1
|
Li Y, Wang Y, Liu Y, Yan F, Zhu Z, Chen X, Qiu J, Zhang H, Cao G. Polymer Engineering Enables High Linear Capacity Fiber Electrodes by Microenvironment Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309461. [PMID: 38671588 PMCID: PMC11267365 DOI: 10.1002/advs.202309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/28/2024]
Abstract
Unlike bulky and rigid traditional power systems, 1D fiber batteries possess appealing features such as flexibility and adaptability, which are promising for use in wearable electronic devices. However, the performance and energy density fiber batteries are limited by the contradiction between ionic transfer and robust structure of fiber electrodes. Herein, these problems are addressed via polymer engineering to regulate the microenvironment in electrodes, realizing high-linear-capacity thick fiber electrodes with excellent cycling performance. The porosity of the electrodes is regulated using polymer crosslink networks designed with various components, and lithium-ion transfer is optimized through ether-abundant polymer chains. Furthermore, reinforced covalent bonding with carbon nanotube networks is established based on the modified functional groups of polymer networks. The multiscale optimizations of the porous structure, ionic transportation, and covalent bonding network enhance the lithium-ion dynamics property and structural stability. Therefore, ultrahigh linear-capacity fiber electrodes (17.8 mAh m-1) can be fabricated on a large scale and exhibit excellent stability (92.8% after 800 cycles), demonstrating obvious superiority among the reported fiber electrodes. Moreover, this study highlights the high effectiveness of polymer regulation in fiber electrodes and offers new avenues for designing next-generation wearable energy-storage systems.
Collapse
Affiliation(s)
- Yuan Li
- Research Institute of Chemical DefenseBeijing100191China
| | - Yibo Wang
- Research Institute of Chemical DefenseBeijing100191China
| | - Yan Liu
- Research Institute of Chemical DefenseBeijing100191China
| | - Fang Yan
- School of Chemistry and Biological EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Zhenwei Zhu
- Research Institute of Chemical DefenseBeijing100191China
| | - Xibang Chen
- Research Institute of Chemical DefenseBeijing100191China
| | - Jingyi Qiu
- Research Institute of Chemical DefenseBeijing100191China
| | - Hao Zhang
- Research Institute of Chemical DefenseBeijing100191China
| | - Gaoping Cao
- Research Institute of Chemical DefenseBeijing100191China
| |
Collapse
|
2
|
Wang Q, Chen Z, Luo Q, Li H, Li J, Yang W. Capillary Evaporation on High-Dense Conductive Ramie Carbon for Assisting Highly Volumetric-Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303349. [PMID: 37312646 DOI: 10.1002/smll.202303349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Conductive biomass carbon possesses unique properties of excellent conductivity and outstanding thermal stability, which can be widely used as conductive additive. However, building the high-dense conductive biomass carbon with highly graphitized microcrystals at a lower carbonization temperature is still a major challenge because of structural disorder and low crystallinity of source material. Herein, a simple capillary evaporation method to efficiently build the high-dense conductive ramie carbon (hd-CRC) with the higher tap density of 0.47 cm3 g-1 than commercialized Super-C45 (0.16 cm3 g-1 ) is reported. Such highly graphitized microcrystals of hd-CRC can achieve the high electrical conductivity of 94.55 S cm-1 at the yield strength of 92.04 MPa , which is higher than commercialized Super-C45 (83.92 S cm-1 at 92.04 MPa). As a demonstration, hd-CRC based symmetrical supercapacitors possess a highly volumetric energy density of 9.01 Wh L-1 at 25.87 kW L-1 , much more than those of commercialized Super-C45 (5.06 Wh L-1 and 19.30 kW L-1 ). Remarkably, the flexible package supercapacitor remarkably presents a low leakage current of 10.27 mA and low equivalent series resistance of 3.93 mΩ. Evidently, this work is a meaningful step toward high-dense conductive biomass carbon from traditional biomass graphite carbon, greatly promoting the highly-volumetric-performance supercapacitors.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhenyu Chen
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qitian Luo
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haijian Li
- Jinshi Technology Co. Ltd., 289 Longquanyi District, Chengdu, 610100, China
| | - Jie Li
- Jinshi Technology Co. Ltd., 289 Longquanyi District, Chengdu, 610100, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Jinshi Technology Co. Ltd., 289 Longquanyi District, Chengdu, 610100, China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
3
|
Shrestha LK, Wei Z, Subramaniam G, Shrestha RG, Singh R, Sathish M, Ma R, Hill JP, Nakamura J, Ariga K. Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050946. [PMID: 36903824 PMCID: PMC10005309 DOI: 10.3390/nano13050946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 05/20/2023]
Abstract
The energy storage performances of supercapacitors are expected to be enhanced by the use of nanostructured hierarchically micro/mesoporous hollow carbon materials based on their ultra-high specific surface areas and rapid diffusion of electrolyte ions through the interconnected channels of their mesoporous structures. In this work, we report the electrochemical supercapacitance properties of hollow carbon spheres prepared by high-temperature carbonization of self-assembled fullerene-ethylenediamine hollow spheres (FE-HS). FE-HS, having an average external diameter of 290 nm, an internal diameter of 65 nm, and a wall thickness of 225 nm, were prepared by using the dynamic liquid-liquid interfacial precipitation (DLLIP) method at ambient conditions of temperature and pressure. High temperature carbonization (at 700, 900, and 1100 °C) of the FE-HS yielded nanoporous (micro/mesoporous) hollow carbon spheres with large surface areas (612 to 1616 m2 g-1) and large pore volumes (0.925 to 1.346 cm3 g-1) dependent on the temperature applied. The sample obtained by carbonization of FE-HS at 900 °C (FE-HS_900) displayed optimum surface area and exhibited remarkable electrochemical electrical double-layer capacitance properties in aq. 1 M sulfuric acid due to its well-developed porosity, interconnected pore structure, and large surface area. For a three-electrode cell setup, a specific capacitance of 293 F g-1 at a 1 A g-1 current density, which is approximately 4 times greater than the specific capacitance of the starting material, FE-HS. The symmetric supercapacitor cell was assembled using FE-HS_900 and attained 164 F g-1 at 1 A g-1 with sustained 50% capacitance at 10 A g-1 accompanied by 96% cycle life and 98% coulombic efficiency after 10,000 consecutive charge/discharge cycles. The results demonstrate the excellent potential of these fullerene assemblies in the fabrication of nanoporous carbon materials with the extensive surface areas required for high-performance energy storage supercapacitor applications.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
- Correspondence: (L.K.S.); (K.A.)
| | - Zexuan Wei
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Gokulnath Subramaniam
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Tamil Nadu, India
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Ravi Singh
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Marappan Sathish
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Tamil Nadu, India
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Junji Nakamura
- Mitsui Chemicals, Inc., Carbon Neutral Research Center (MCI–CNRC), International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- Correspondence: (L.K.S.); (K.A.)
| |
Collapse
|
4
|
Effects of Carbon Nanotube and Graphene Oxide Incorporation on the Improvements of Magneto-Induced Electrical Sensitivity of Magneto-Rheological Gel. Polymers (Basel) 2022; 14:polym14235286. [PMID: 36501683 PMCID: PMC9740898 DOI: 10.3390/polym14235286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Magneto-rheological gel (MRG) has been the subject of recent research due to its versatile applications. Especially, the magneto-induced electrical properties of MRGs under different levels of magnetic field enables them to be used as magneto-sensors. However, conventional MRG shows a low level of electrical conductivity, complicating its use in sensor applications. In this regard, in the present study, the carbon nanotube (CNT) and graphene oxide (GO) are added to fabricate new types of MRG. Herein, four different MRG samples were fabricated with reference to an amount of CNT and GO. The microstructural images of carbonyl iron powder (CIP)-based chain structures with CNT and GO were observed using SEM images. Then, their magneto-induced electrical impedances were investigated under four levels of magnetic field (i.e., 0, 50, 100, and 150 mT) and input frequencies (1, 2, 5, and 10 Hz). Based on the experimental results, three electrical models, including first-order series and parallel, and first- and half-order complex models, were proposed, and their accuracy was examined, showing the highest accuracy when first- and half-order complex models were used. The simulated results indicated that the incorporation of both CNT and GO can improve the magneto-induced electrical sensitivity; thus, it can be concluded that MRG with CNT and GO can be a possible method to be used in magneto-sensor applications.
Collapse
|
5
|
Swain N, Saravanakumar B, Mohanty S, Ramadoss A. Engineering of Thermally Converted 3D-NiO-Co3O4/Ni//3D-ϒ-Fe4N-C@Ni/SS Porous Electrodes for High-performance Supercapatteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Surface Modification of Commercial Cotton Yarn as Electrode for Construction of Flexible Fiber-Shaped Supercapacitor. COATINGS 2021. [DOI: 10.3390/coatings11091086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we report on the rational design and facile preparation of a cotton-reduced graphene oxide-silver nanoparticle (cotton-RGO-AgNP) hybrid fiber as an electrode for the building of a flexible fiber-shaped supercapacitor (FSSC). It was adequately characterized and found to possess a well-defined core−shell structure with cotton yarn as a core and a porous RGO-AgNP coating as a shell. Thanks to the unique morphological features and low electrical resistance (only 2.3 Ω·cm−1), it displayed attractive supercapacitive properties. When evaluated in a three-electrode setup, this FSSC electrode delivered the highest linear and volumetric specific capacitance of up to ca. 12.09 mF·cm−1 and ca. 9.67 F·cm−3 with a satisfactory rate capability as well as a decent cycling stability. On the other hand, an individual parallel symmetric FSSC cell constructed by this composite fiber fulfilled the largest linear and volumetric specific capacitance of ca. 1.67 mF·cm−1 and ca. 0.67 F·cm−3 and offered the maximum energy density, as high as ca. 93.1 μWh·cm−3, which outperformed a great number of graphene- and textile yarn-based FSSCs. Impressively, bending deformation brought about quite a limited effect on its electrochemical behaviors and almost no capacitance degradation took place during the consecutive charge/discharge test for over 10,000 cycles. Consequently, these remarkable performances suggest that the currently developed cotton-RGO-AgNP fiber has considerable application potential in flexible, portable and wearable electronics.
Collapse
|
7
|
Ma W, Zhang Y, Pan S, Cheng Y, Shao Z, Xiang H, Chen G, Zhu L, Weng W, Bai H, Zhu M. Smart fibers for energy conversion and storage. Chem Soc Rev 2021; 50:7009-7061. [PMID: 33912884 DOI: 10.1039/d0cs01603a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibers have played a critical role in the long history of human development. They are the basic building blocks of textiles. Synthetic fibers not only make clothes stronger and more durable, but are also customizable and cheaper. The growth of miniature and wearable electronics has promoted the development of smart and multifunctional fibers. Particularly, the incorporation of functional semiconductors and electroactive materials in fibers has opened up the field of fiber electronics. The energy supply system is the key branch for fiber electronics. Herein, after a brief introduction on the history of smart and functional fibers, we review the current state of advanced functional fibers for their application in energy conversion and storage, focusing on nanogenerators, solar cells, supercapacitors and batteries. Subsequently, the importance of the integration of fiber-shaped energy conversion and storage devices via smart structure design is discussed. Finally, the challenges and future direction in this field are highlighted. Through this review, we hope to inspire scientists with different research backgrounds to enter this multi-disciplinary field to promote its prosperity and development and usher in a truly new era of smart fibers.
Collapse
Affiliation(s)
- Wujun Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. and College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Ziyu Shao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wei Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Liu P, Niu J, Wang D. Honeycomb-like mesoporous all-carbon graphene-based fiber for flexible supercapacitor application: Effect of spacers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Abstract
Demand for wearable and portable electronic devices has increased, raising interest in electronic textiles (e-textiles). E-textiles have been produced using various materials including carbon nanotubes, graphene, and graphene oxide. Among the materials in this minireview, we introduce e-textiles fabricated with graphene oxide (GO) coating, using commercial textiles. GO-coated cotton, nylon, polyester, and silk are reported. The GO-coated commercial textiles were reduced chemically and thermally. The maximum e-textile conductivity of about 10 S/cm was achieved in GO-coated silk. We also introduce an e-textile made of uncoated silk. The silk-based e-textiles were obtained using a simple heat treatment with axial tension. The conductivity of the e-textiles was over 100 S/cm.
Collapse
|
10
|
Hou X, Zhang Q, Wang L, Gao G, Lü W. Low-Temperature-Resistant Flexible Solid Supercapacitors Based on Organohydrogel Electrolytes and Microvoid-Incorporated Reduced Graphene Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12432-12441. [PMID: 33657789 DOI: 10.1021/acsami.0c18741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Maintaining enough flexibility and satisfied electrochemical performance simultaneously at subzero temperatures is still challengeable for flexible solid supercapacitors. In the present work, by adopting an organohydrogel electrolyte and reduced graphene oxide (rGO) films with microvoids serving as electrodes, a supercapacitor, which could be steadily operated down to -60 °C, has been obtained and has shown excellent low-temperature tolerance. The organohydrogel electrolyte consists of LiCl in glycerol/water solution containing polyvinyl alcohol, exhibiting excellent flexibility at -60 °C. Due to the introduction of micropores between rGO sheets, the porous membrane can be folded even in liquid nitrogen. Combining the rGO electrodes with the organohydrogel electrolyte, the maximum voltage of the present supercapacitor could be extended to 2.0 V, and a capacitance of 7.73 F·g-1 at -60 °C could be achieved. After 5000 charge/discharge cycles at -20 °C, the capacitance retention rate is 87.5%. The excellent flexibility and low-temperature resistance of the current supercapacitor pave a novel way for developing compression-resistant electronic samples compatible with a low-temperature environment.
Collapse
Affiliation(s)
- Xulin Hou
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Changchun 130012, China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Changchun 130012, China
| |
Collapse
|
11
|
Zhao T, Yang D, Xu T, Zhang M, Zhang S, Qin L, Yu ZZ. Cold-Resistant Nitrogen/Sulfur Dual-Doped Graphene Fiber Supercapacitors with Solar-Thermal Energy Conversion Effect. Chemistry 2021; 27:3473-3482. [PMID: 33347672 DOI: 10.1002/chem.202004703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Indexed: 01/10/2023]
Abstract
Although graphene fiber-based supercapacitors are promising for wearable electronic devices, the low energy density of electrodes and poor cold resistance of aqueous electrolytes limit their wide application in cold environments. Herein, porous nitrogen/sulfur dual-doped graphene fibers (NS-GFs) are synthesized by hydrothermal self-assembly followed by thermal annealing, exhibiting an excellent capacitive performance of 401 F cm-3 at 400 mA cm-3 because of the synergistic effect of heteroatom dual-doping. The assembled symmetric all-solid-state supercapacitor with polyvinyl alcohol/H2 SO4 /graphene oxide gel electrolyte exhibits a high capacitance of 221 F cm-3 and a high energy density of 7.7 mWh cm-3 at 80 mA cm-3 . Interestingly, solar-thermal energy conversion of the electrolyte with 0.1 wt % graphene oxide extends the operating temperature range of the supercapacitor to 0 °C. Furthermore, the photocatalysis effect of the dual-doped heteroatoms increases the capacitance of NS-GFs. At an ambient temperature of 0 °C, the capacitance increases from 0 to 182 F cm-3 under 1 sun irradiation because of the excellent solar light absorption and efficient solar-thermal energy conversion of graphene oxide, preventing the aqueous electrolyte from freezing. The flexible supercapacitor exhibits a long cycle life, good bending resistance, reliable scalability, and ability to power visual electronics, showing great potential for outdoor electronics in cold environments.
Collapse
Affiliation(s)
- Tianyu Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongzhi Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ting Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ming Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shiyi Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liyuan Qin
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
12
|
Liang Q, Zhang D, Ji P, Sheng N, Zhang M, Wu Z, Chen S, Wang H. High-Strength Superstretchable Helical Bacterial Cellulose Fibers with a "Self-Fiber-Reinforced Structure". ACS APPLIED MATERIALS & INTERFACES 2021; 13:1545-1554. [PMID: 33377390 DOI: 10.1021/acsami.0c19149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a hydrogel membrane grown on the gas-liquid interface by bacterial culture that can be industrialized, bacterial cellulose (BC) cannot give full play to the advantages of its natural nanofibers. Conversion to the properties of nanofibers from high-performance to macrofibers represents a difficult material engineering challenge. Herein, we construct high-strength BC macrofibers with a "self-fiber-reinforced structure" using a dry-wet spinning method by adjusting the BC dissolution and concentration. The macrofiber with a tensile strength of 649 MPa and a strain of 17.2% can be obtained, which is one of the strongest and toughest cellulose fibers. In addition, the macrofiber can be fabricated to a superstretchable helical fiber without adding other elastomers or auxiliary materials. When the helical diameter is 1.6 mm, the ultimate stretch reaches 1240%. Meanwhile, cyclic tests show that the mechanical properties and morphology of the fiber remained stable after 100 times of 100% cyclic stretching. It is exciting that the helical fiber also owns outstanding knittability, washability, scalability, and dyeability. Furthermore, superstretchable functional helical BC fibers can be fabricated by embedding functional materials (carbon materials, conductive polymers, etc.) on BC or in the spinning dope, which can be made to wearable devices such as fiber solid-state supercapacitors. This work provides a scalable way for high-strength superstretchable and multifunctional fibers applied in wearable devices.
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Peng Ji
- Co-Innovation Center for Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Nan Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Minghao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhuotong Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
13
|
Zhang B, Li X, Zou J, Kim F. MnCO 3 on Graphene Porous Framework via Diffusion-Driven Layer-by-Layer Assembly for High-Performance Pseudocapacitor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47695-47703. [PMID: 33030889 DOI: 10.1021/acsami.0c15511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion-driven layer-by-layer (dd-LbL) assembly is a simple yet versatile process that can be used to construct graphene oxide (GO) into a three-dimensional (3D) porous framework with good mechanical stability. In particular, the oxygen functional groups on the GO surface are well retained, providing nucleation sites for further chemical reactions to be performed upon. Therefore, such a scaffold should serve as a promising starting material for creating a wide range of 3D graphene-based composites while maintaining a high accessible surface area. Herein, we demonstrate the use of the porous GO macrostructure derived from dd-LbL assembly for the preparation of graphene-MnCO3 hybrid structures. MnCO3 is a newly reported pseudocapacitive material for supercapacitors; however, its electrochemical performance is hampered by its low electrical conductivity and poor chemical stability. Through reaction between KMnO4 and GO during a hydrothermal process, the surface of the porous scaffold was rendered with uniform MnCO3 nanoparticles. With the reduced graphene oxide (rGO) sheets serving as the conductive backbone, the resultant MnCO3 nanoparticles exhibited a capacitance of 698 F g-1 at a charge/discharge current of 0.5 mA (320 F g-1 for the combined rGO and MnCO3 composite). Furthermore, the electrode maintained 77% of its initial capacity even after 5000 cycles of charge/discharge tests at 20 mA.
Collapse
Affiliation(s)
- Binbin Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianli Zou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Franklin Kim
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Ma L, Bi Z, Zhang W, Zhang Z, Xiao Y, Niu H, Huang Y. Synthesis of a Three-Dimensional Interconnected Oxygen-, Boron-, Nitrogen-, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46170-46180. [PMID: 32935965 DOI: 10.1021/acsami.0c13454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To construct a high-performance next-generation carbon-based flexible supercapacitor, high porosity, large mass density, and high flexibility are three significant challenging goals. However, one side always affects another. Herein, high-density tetratomic-doped porous composite carbon derived from sustainable biomaterials is achieved via two-step processes of carbonization and acid-washing treatment. The assembled carbon-based electrodes are highly doped with various heteroatoms (B, O, N, and P) for 33.59 atom %, resulting in abundant porosity, high densities, high pseudocapacitive contribution for 84.5%, and superior volumetric capacitive performance. The fabricated flexible electrode exhibits high flexibility, high mass loading (316 mg cm-3), and remarkable tensile strength (44.6 MPa). Generally, the volumetric performance is key and a significant parameter to appraise the electrochemical characteristics of flexible supercapacitors within a limited space. The aqueous symmetric supercapacitor demonstrates a high volumetric energy density and an excellent power density of 2.08 mWh cm-3 and 498.4 mW cm-3, respectively, along with 99.6% capacitance retention after 20 000 cycles, making it competitive to even some pseudocapacitors.
Collapse
Affiliation(s)
- Lina Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhijie Bi
- College of Physics, Qingdao University, Qingdao 266071, P. R. China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zehua Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yue Xiao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Haijun Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Materials and Engineering, School of Chemical and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
15
|
A new Cd-based metal organic framework derived nitrogen doped nano-porous carbon for high supercapacitor performance. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Novel helical carbon nanotubes-embedded reduced graphene oxide in three-dimensional architecture for high-performance flexible supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Xu T, Yang D, Liu Y, Zhang S, Zhang M, Zhao T, Li X, Yu Z. Hierarchical Transition Metal Oxide Arrays Grown on Graphene‐Based Fibers with Enhanced Interface by Thin Layer of Carbon toward Solid‐State Asymmetric Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.201902144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ting Xu
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Organic-Inorganic Composites College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Yaxin Liu
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Shiyi Zhang
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Ming Zhang
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Tianyu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Xiaofeng Li
- State Key Laboratory of Organic-Inorganic Composites College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Zhong‐Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer CompositesBeijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Organic-Inorganic Composites College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
18
|
Lu B, Liu F, Sun G, Gao J, Xu T, Xiao Y, Shao C, Jin X, Yang H, Zhao Y, Zhang Z, Jiang L, Qu L. Compact Assembly and Programmable Integration of Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907005. [PMID: 31850657 DOI: 10.1002/adma.201907005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Microsized supercapacitors (mSCs) with small volume, rapid charge-discharge rate, and ultralong cyclic lifetime are urgently needed to meet the demand of miniaturized portable electronic devices. A versatile self-shrinkage assembling (SSA) strategy to directly construct the compact mSCs (CmSCs) from hydrogels of reduced graphene oxide is reported. A single CmSC is only 0.0023 cm3 in volume, which is significantly smaller than most reported mSCs in fiber/yarn and planar interdigital forms. It exhibits a high capacitance of up to 68.3 F cm-3 and a superior cycling stability with 98% capacitance retention after 25 000 cycles. Most importantly, the SSA technique enables the CmSC as the building block to realize arbitrary, programmable, and multi-dimensional integration for adaptable and complicated power systems. By design on mortise and tenon joint connection, autologous integrated 3D interdigital CmSCs are fabricated in a self-holding-on manner, which thus dramatically reduces the whole device volume to achieve the high-performance capacitive behavior. Consequently, the SSA technique offers a universal and versatile approach for large-scale on-demand integration of mSCs as flexible and transformable power sources.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guoqiang Sun
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jian Gao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tong Xu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yukun Xiao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Changxiang Shao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xuting Jin
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hongsheng Yang
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yang Zhao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhipan Zhang
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lan Jiang
- Laser Micro-/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory for Adv. Mater. Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
19
|
Upadhyay KK, Bundaleska N, Abrashev M, Bundaleski N, Teodoro O, Fonseca I, de Ferro AM, Silva RP, Tatarova E, Montemor M. Free-standing N-Graphene as conductive matrix for Ni(OH)2 based supercapacitive electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135592] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Panda PK, Grigoriev A, Mishra YK, Ahuja R. Progress in supercapacitors: roles of two dimensional nanotubular materials. NANOSCALE ADVANCES 2020; 2:70-108. [PMID: 36133979 PMCID: PMC9419609 DOI: 10.1039/c9na00307j] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/28/2019] [Indexed: 05/03/2023]
Abstract
Overcoming the global energy crisis due to vast economic expansion with the advent of human reliance on energy-consuming labor-saving devices necessitates the demand for next-generation technologies in the form of cleaner energy storage devices. The technology accelerates with the pace of developing energy storage devices to meet the requirements wherever an unanticipated burst of power is indeed needed in a very short time. Supercapacitors are predicted to be future power vehicles because they promise faster charging times and do not rely on rare elements such as lithium. At the same time, they are key nanoscale device elements for high-frequency noise filtering with the capability of storing and releasing energy by electrostatic interactions between the ions in the electrolyte and the charge accumulated at the active electrode during the charge/discharge process. There have been several developments to increase the functionality of electrodes or finding a new electrolyte for higher energy density, but this field is still open to witness the developments in reliable materials-based energy technologies. Nanoscale materials have emerged as promising candidates for the electrode choice, especially in 2D sheet and folded tubular network forms. Due to their unique hierarchical architecture, excellent electrical and mechanical properties, and high specific surface area, nanotubular networks have been widely investigated as efficient electrode materials in supercapacitors, while maintaining their inherent characteristics of high power and long cycling life. In this review, we briefly present the evolution, classification, functionality, and application of supercapacitors from the viewpoint of nanostructured materials to apprehend the mechanism and construction of advanced supercapacitors for next-generation storage devices.
Collapse
Affiliation(s)
- Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University Box 516 SE-75120 Uppsala Sweden
| | - Anton Grigoriev
- Department of Physics and Astronomy, Uppsala University Box 516 SE-75120 Uppsala Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark Alsion 2 DK-6400 Denmark
| | - Rajeev Ahuja
- Department of Materials and Engineering, Royal Institute of Technology (KTH) SE-10044 Stockholm Sweden
| |
Collapse
|
21
|
Pang H, Zhao S, Mo L, Wang Z, Zhang W, Huang A, Zhang S, Li J. Mussel‐inspired bio‐based water‐resistant soy adhesives with low‐cost dopamine analogue‐modified silkworm silk Fiber. J Appl Polym Sci 2019. [DOI: 10.1002/app.48785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huiwen Pang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Shujun Zhao
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Liuting Mo
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Zhong Wang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Wei Zhang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Anmin Huang
- Chinese Academy of Forestry Research Institute of Wood Industry Beijing 100091 People's Republic of China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and ApplicationBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
- Beijing Key Laboratory of Wood Science and EngineeringBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District Beijing 100083 People's Republic of China
| |
Collapse
|
22
|
Liu J, Ren X, Kang X, He X, Wei P, Wen Y, Li X. Fabrication of nitrogen-rich three-dimensional porous carbon composites with nanosheets and hollow spheres for efficient supercapacitors. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00536f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Rich 3D porous carbon composites with nanosheets and hollow spheres have been fabricated for efficient supercapacitors.
Collapse
Affiliation(s)
- Jinghua Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| | - Xiaohui Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| | - Xu Kang
- School of Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Xiong He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| | - Peicheng Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| | - Yan Wen
- School of Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
| |
Collapse
|