline-amorphous interface engineering of a NiMo-based heterostructure for enhanced water oxidation. Dalton Trans 2024; 53:619-627. [PMID: 38063673 DOI: 10.1039/d3dt02899b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Engineering heterostructures with a unique surface/interface structure is one of the effective strategies to develop highly active noble-metal-free catalysts for the oxygen evolution reaction (OER), because the surface/interface of catalysts is the main site for the OER. Herein, we design a coralloid NiMo(Fe)-20 catalyst with a crystalline-amorphous interface through combining a hydrothermal method and an Fe-induced surface reconfiguration strategy. That is, after Fe3+ impregnation treatment, the Ni(OH)2-NiMoO4 pre-catalyst with a complete crystalline surface is restructured into a trimetallic heterostructure with a crystalline-amorphous interface, which facilitates mass diffusion and charge transfer during the OER. As expected, self-supported NiMo(Fe)-20 exhibits excellent electrocatalytic water oxidation performance (overpotential: η-10 = 220 mV, η-100 = 239 mV) in the alkaline electrolyte, and its electrocatalytic performance hardly changes after maintaining the current density of 50 mA cm-2 for 10 hours. Furthermore, nickel foam (NF) supported commercial Pt/C and self-supported NiMo(Fe)-20 served as the cathode and anode of the Pt/C‖NiMo(Fe)-20 electrolyzer, respectively, which exhibits a lower cell voltage (E-100 = 1.53 V) than that of the Pt/C‖RuO2 electrolyzer (E-100 = 1.58 V) assembled with noble metal-based catalysts. The enhanced electrocatalytic performance of the NiMo(Fe)-20 catalyst is mainly attributed to the synergistic effect between the crystalline-amorphous interface and the coralloid trimetallic heterostructure.
Collapse
Affiliation(s)
- Junming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yingjian Fang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yao Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yang Gao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Xiaojie Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Tao Tang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Baoqiang Tian
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - He Xiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Man Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| |
Collapse
|
9
|
Zhang R, Chen N, Ning T, Zhang Y, Ling Y, Wang X, Zhu W, Zhu G. Branched Porous Ni 3N as a Catalytic Electrode for Selective Semidehydrogenation of Tetrahydroisoquinoline. Inorg Chem 2023; 62:17433-17443. [PMID: 37817640 DOI: 10.1021/acs.inorgchem.3c02809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Oxygen evolution in electrochemical water splitting needs a high overpotential that significantly reduces the energy efficiency. To explore an alternative anodic reaction to promote the production of hydrogen at the other end of water splitting and at the same time to get high-value-added chemicals is highly desirable. Herein, we demonstrate a novel branched porous Ni3N catalyst that is prepared for dehydrogenation of tetrahydroisoquinoline, which acts as an anodic oxidation reaction to promote H2 formation on the other end. Interestingly, the Ni3N catalytic electrode can induce effective semidehydrogenation with the selective formation of dihydroisoquinoline, which is difficult to be obtained by the usual direct synthesis route. The catalytic electrode exhibits a low potential of 1.55 V (vs RHE) for a catalytic current density of 61 mA cm-2 with dehydrogenation of tetrahydroisoquinoline and hydrogen production. In situ Raman spectra studies suggest that NiOOH is formed on the electrode surface, which mediates the oxidation semidehydrogenation process. This work also provides a strategy to fabricate nitride materials for applications beyond selective semidehydrogenation of tetrahydroisoquinoline.
Collapse
Affiliation(s)
- Rongxian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tianya Ning
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yizhou Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yizhou Ling
- School of Educational Sciences, Nanjing Normal University, Nanjing 210097, China
| | - Xi Wang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Wenjuan Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
10
|
Chen Z, Li X, Zhao J, Zhang S, Wang J, Zhang H, Zhang J, Dong Q, Zhang W, Hu W, Han X. Stabilizing Pt Single Atoms through Pt-Se Electron Bridges on Vacancy-enriched Nickel Selenide for Efficient Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202308686. [PMID: 37503553 DOI: 10.1002/anie.202308686] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Rational design of Pt single-atom catalysts provides a promising strategy to significantly improve the electrocatalytic activity for hydrogen evolution reaction. In this work, we presented a novel and efficient strategy for utilizing the low electron-density region of substrate to effectively trap and confine high electron-density metal atoms. The Pt single-atom catalyst supported by nickel selenide with rich vacancies was prepared via a hydrothermal-impregnation stepwise approach. Through experimental testation and DFT theoretical calculation, we confirm that Pt single atoms are well distributed at cationic vacancies of nickel selenide with loading amount of 3.2 wt. %. Moreover, the atomic Pt combined with the high electronegative Se to form Pt-Se bond as a "bridge" between single atoms and substrate for fast electron translation. This novel catalyst shows an extremely low overpotential of 45 mV at 10 mA cm-2 and an excellent stability over 120 h. Furthermore, the nickel selenide supported Pt SACs exhibits long-term stability for practical application, which maintains a high current density of 390 mA cm-2 over 80 h with a retention of 99 %. This work points a promising direction for designing single atoms catalysts with high catalytic activity and stability for advanced green energy conversion technologies.
Collapse
Affiliation(s)
- Zanyu Chen
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaopeng Li
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jun Zhao
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Shiyu Zhang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiajun Wang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Hong Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Jinfeng Zhang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Qiujiang Dong
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Wanxing Zhang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
11
|
Sinha N, Roy P. Nickel-Vanadium-Manganese Trimetallic Nitride as Energy Saving, Efficient Bifunctional Electrocatalyst for Alkaline Water Splitting via Urea Electrocatalysis. Inorg Chem 2023; 62:3349-3357. [PMID: 36461930 DOI: 10.1021/acs.inorgchem.2c03132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hydrogen production through pure water electrolysis is often found less economic as it requires high potential for water oxidation. The presence of urea in water involving effective urea oxidation can be considered as an effective strategy to produce hydrogen economically. Herein, we develop trimetallic nickel vanadium manganese nitride porous microspheres as an efficient bifunctional electrocatalyst for both urea oxidation reaction (UOR) as well as hydrogen evolution reaction (HER) mechanisms. The optimized NiVMn nitride exhibits eye-catching UOR activity along with HER activity that required only 1.36 and -0.253 V electrode potentials, respectively, to achieve a high current density of 100 mA cm-2. Combining its bifunctional activity in UOR and HER in a two-electrode system, an energy saving by 0.26 V potential compared to water electrolysis through water oxidation can be acquired to reach 50 mA cm-2 current density. The presence of manganese(II) has a significant influence in stabilizing high valence V(V) and Ni(II), offering large number of active sites, and during UOR, the effective electronic transitions are more between Mn → Ni rather than Mn → V, leading to excellent and stable UOR performance. Indeed, the electrocatalyst and the approach offering considerable energy saving phenomena are believed to make hydrogen production more economic and sustainable.
Collapse
Affiliation(s)
- Nibedita Sinha
- Materials Processing & Microsystems Laboratory, CSIR─Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur713209, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR─Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur713209, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
12
|
Bi-functional Ni3S2@MoS2 heterostructure with strong built-in field as highly-efficient electrolytic catalyst. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J Colloid Interface Sci 2023; 629:33-43. [DOI: 10.1016/j.jcis.2022.08.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
14
|
Li X, Xing W, Hu T, Luo K, Wang J, Tang W. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Song W, Zhu C, Safikhani A. Binder-free electrochemical deposition of 3-D superhydrophilic Cu-Fe-P nanostructure for improving urea oxidation and hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Batool M, Waseem A, Nadeem MA. Three-dimensional Ni 4O 4-cubane metal-organic framework as a high-performance electrocatalyst for urea oxidation. RSC Adv 2022; 12:28388-28394. [PMID: 36320492 PMCID: PMC9533408 DOI: 10.1039/d2ra05145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
The urea oxidation reaction (UOR) is considered to be a replacement of the sluggish anodic oxygen evolution reaction (OER) in overall water-splitting. A three-dimensional (3D) nickel-containing metal-organic framework {[NiII 2(pdaa)(OH)2(H2O)] n (MOF 1) (where, H2pdaa = 1,4-phenylene diacetic acid) was investigated as a robust and highly efficient electrocatalyst for the UOR. MOF 1 comprised 1D nickel(ii) chains crosslinked through Ni4O4 cubane units to form a 3D extended network. Dangling Ni⋯OH- groups were exposed in the MOF 1 structure, and could act as active catalytic centers for the UOR. MOF 1 required a very small onset potential of 1.18 V for urea oxidation in KOH (1 M) and urea (0.33 M) and had a low Tafel slope of 38.8 mV dec-1 (in contrast to 1.84 V for the oxygen evolution reaction). The overpotential required to attain a catalytic current density of 10 mA cm-2 was 1.24 V, which is much lower than that for many materials. Controlled potential electrolysis, powder X-ray diffraction, and X-ray photoelectron spectroscopy affirmed the physicochemical integrity of the catalyst over a 17 h test reaction. This work not only addresses the problem of urea contamination, it also helps to utilize it in an energy-conversion process.
Collapse
Affiliation(s)
- Mariam Batool
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Amir Waseem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Pakistan Academy of Sciences 3-Constitution Avenue Sector G-5/2 Islamabad Pakistan +92-51-9064-2062
| |
Collapse
|
17
|
NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosens Bioelectron 2022; 211:114380. [DOI: 10.1016/j.bios.2022.114380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
|
18
|
Fang K, Wu T, Hou B, Lin H. Green synthesis of Ni3S2 nanoparticles from a nontoxic sulfur source for urea electrolysis with high catalytic activity. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Sridhar V, Park H. Coordination Polymer Framework-Derived Ni-N-Doped Carbon Nanotubes for Electro-Oxidation of Urea. MATERIALS 2022; 15:ma15062048. [PMID: 35329497 PMCID: PMC8955885 DOI: 10.3390/ma15062048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical oxidation of urea (UOR) is critical in the removal of urea from wastewater and energy conservation and storage. Nickel-based catalysts are widely used for urea-ORR, but in all cases, the nickel must be hybridized with carbon materials to improve its conductivity. In this manuscript, we demonstrate the synthesis of a nickel-decorated carbon nanotube (Ni-NCNT) by simple microwave pyrolysis of Dabco (1,4-diazabicyclo[2.2.2]octane)-based coordination polymer frameworks (CPF). The surface structure, morphology and chemical composition of Ni-NCNT were characterized by Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy (EDS) analysis. SEM studies showed micrometer-long bamboo-shaped CNTs with nickel nanoparticles anchored to the walls and inside the nanotubes. A structural study by TEM and Raman spectra showed that carbon nanotubes are rich in defects due to the presence of nitrogen, and this was confirmed by energy-dispersive X-ray spectroscopy (EDS) maps. When applied as electrocatalysts in urea oxidation reactions (UOR), our newly developed Ni-NCNT shows excellent electrocatalytic activity and stability, making it a versatile catalyst in energy generation and mitigating water contamination.
Collapse
Affiliation(s)
- Vadahanambi Sridhar
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
| | - Hyun Park
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2730
| |
Collapse
|
20
|
Du Q, Khan MA, Zhu J, Zhao H, Fang J, Ye D, Zhang J. Interfacial Engineering of Two-Dimensional MoN/MoO2 Heterostructure Nanosheets as a Bifunctional Electrocatalyst for Overall Water Splitting. Chem Asian J 2022; 17:e202200035. [PMID: 35178883 DOI: 10.1002/asia.202200035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
It is still a challenge to realize the dream of hydrogen-based economy using a robust catalyst for overall water splitting. For the first time, we introduce two-dimensional MoN/MoO 2 heterostructure nanosheets using nickel foam as a substrate for water splitting. The heterojunction formation was achieved through the partial nitriding of Mo-based precursor to MoN in the annealing process under NH 3 environment. The heterogeneous interface between MoN and MoO 2 as active sites is supposed to improve the surface reaction kinetics and electronic conductivity. Therefore, excellent performance is achieved when MoN/MoO 2 is employed as both cathode and anode electrocatalysts, the corresponding cell voltages are 1.57 and 1.84 V at 10 and 100 mA cm -2 in 1 M KOH, respectively. The promising bifunctional catalytic performance of our catalyst opens up a new way for efficient electrochemical water splitting.
Collapse
Affiliation(s)
- Qixing Du
- Shanghai University, Department of chemistry, CHINA
| | | | - Jie Zhu
- Shanghai University, Department of chemistry, CHINA
| | - Hongbin Zhao
- Shanghai University, College of Sciences, 99 Shangda Road, 200444, Shanghai, CHINA
| | - Jianhui Fang
- Shanghai University, Department of chemistry, CHINA
| | - Daixin Ye
- Shanghai University, Department of chemistry, CHINA
| | - Jiujun Zhang
- Shanghai University, Department of chemistry, CANADA
| |
Collapse
|
21
|
Li J, Cui H, Du X, Zhang X. The controlled synthesis of nitrogen and iron co-doped Ni 3S 2@NiP 2 heterostructures for the oxygen evolution reaction and urea oxidation reaction. Dalton Trans 2022; 51:2444-2451. [PMID: 35048936 DOI: 10.1039/d1dt03933d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At present, global resources are nearly exhausted and environmental pollution is becoming more and more serious, so it is urgent to develop efficient catalysts for hydrogen production. Herein, nitrogen and iron co-doped Ni3S2 and NiP2 heterostructures with high efficiency oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performances were firstly successfully prepared on nickel foam by hydrothermal and high-temperature calcination methods. Benefiting from the hierarchical structure, the exposure of more active sites and the doping effect of N and Fe, the N-Fe-Ni3S2@NiP2/NF material showed excellent electrocatalytic activity for the OER and UOR. The N-Fe-Ni3S2@NiP2/NF material displays excellent catalytic OER performance; the overpotential is only 251 mV to drive 100 mA cm-2 current density, while for the UOR, the potential is only 1.353 V to drive 100 mA cm-2 current density, which is one of the best catalytic activities reported so far. It is worth noting that scanning electron microscopy showed that the surface of N-Fe-Ni3S2@NiP2/NF is rough and has some mesopores, which may have resulted in an increase of active sites during the electrocatalytic process. The N-Fe-Ni3S2@NiP2/NF electrode couple also has relatively long-term durability in alkaline solutions, maintaining a stable current density for 15 h at 1.35 V. The density functional theory (DFT) calculation shows that the in situ generated Fe doped nanooxides exhibit strong water adsorption energy, which may be one of the reasons for the good catalytic activity. Our work is conducive to the rational design of electrocatalysts for efficient hydrogen production from water splitting and wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Hongyi Cui
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
22
|
Zhang M, Zhou L, Du X, Huang X, Liu H, Wang Q, Guo L, Wang H. Rapid In-Situ Growth of Oxygen-defects Rich Fe(OH)3@Co(OH)2@NF Nanoarray as Efficient OER Electrocatalyst. CHEM LETT 2022. [DOI: 10.1246/cl.210814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengyuan Zhang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Lina Zhou
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xuena Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xianmin Huang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hui Liu
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Qingbo Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Long Guo
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hai Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| |
Collapse
|
23
|
Zhu J, Lv W, Yang Y, Huang L, Yu W, Wang X, Han Q, Dong X. Hexagonal NiMoO 4-MoS 2 nanosheet heterostructure as a bifunctional electrocatalyst for urea oxidation assisted overall water electrolysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hexagonal NiMoO4-MoS2 nanosheet heterostructure on nickel foam (NiMoO4-MoS2/NF) was synthesized by simple hydrothermal and annealing treatment.
Collapse
Affiliation(s)
- Jianmin Zhu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Wenyue Lv
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Licheng Huang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Xinlu Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Qi Han
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
24
|
Jiang K, Li K, Liu YQ, Lin S, Wang Z, Wang D, Ye Y. Nickel-cobalt nitride nanoneedle supported on nickel foam as an efficient electrocatalyst for hydrogen generation from ammonia electrolysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhang Y, Zhou B, Wei Z, Zhou W, Wang D, Tian J, Wang T, Zhao S, Liu J, Tao L, Wang S. Coupling Glucose-Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104791. [PMID: 34561909 DOI: 10.1002/adma.202104791] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Indexed: 05/28/2023]
Abstract
Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large-scale application of this process is restricted by the high electricity consumption due to the large potential gap (>1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose-assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 VRHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X-ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm-2 . Consequently, the electricity consumption for per cubic H2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low-cost, efficient production of high-purity H2 .
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bo Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Wang Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jing Tian
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Tehua Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
26
|
Yun WH, Das G, Kim B, Park BJ, Yoon HH, Yoon YS. Ni-Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis. Sci Rep 2021; 11:22003. [PMID: 34754002 PMCID: PMC8578333 DOI: 10.1038/s41598-021-01383-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
A free-standing catalyst electrode for the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) in a urea electrolysis cell was synthesized by electroplating a Ni-Fe alloy onto carbon felt, followed by phosphidation (P-NiFe@CF). The prepared P-NiFe@CF catalyst consisted of Ni5P4, NiP2, and FeP with 3D flower-like P-NiFe architecture on CF. P-NiFe@CF exhibited excellent electrocatalytic activity for the UOR (demanding only 1.39 V (vs. RHE) to achieve 200 mA cm-2), and for the HER with a low overpotential of 0.023 V (vs. RHE) at 10 mA cm-2, indicating its feasibility as a bifunctional catalyst electrode for urea electrolysis. A urea electrolysis cell with P-NiFe@CF as both the free-standing anode and cathode generated a current density of 10 mA cm-2 at a cell potential of 1.37 V (vs. RHE), which is considerably lower than that of water electrolysis, and also lower than previously reported values. The results indicate that the P-NiFe@CF catalyst electrodes can be used as free-standing bifunctional electrodes for urea electrolyzers.
Collapse
Affiliation(s)
- Woo Hyun Yun
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, 461-701, Republic of Korea
| | - Gautam Das
- Department of Polymer Science and Engineering, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, Korea
| | - Bohyeon Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, 461-701, Republic of Korea
| | - Bang Ju Park
- Department of Electronic Engineering, Gachon University, Seongnam, Gyeonggi-do, 461-701, Republic of Korea
| | - Hyon Hee Yoon
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, 461-701, Republic of Korea.
| | - Young Soo Yoon
- Department of Materials Science and Engineering, Gachon University, Seongnam, Gyeonggi-do, 461-701, Republic of Korea.
| |
Collapse
|
27
|
Dai Z, Du X, Wang Y, Han X, Zhang X. Promoting urea oxidation and water oxidation through interface construction on a CeO 2@CoFe 2O 4 heterostructure. Dalton Trans 2021; 50:12301-12307. [PMID: 34519756 DOI: 10.1039/d1dt01952j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spinel ferrites are considered practical and promising oxygen evolution reaction (OER) and urea oxidation reaction (UOR) electrocatalysts because of their advantages in the adsorption and activation of electrocatalytic substances. A CeO2 functional metal oxide was used to modify a spinel oxide in order to further improve the electrocatalytic performance of the spinel oxide. In this work, a CeO2@CoFe2O4/NF hybrid nanostructure was synthesized for the first time by typical hydrothermal and calcination methods. In an alkaline medium, CeO2@CoFe2O4/NF displays superior OER activity and needs an overpotential of 213 mV to deliver a current density of 100 mA cm-2, which makes it one of the most active catalysts reported so far. In addition, the as-prepared CeO2@CoFe2O4/NF material needs a potential of 1.40 V at the same current density in 1.0 M KOH with 0.5 M urea, which displays superior UOR activity. The CeO2@CoFe2O4/NF catalyst also displays good durability and the performance of the electrode is negligibly attenuated at a large current intensity of 125 mA cm-2. Experimental results demonstrate that the activity of the CeO2@CoFe2O4/NF catalyst is ascribed to the exposure of more active centers and a faster electron transfer rate. This work develops a novel method for exploiting Earth-abundant, robust and environmentally friendly OER and UOR electrocatalysts.
Collapse
Affiliation(s)
- Zhixin Dai
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Yanhong Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
28
|
Wang T, Wu H, Feng C, Ding Y, Mei H. Ni, N‐codoped NiMoO4 grown on 3D nickel foam as bifunctional electrocatalysts for hydrogen production in urea‐water electrolysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Li Y, Chen B, Zhang H, Gao J, Sun H, Habibi‐Yangjeh A, Wang C. Synergistic Coupling of NiTe Nanoarrays with FeOOH Nanosheets for Highly Efficient Oxygen Evolution Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yadong Li
- Key Laboratory of Nondestructive Testing Ministry of Education Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Baojin Chen
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province P. R. China
| | - Huaming Zhang
- Key Laboratory of Nondestructive Testing Ministry of Education Nanchang Hangkong University Nanchang 330063 P. R. China
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province P. R. China
| | - Jing Gao
- School of Optical and Electronic Information Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 P.R. China
| | - Huachuan Sun
- School of Optical and Electronic Information Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 P.R. China
| | - Aziz Habibi‐Yangjeh
- Department of Chemistry Faculty of Science University of Mohaghegh Ardabili P.O. Box 179 Ardabil Iran
| | - Chundong Wang
- School of Optical and Electronic Information Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 P.R. China
| |
Collapse
|
30
|
Hierarchical NiCr hydroxide nanospheres with tunable domain boundaries for highly efficient urea electro-oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Liu J, Wang Y, Liao Y, Wu C, Yan Y, Xie H, Chen Y. Heterostructured Ni 3S 2-Ni 3P/NF as a Bifunctional Catalyst for Overall Urea-Water Electrolysis for Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26948-26959. [PMID: 34078074 DOI: 10.1021/acsami.1c04325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urea oxidation reaction (UOR) has been proposed to replace the formidable oxygen evolution reaction (OER) to reduce the energy consumption for producing hydrogen from electrolysis of water owing to its much lower thermodynamic oxidation potential compared to that of the OER. Therefore, exploring a highly efficient and stable hydrogen evolution and urea electrooxidation bifunctional catalyst is the key to achieve economical and efficient hydrogen production. In this paper, we report a heterostructured sulfide/phosphide catalyst (Ni3S2-Ni3P/NF) synthesized via one-step thermal treatment of Ni(OH)2/NF, which allows the simultaneous occurrence of phosphorization and sulfuration. The obtained Ni3S2-Ni3P/NF catalyst shows a sheet structure with an average sheet thickness of ∼100 nm, and this sheet is composed of interconnected Ni3S2 and Ni3P nanoparticles (∼20 nm), between which there are a large number of accessible interfaces of Ni3S2-Ni3P. Thus, the Ni3S2-Ni3P/NF exhibits superior performance for both UOR and hydrogen evolution reaction (HER). For the overall urea-water electrolysis, to achieve current densities of 10 and 100 mA cm-2, cell voltage of only 1.43 and 1.65 V is required using this catalyst as both the anode and the cathode. Moreover, this catalyst also maintains fairly excellent stability after a long-term testing, indicating its potential for efficient and energy-saving hydrogen production. The theoretical calculation results show that the Ni atoms at the interface are the most efficient catalytically active site for the HER, and the free energy of hydrogen adsorption is closest to thermal neutrality, which is only 0.16 eV. A self-driven electron transfer at the interface, making the Ni3S2 sides become electron donating while Ni3P sides become electron withdrawing, may be the reason for the enhancement of the UOR activity. Therefore, this work shows an easy treatment for enhancing the catalytic activity of Ni-based materials to achieve high-efficiency urea-water electrolysis.
Collapse
Affiliation(s)
- Jinchao Liu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yigang Yan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang 310003, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
32
|
Li J, Li J, Gong M, Peng C, Wang H, Yang X. Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Top Catal 2021. [DOI: 10.1007/s11244-021-01453-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Zhang Q, Liu B, Li L, Ji Y, Wang C, Zhang L, Su Z. Maximized Schottky Effect: The Ultrafine V 2 O 3 /Ni Heterojunctions Repeatedly Arranging on Monolayer Nanosheets for Efficient and Stable Water-to-Hydrogen Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005769. [PMID: 33690957 DOI: 10.1002/smll.202005769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The Mott-Schottky heterojunction formed at the interface of ultrafine metallic Ni and semiconducting V2 O3 nanoparticles is constructed, and the heterojunctions are "knitted" into the tulle-like monolayer nanosheets on nickel foam (NF). The greatly reduced particle sizes of both Ni and V2 O3 on the Mott-Schottky heterojunction highly enhance the number of Schottky heterojunctions per unit area of the materials. Moreover, arranging the heterojunctions into the monolayer nanosheets makes the heterojunctions repeat and expose to the electrolyte sufficiently. The Schottky heterojunctions are like countless self-powered charge transfer workstations embedded in the tulle-like monolayer nanosheets, promoting maximum of the materials to participate into the electron transfer and become catalytic active sites. In addition, the tulle-like monolayer nanosheet structure can assist in pumping liquid phase electrolyte to the surface of catalysts, owing to the capillary force. The V2 O3 /Ni/NF Mott-Schottky catalyst exhibits excellent hydrogen evolution reaction (HER) performance with a low η10 of 54 mV and needs -107 mV to get the current density of -100 mA cm-2 . Furthermore, V2 O3 /Ni/NF Schottky electrocatalyst exhibits excellent urea oxidation reaction activity: 1.40, 1.51, and 1.61 V versus reversible hydrogen electrode (RHE) voltage are required to reach a current density of 100, 500, and 1000 mA cm-2 , respectively.
Collapse
Affiliation(s)
- Qi Zhang
- National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P. R. China
| | - Bingqiu Liu
- National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P. R. China
| | - Lu Li
- National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P. R. China
| | - Yue Ji
- National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P. R. China
| | - Chungang Wang
- National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P. R. China
| | - Lingyu Zhang
- National & Local United Engineering Laboratory for Power Battery, Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P. R. China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
34
|
Wu H, Feng C, Zhang L, Zhang J, Wilkinson DP. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00086-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Wang M, Ma W, Lv Z, Liu D, Jian K, Dang J. Co-Doped Ni 3N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for Efficient Water Splitting. J Phys Chem Lett 2021; 12:1581-1587. [PMID: 33539095 DOI: 10.1021/acs.jpclett.0c03804] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preparation of high-activity and earth-abundant bifunctional catalysts for efficient electrochemical water splitting are crucial and challenging. Herein, Co-doped Ni3N nanosheets loaded on nickel foam (Co-Ni3N) were synthesized. The as-prepared Co-Ni3N exhibits excellent catalytic activity toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline media. Density functional theory (DFT) calculation reveals that Co-Ni3N with redistribution of electrons not only can facilitate the HER kinetics but also can regulate intermediates adsorption energies for OER. Specifically, the Co-Ni3N exhibits high efficiency and stable catalytic activity, with an overpotential of only 30 and 270 mV at a current density of 10 mA cm-2 for the HER and OER in 1 M KOH, respectively. This work provides strong evidence to the merit of Co doping to improve the innate electrochemical performance in bifunctional catalysts, which might have a common impact in many similar metal-metal nitride electrocatalysts.
Collapse
Affiliation(s)
- Meng Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China
| | - Wansen Ma
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China
| | - Zepeng Lv
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China
| | - Dong Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China
| | - Kailiang Jian
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China
| | - Jie Dang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
36
|
Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y. Ni 2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. NANOSCALE 2021; 13:1759-1769. [PMID: 33432949 DOI: 10.1039/d0nr08025j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urea electrolysis is regarded as an effective method for addressing both energy and environment issues. Herein, we successfully synthesized Ni2P nanoflakes for catalyzing the urea oxidation reaction (UOR). Due to the higher electrical conductivity as well as the prevailing tendency in triggering the UOR via a direct electro-oxidation mechanism, Ni2P nanoflakes exhibit comparable UOR activity (1.33 V vs. RHE for onset-potential, and 95.47 mA·cm-2 at 1.6 V vs. RHE) to the most active state-of-the-art catalysts, rendering them an effective alternative to precious metals such as Pt and Rh. The accelerated proton-coupled electron transfer (PCET) process caused by PO43- facilitates the in situ generation of NiOOH; thus, the UOR process is initiated at a lower onset-potential on Ni2P nanoflakes than on β-Ni(OH)2 nanoflakes. The in situ generated NiOOH instead of the Ni2P phase in Ni2P nanoflakes functions as an active site during the UOR process, while both NiOOH and the Ni2P phase serve as active sites in the OER process. This work provides insights into the understanding of the UOR mechanism and opens a new avenue to design low-cost Ni-based phosphide UOR catalysts.
Collapse
Affiliation(s)
- Haipeng Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
37
|
Fei L, Sun H, Ran R, Zhou W, Shao Z. Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05565] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liangshuang Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hainan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- WA School of Mines, Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6845 Australia
| |
Collapse
|
38
|
Li Y, Dang Z, Gao P. High‐efficiency electrolysis of biomass and its derivatives: Advances in anodic oxidation reaction mechanism and transition metal‐based electrocatalysts. NANO SELECT 2021. [DOI: 10.1002/nano.202000227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ying Li
- School of Materials Sun Yat‐sen University Guangzhou China
| | - Zhiya Dang
- School of Materials Sun Yat‐sen University Guangzhou China
| | - Pingqi Gao
- School of Materials Sun Yat‐sen University Guangzhou China
| |
Collapse
|
39
|
Wang J, Zhao Z, Shen C, Liu H, Pang X, Gao M, Mu J, Cao F, Li G. Ni/NiO heterostructures encapsulated in oxygen-doped graphene as multifunctional electrocatalysts for the HER, UOR and HMF oxidation reaction. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02333g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A controlled scalable arc-discharge method was developed to produce metal/metal oxide nanoparticles encapsulated in graphene as excellent catalysts for multiple reactions, including HER, UOR, and the HMF oxidation reaction.
Collapse
Affiliation(s)
- Jianmin Wang
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Zhen Zhao
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Chen Shen
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Haopeng Liu
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Xueyong Pang
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Meiqi Gao
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Juan Mu
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Feng Cao
- Key Lab for Anisotropy and Texture of Materials (MoE)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Guoqing Li
- Department of Materials Science and Engineering
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
40
|
Xu H, Ye K, Zhu K, Gao Y, Yin J, Yan J, Wang G, Cao D. Hollow bimetallic selenide derived from a hierarchical MOF-based Prussian blue analogue for urea electrolysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00230a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PBA@MOF–Ni/Se with a nanocube structure grown on a flower-shaped MOF–Ni template exhibits better performance in urea electrolysis.
Collapse
Affiliation(s)
- Huizhu Xu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Yinyi Gao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Jinling Yin
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| |
Collapse
|
41
|
Jadhav RG, Das AK. Pulse electrodeposited, morphology controlled organic-inorganic nanohybrids as bifunctional electrocatalysts for urea oxidation. NANOSCALE 2020; 12:23596-23606. [PMID: 33210694 DOI: 10.1039/d0nr07236b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic nanohybrids with nanoscale architectures and electrocatalytic properties are emerging as a new branch of advanced functional materials. Herein, nanohybrid organic-inorganic nanosheets are grown on carbon paper via a pulse-electrochemical deposition technique. A benzo[2,1,3]selenadiazole-5-carbonyl protected dipeptide BSeFL (BSe = benzoselenadiazole; F = phenylalanine; and L = leucine) cross-linked with Ni2+ ions (Ni-BSeFL) and nickel hydroxide (Ni(OH)2) in a BSeFL/Ni(OH)2 electrode exhibits stable electrocatalytic activity toward urea oxidation. The cross-linked nanosheet morphology of nanohybrids was optimized by controlling the reduction potential during pulse electrodeposition. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid deposited at -1.0 V provides abundant active sites of Ni3+ with low charge transfer resistance (RCT) and high exchange current density (J0) at the electrocatalytic interface. The nanohybrids with Ni-BSeFL and Ni(OH)2 show low overpotential and superior stability for electrocatalytic urea electro-oxidation. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid based electrode requires a low potential of 1.30 V (vs. RHE) to acquire a current density of 10 mA cm-2 for the urea oxidation reaction (UOR) in urea containing alkaline solution which is lower than that for water oxidation in alkaline solution (1.49 V vs. RHE). The organic-inorganic nanohybrid BSeFL/Ni(OH)2 (-1.0 V) shows durability over 10 h for oxygen evolution and urea electro-oxidation, thereby confirming the BSeFL/Ni(OH)2 (-1.0 V) nanohybrid-based electrode as an efficient electrocatalyst.
Collapse
Affiliation(s)
- Rohit G Jadhav
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
42
|
|
43
|
Sai KNS, Tang Y, Dong L, Yu XY, Hong Z. N 2 plasma-activated NiO nanosheet arrays with enhanced water splitting performance. NANOTECHNOLOGY 2020; 31:455709. [PMID: 32707567 DOI: 10.1088/1361-6528/aba929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NiO is a promising electrocatalyst for electrochemical energy conversion due to its rich redox sites, low cost, and ease of synthesis. However, hindered by low electrical conductivity and limited electrocatalytic active sites, bare NiO usually exhibits poor electrochemical performance towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we develop an N2 plasma activation approach to simultaneously improve both HER and OER activity of NiO by constructing heterostructured Ni/Ni3N/NiO nanosheet arrays on Ni foam. The optimized N2 plasma-activated NiO nanosheet arrays for HER and OER (denoted as P-NiO-HER and P-NiO-OER) only need an overpotential of 46 and 294 mV, respectively, to achieve 10 mA cm-2. Moreover, for overall water splitting, the assembled electrolysis cell with P-NiO-HER and P-NiO-OER as the cathode and anode, respectively, only requires a small voltage of 1.57 V to deliver 10 mA cm-2. Remarkably, the plasma-activated NiO nanosheet arrays exhibit excellent stability for up to 50 h for HER, OER, and full water electrolysis. The strategy developed here to activate the electrocatalytic performance of metal oxides opens a new door for water splitting.
Collapse
Affiliation(s)
- K Naga Sathya Sai
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuanhao Tang
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lin Dong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Xin-Yao Yu
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Zhanglian Hong
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
44
|
Lv C, Wang X, Gao L, Wang A, Wang S, Wang R, Ning X, Li Y, Boukhvalov DW, Huang Z, Zhang C. Triple Functions of Ni(OH)2 on the Surface of WN Nanowires Remarkably Promoting Electrocatalytic Activity in Full Water Splitting. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02891] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Cuncai Lv
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
- School of Chemical Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, P. R. China
| | - Xiaobo Wang
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Linjie Gao
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shufang Wang
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Ruining Wang
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Xingkun Ning
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Yaguang Li
- Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Institute of Life Science and Green Development, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Danil W. Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, P. R. China
| | - Chi Zhang
- School of Chemical Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
45
|
Qian G, Chen J, Luo L, Zhang H, Chen W, Gao Z, Yin S, Tsiakaras P. Novel Bifunctional V 2O 3 Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38061-38069. [PMID: 32846500 DOI: 10.1021/acsami.0c09319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance bifunctional transition metal catalysts would be significantly beneficial for electrocatalytic oxidation of urea-rich wastewater. Herein, we synthesize a V2O3 nanosheet anchored N-doped-carbon encapsulated Ni heterostructure (Ni@C-V2O3/NF) for the reactions of urea oxidation (UOR) and hydrogen evolution (HER). Electrochemical results indicate that it exhibits small potentials of 1.32, 1.39, and 1.43 V for UOR and low overpotentials of 36, 254, and 355 mV for HER at ±10, ± 500 and ±1000 mA cm-2, respectively. It can work at 100 mA cm-2 for over 72 h as cathode and anode electrode without obvious attenuation, suggesting an outstanding durability. The reason for this behavior could be ascribed to the N-doped-carbon coating structure, the synergetic effects between Ni and V2O3, and the nano/micro nanosheets architecture self-supported on nickel foam. This work could provide a promising, inexpensive, and green method for the degradation of urea-rich wastewater and hydrogen production.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Hao Zhang
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Zhejiang Gao
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Panagiotis Tsiakaras
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, Russian Academy of Sciences, Yekaterinburg 620990, Russia
- Laboratory of Materials and Devices for Clean Energy, Department of Technology of Electrochemical Processes, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russia
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Street, Pedion Areos 38834, Greece
| |
Collapse
|
46
|
Jiang Y, Gao S, Liu J, Xu G, Jia Q, Chen F, Song X. Ti-Mesh supported porous CoS 2 nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis. NANOSCALE 2020; 12:11573-11581. [PMID: 32432289 DOI: 10.1039/d0nr02058c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The urea oxidation reaction (UOR) is an ideal alternative to the oxygen evolution reaction (OER) towards energy efficient hydrogen production. However developing Earth-abundant electrocatalysts for urea oxidation and hydrogen generation still remains a big challenge. Herein, porous CoS2 nanosheet self-interconnected networks with high oxidation states located on a Ti-mesh (P-CoS2/Ti) are synthesized and can act as a high activity catalyst for both the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). In this literature, we report a very interesting phenomenon that cobalt hydroxide with different chemical compositions and crystal structures can be synthesized by adjusting the concentration of NaOH during the etching process. Moreover, porous CoS2 nanosheets with different crystallite sizes can be synthesized by adjusting the sulfuration temperature. P-CoS2/Ti presents outstanding catalytic performance with an overpotential of 91 mV to deliver a current density of 10 mA cm-2 for the HER, and it gives an anode potential of 1.243 V vs. RHE at 10 mA cm-2 for the UOR. A two-electrode electrolyser is used to validate the catalyst performance, and the P-CoS2/Ti||P-CoS2/Ti electrode is capable of producing a current density of 10 mA cm-2 at a cell potential of only 1.375 V, demonstrating its potential feasibility in the practical application of efficient hydrogen production.
Collapse
Affiliation(s)
- Yu Jiang
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
| | - Shanshan Gao
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China. and Guangxi University, Nanning 530004, P. R. China and Qilu University of Technology, Jinan 250353, Shandong Province, P. R. China
| | - Jinling Liu
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
| | - Gongchen Xu
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
| | - Qiang Jia
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
| | - Fushan Chen
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
| | - Xiaoming Song
- Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
| |
Collapse
|
47
|
Xu H, Ye K, Zhu K, Yin J, Yan J, Wang G, Cao D. Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis. Dalton Trans 2020; 49:5646-5652. [PMID: 32285053 DOI: 10.1039/d0dt00605j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, a three-dimensional (3D) Ni/Fe bimetallic organic framework (MOF-Ni@MOF-Fe) with a structure of rhombus blocks on nanosheets is synthesized on Ni foam by a 2-step solvothermal method. After sulfide reaction, MOF-Ni@MOF-Fe-S is vulcanized by MOF-Ni@MOF-Fe with a structure of interwoven and folding nanosheets. Meanwhile, Ni3S2 is formed under the influence of iron. This special structure makes MOF-Ni@MOF-Fe-S to expose more active sites. MOF-Ni@MOF-Fe-S shows superior urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) performance. When MOF-Ni@MOF-Fe-S is used as UOR and HER catalysts, it has low potentials of 1.347 V (vs. RHE) at 10 mA cm-2 and 0.145 V (vs. RHE) at 10 mA cm-2 in 1.0 M KOH with 0.5 M urea, respectively. MOF-Ni@MOF-Fe-S as a bifunctional electrode is assembled as an alkaline urea electrolyzer, showing catalytic activity at a low cell voltage of 1.539 V at 10 mA cm-2 and excellent stability during 10 h chronopotentiometry analysis.
Collapse
Affiliation(s)
- Huizhu Xu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Huang J, Li F, Liu B, Zhang P. Ni 2P/rGO/NF Nanosheets As a Bifunctional High-Performance Electrocatalyst for Water Splitting. MATERIALS 2020; 13:ma13030744. [PMID: 32041227 PMCID: PMC7041371 DOI: 10.3390/ma13030744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
Abstract
The hydrogen generated via the water splitting method is restricted by the high level of theoretical potential exhibited by the anode. The work focuses on synthesizing a bifunctional catalyst with a high efficiency, that is, a nickel phosphide doped with the reduced graphene oxide nanosheets supported on the Ni foam (Ni2P/rGO/NF), via the hydrothermal approach together with the calcination approach specific to the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The Raman, X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscope (TEM), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM), as well as elemental mapping, are adopted to study the composition and morphology possessed by Ni2P/rGO/NF. The electrochemical testing is performed by constructing a parallel two-electrode electrolyzer (Ni2P/rGO/NF||Ni2P/rGO/NF). Ni2P/rGO/NF||Ni2P/rGO/NF needs a voltage of only 1.676 V for driving 10 mA/cm2, which is extremely close to Pt/C/NF||IrO2/NF (1.502 V). It is possible to maintain the current density for no less than 30 hours. It can be demonstrated that Ni2P/rGO/NF||Ni2P/rGO/NF has commercial feasibility, relying on the strong activity and high stability.
Collapse
Affiliation(s)
- Jinyu Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (J.H.); (F.L.); (B.L.)
| | - Feifei Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (J.H.); (F.L.); (B.L.)
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (J.H.); (F.L.); (B.L.)
| | - Peng Zhang
- School of Electric and Information Egineer, Zhongyuan University of Technology, Zhengzhou 450007, China
- Correspondence:
| |
Collapse
|
49
|
Zhu B, Liang Z, Zou R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906133. [PMID: 31913584 DOI: 10.1002/smll.201906133] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Urea oxidation reaction (UOR) is the underlying reaction that determines the performance of modern urea-based energy conversion technologies. These technologies include electrocatalytic and photoelectrochemical urea splitting for hydrogen production and direct urea fuel cells as power engines. They have demonstrated great potentials as alternatives to current water splitting and hydrogen fuel cell systems with more favorable operating conditions and cost effectiveness. At the moment, UOR performance is mainly limited by the 6-electron transfer process. In this case, various material design and synthesis strategies have recently been reported to produce highly efficient UOR catalysts. The performance of these advanced catalysts is optimized by the modification of their structural and chemical properties, including porosity development, heterostructure construction, defect engineering, surface functionalization, and electronic structure modulation. Considering the rich progress in this field, the recent advances in the design and synthesis of UOR catalysts for urea electrolysis, photoelectrochemical urea splitting, and direct urea fuel cells are reviewed here. Particular attention is paid to those design concepts, which specifically target the characteristics of urea molecules. Moreover, challenges and prospects for the future development of urea-based energy conversion technologies and corresponding catalysts are also discussed.
Collapse
Affiliation(s)
- Bingjun Zhu
- College of Space and Environment, Beihang University, Beijing, 100191, China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
50
|
Wang F, Zhao D, Zhang L, Fan L, Zhang X, Hu S. RETRACTED: Nanostructured Nickel Nitride with Reduced Graphene Oxide Composite Bifunctional Electrocatalysts for an Efficient Water-Urea Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1583. [PMID: 31717362 PMCID: PMC6915570 DOI: 10.3390/nano9111583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022]
Abstract
A three-dimensional nickel nitride with reduced graphene oxide composite on nickel foam (s-X, where s represents Ni3N/rGO@NF and the annealing temperature X can be 320, 350, or 380) electrode has been fabricated through a facile method. We demonstrate that s-350 has excellent urea oxidation reaction (UOR) activity, with a demanded potential of 1.342 V to reach 10 mA/cm2 and bears high hydrogen evolution reaction (HER) activity. It provides a low overpotential of 124 mV at 10 mA/cm2, which enables the successful construction of its two-electrode alkaline electrolyzer (s-350||s-350) for water-urea splitting. It merely requires a voltage of 1.518 V to obtain 100 mA/cm2 and is 0.145 V lower than that of pure water splitting. This noble metal-free bifunctional electrode is regarded as an inexpensive and effective water-urea electrolysis assisted hydrogen production technology, which is commercially viable.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Linbao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China;
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Shengnan Hu
- Wuhan Hudiandian Technology Co., Ltd., Wuhan 430000, China
| |
Collapse
|