1
|
Kumar J, Roy I. Advancements in diagnostic approaches for Wilson's disease. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40375678 DOI: 10.1039/d5ay00118h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Wilson's disease (WD) is a genetic disorder that results in excessive copper build-up in tissues, causing significant liver and neurological damage. Early and accurate diagnosis is crucial for effective management and treatment. Traditional diagnostic methods, including serum ceruloplasmin and urinary copper level monitoring, liver biopsy and genetic testing, are limited by sensitivity, specificity, invasiveness, and accessibility. Recent advances in diagnostic technologies offer new hope for more accurate, rapid, and non-invasive detection of WD. In this regard, nanotechnology-driven formulations hold significant promise for both the early diagnosis and treatment of WD. Through the innovative use of advanced nanomaterials, researchers are developing more effective therapeutic options and highly sensitive diagnostic tools, potentially transforming the management and prognosis of this genetic disorder. This review provides a comprehensive analysis of recent advancements in WD diagnostics, focusing on research published since 2016. It explores the development and application of novel biomarkers, advanced imaging modalities, innovative biosensors, and emerging nanotechnology-based approaches. By integrating these cutting-edge methodologies, the review highlights their potential to enhance early and accurate detection of WD, addressing current diagnostic challenges and improving clinical outcomes.
Collapse
Affiliation(s)
- Jitender Kumar
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
- Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi-110007, India.
- Institute of Nano Medical Sciences, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Chen H, Cao W, Cui Y, Qian G, Liao Z. Intensive and Persistent Chemiluminescence from Orderly Arranged Ligands within Metal-Organic Frameworks for Inflammation Imaging. Inorg Chem 2025; 64:2529-2536. [PMID: 39873107 DOI: 10.1021/acs.inorgchem.4c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Chemiluminescence offers ultrasensitive imaging for the diagnosis of a variety of diseases by removing the interference from excitation light sources. Here, we prepared two chemiluminescent metal-organic frameworks (Mn-ADA and Zn-ADA) by using (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid (ADA) as a ligand. In Mn-ADA and Zn-ADA, the Mn atoms and Zn atoms are six-coordinated and eight-coordinated, respectively, and their frameworks are different in spatial structure. Due to the orderly arrangement of the fluorescence ligands and one-dimensional channel control of the diffusion of the reactant, Mn-ADA exhibits superstrong intensity and persistent chemiluminescence compared to ADA. The intensity of Mn-ADA is 43 times higher, and the lifetime is two times longer than that of ADA. Furthermore, different coordination also causes the chemiluminescence intensity of Mn-ADA to be stronger than that of Zn-ADA. It is established that Mn-ADA can detect H2O2 and image inflammation in mice without the excitation light. This methodology demonstrates the potential of metal-organic frameworks (MOFs) to enhance chemiluminescence and offers a new avenue for the development of MOF materials intended for biomedical application.
Collapse
Affiliation(s)
- Hongxu Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenqian Cao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengluan Liao
- School of Clinical Medical, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
3
|
Zarei A, Rezaei A, Shahlaei M, Asani Z, Ramazani A, Wang C. Selective and sensitive CQD-based sensing platform for Cu 2+ detection in Wilson's disease. Sci Rep 2024; 14:13183. [PMID: 38851799 PMCID: PMC11162432 DOI: 10.1038/s41598-024-63771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Excessive Cu2+ intake can cause neurological disorders (e.g. Wilson's disease) and adversely affect the gastrointestinal, liver, and kidney organs. The presence of Cu2+ is strongly linked to the emergence and progression of Wilson's disease (WD), and accurately measuring the amount of copper is a crucial step in diagnosing WD at an early stage in a clinical setting. In this work, CQDs were fabricated through a facile technique as a novel fluorescence-based sensing platform for detecting Cu(II) in aqueous solutions, and in the serum samples of healthy and affected individuals by WD. The CQDs interact with Cu(II) ions to produce Turn-on and Turn-off states at nano-molar and micro-molar levels, respectively, with LODs of 0.001 µM and 1 µM. In fact, the Cu2+ ions can act like a bridge between two CQDs by which the charge and electron transfer between the CQDs may increase, possibly can have significant effects on the spectroscopic features of the CQDs. To the best of our knowledge, this is the first reported research that can detect Cu(II) at low levels using two different complexation states, with promising results in testing serum. The potential of the sensor to detect Cu(II) was tested on serum samples from healthy and affected individuals by WD, and compared to results obtained by ICP-OES. Astonishingly, the results showed an excellent correlation between the measured Cu(II) levels using the proposed technique and ICP-OES, indicating the high potential of the fluorimetric CQD-based probe for Cu(II) detection. The accuracy, sensitivity, selectivity, high precision, accuracy, and applicability of the probe toward Cu(II) ions make it a potential diagnostic tool for Wilson's disease in a clinical setting.
Collapse
Affiliation(s)
- Armin Zarei
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Asani
- Students Research Committee,, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
4
|
Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Ratiometric upconversion nanoprobes for turn-on fluorescent detection of hypochlorous acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
6
|
Ye M, Tan Q, Jiang D, Li J, Yao C, Zhou Y. Deep-Depth Imaging of Hepatic Ischemia/Reperfusion Injury Using a Carbon Monoxide-Activated Upconversion Luminescence Nanosystem. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52659-52669. [PMID: 36377946 DOI: 10.1021/acsami.2c15960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exploring a chemical imaging tool for visualizing the endogenous CO biosignaling molecule is of great importance in understanding the pathophysiological functions of CO in complex biological systems. Most of the existing CO fluorescent probes show excitation and emission in the region of ultraviolet and visible light, which are not suitable for application in in vivo deep-depth imaging of CO. Herein, a new near-infrared (NIR) to NIR upconversion luminescence (UCL) nanosystem for in vivo visualization of CO was developed, which possesses the merits of high selectivity and sensitivity, a deep tissue penetration depth, and a high signal-to-noise ratio. In this design, upon interaction with CO, the maxima absorption peak of the nanosystem showed a significant blue shift from 795 nm to 621 nm and triggered a remarkable turn-on NIR UCL signal due to the luminescence resonance energy transfer process. Leveraging this nanosystem, we achieved an NIR UCL visualization of the generation of CO biosignals caused by hypoxic, acute inflammation, or ischemic injury in living cells, zebrafish, and mice. Moreover, the protective effect of CO in zebrafish models of oxygen and glucose deprivation/reperfusion (OGD/R) and mice models of lipopolysaccharide-induced oxidative stress (LOS) and hepatic ischemia/reperfusion (HI/R) was also further verified. Therefore, this work discloses that the nanosystem not only serves as a promising nanoplatform to study biological signaling pathways of CO in pathophysiological events, but may also provide a powerful tool for HI/R injury diagnosis.
Collapse
Affiliation(s)
- Minan Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qi Tan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
7
|
Wang N, Yang Y, Zhang M, Zhu Q, Li Z. Lysosomal Adenosine Triphosphate-Activated Upconversion Nanoparticle/Carbon Dot Composite for Ratiometric Imaging of Hepatotoxicity. Anal Chem 2022; 94:15738-15745. [DOI: 10.1021/acs.analchem.2c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ningning Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yaqing Yang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng Zhang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qianqian Zhu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Synthesis and recognition behavior studies of indole derivatives. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
11
|
Zhang C, Li L, Xu L, Ye C, Han P, Wang M, Liu R, Chen S, Wang X, Song Y. Micellar Ratiometric Fluorescent Blood pH Probe Based on Triplet-Sensitized Upconversion and Energy-Transfer Behaviors. J Phys Chem Lett 2022; 13:5758-5765. [PMID: 35715231 DOI: 10.1021/acs.jpclett.2c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The measurement of pH is greatly significant in monitoring physiological and biochemical states. In this work, a novel micellar ratiometric fluorescent probe featuring sophisticated energy-transfer (ET) behaviors with p-nitrophenol (PNP) as the energy acceptor and a triplet-triplet annihilation upconversion (TTA-UC) system as the energy donor was designed. The pH-induced molecular configuration of PNP determined the process for the transfer of energy from TTA-UC to PNP. The introduction of the TTA-UC system enabled probe excitation under a long wavelength and afforded a ratiometric signal for pH detection with excellent reliability over diverse interfering factors. This TTA-UC/ET pH probe demonstrated a high sensitivity to hydronium below nanomolar concentrations and an excellent anti-interference ability in serum samples, which provided a novel significant strategy for rapid and accurate detection of blood pH in vitro.
Collapse
Affiliation(s)
- Chun Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Lei Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Pengju Han
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Meng Wang
- Clinical Pharmacology Laboratory, Second Affiliated Hospital of Soochow University, Suzhou 215009, P. R. China
| | - Renjie Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
12
|
Zhang R, Ning X, Wang Z, Zhao H, He Y, Han Z, Du P, Lu X. Significantly Promoting the Photogenerated Charge Separation by Introducing an Oxygen Vacancy Regulation Strategy on the FeNiOOH Co-Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107938. [PMID: 35434918 DOI: 10.1002/smll.202107938] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Semiconductor/co-catalyst coupling is considered as a promising strategy to enhance the photoelectrochemical (PEC) conversion efficiency. Unfortunately, this model system is faced with a serious interface recombination problem, which limits the further improvement of PEC performances. Here, a FeNiOOH co-catalyst with abundant oxygen vacancies on BiVO4 is fabricated through simple and economical NaBH4 reduction to accelerate hole transfer and achieve efficient electron-hole pair separation. The photocurrent of the BV (BiVO4 )/Vo-FeNiOOH system is more than four times that of pure BV. Importantly, the charge transfer kinetics and charge carrier recombination process are studied by scanning photoelectrochemical microscopy and intensity modulated photocurrent spectroscopy in detail. In addition, the oxygen vacancy regulation proposed is also applied successfully to other semiconductors (Fe2 O3 ), demonstrating the applicability of this strategy.
Collapse
Affiliation(s)
- Rongfang Zhang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xingming Ning
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Ze Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Huihuan Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yaorong He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Peiyao Du
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
13
|
Han X, Zhou L, Zhuang H, Wei P, Li F, Jiang L, Yi T. Hybrid Mesoporous MnO 2-Upconversion Nanoparticles for Image-Guided Lung Cancer Spinal Metastasis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18031-18042. [PMID: 35426297 DOI: 10.1021/acsami.1c22322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Upconversion nanoparticles (UCNPs) and MnO2 composite materials have broad prospects in biological applications due to their near-infrared (NIR) imaging capability and tumor microenvironment-responsive features. Nevertheless, the synthesis of such composite nanoplatforms still faces many hurdles such as redundant processing and uneven coatings. Here, we explored a simple, rapid, and universal method for precisely controlled coating of mesoporous MnO2 (mMnO2) using poly(ethylene imine) as a reducing agent and potassium permanganate as a manganese source. Using this strategy, a mMnO2 shell was successfully coated on UCNPs. We further modified the mMnO2-coated UCNPs (UCNP@mMnO2) with a photosensitizer (Ce6), cisplatin drug (DSP), and tumor targeting pentapeptide (TFA) to obtain a nanoplatform UCNP/Ce6@mMnO2/DSP-TFA for treating spinal metastasis of nonsmall cell lung cancer (NSCLC-SM). The utilization of both upconversion and downconversion luminescence of UCNPs with different NIR wavelengths can avoid the simultaneous initiation of NIR-II in vivo imaging and tumor photodynamic therapy, thus reducing damage to normal tissues. This platform achieved a high synergistic effect of photodynamic therapy and chemotherapy. This leads to beneficial antitumor effects on the therapy of NSCLC-SM.
Collapse
Affiliation(s)
- Xuemin Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Lei Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Hongjun Zhuang
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Fuyou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
14
|
Zhuang H, Jiang X, Wu S, Wang S, Pang Y, Huang Y, Yan H. A novel polypeptide-modified fluorescent gold nanoclusters for copper ion detection. Sci Rep 2022; 12:6624. [PMID: 35459921 PMCID: PMC9033799 DOI: 10.1038/s41598-022-10500-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Biomolecule-functionalized fluorescent gold nanocluster (AuNCs) have attracted a lot of attention due to good biocompatibility, stable physicochemical properties and considerable cost advantages. Inappropriate concentration of Cu2+ may cause a variety of diseases. In this study, AuNCs were synthesized in alkaline aqueous solution using bovine serum albumin (BSA) as a template. And then, the peptide CCYWDAHRDY was coupled to AuNCs. Furthermore, the fluorescence of synthesized CCYWDAHRDY-AuNCs response to Cu2+ was evaluated. As the results shown that the CCYWDAHRDY-AuNCs can sensitively detect Cu2+. After adding Cu2+ to the probe system, the fluorescence of the CCYWDAHRDY-AuNCs was quenched. The detection conditions were at pH 6 and 30 °C for 10 min, the linear relationship between Cu2+ concentration and fluorescence intensity were good in the range of 0.1 ~ 4.2 μmol/L. The regression equation was y = − 105.9x + 693.68, the linear correlation coefficient is 0.997, and the minimum detection limit was 52 nmol/L.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Xinyu Jiang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Shujin Wang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Yanjun Huang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
15
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Wu J, Li R, Liu S. A novel dual-emission fluorescent probe for ratiometric and visual detection of Cu 2+ ions and Ag + ions. Anal Bioanal Chem 2022; 414:3067-3075. [PMID: 35106615 DOI: 10.1007/s00216-022-03930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/05/2021] [Accepted: 01/26/2022] [Indexed: 11/01/2022]
Abstract
In this work, the biomolecule glutathione was used to prepare cyan fluorescent carbon dots (GSH@CDs) by a hydrothermal method. The GSH@CDs were adopted as the scaffolds to synthesize fluorescent gold nanoclusters (GSH@CDs-Au NCs) with two independent emission peaks at 430 nm and 700 nm. A fluorescent method for the Cu2+ and Ag+ ion assay was established based on the fluorescence quenching or enhancement at 700 nm of GSH@CDs-Au NCs. The fluorescent test strips were successfully prepared for visual detection of Cu2+ ions and Ag+ ions based on GSH@CDs-Au NCs. In addition, GSH@CDs-Au NCs were found to possess well peroxidase-like activity.
Collapse
Affiliation(s)
- Jiang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Runyang Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China.
| |
Collapse
|
17
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
18
|
Huang H, Qiu R, Yang H, Ren F, Wu F, Zhang Y, Zhang H, Li C. Advanced NIR ratiometric probes for intravital biomedical imaging. Biomed Mater 2021; 17. [PMID: 34879355 DOI: 10.1088/1748-605x/ac4147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Near-infrared (NIR) fluorescence imaging technology (NIR-I region, 650-950 nm and NIR-II region, 1000-1700 nm), with deeper tissue penetration and less disturbance from auto-fluorescence than that in visible region (400-650 nm), is playing a more and more extensive role in the field of biomedical imaging. With the development of precise medicine, intelligent NIR fluorescent probes have been meticulously designed to provide more sensitive, specific and accurate feedback on detection. Especially, recently developed ratiometric fluorescent probes have been devoted to quantify physiological and pathological parameters with a combination of responsive fluorescence changes and self-calibration. Herein, we systemically introduced the construction strategies of NIR ratiometric fluorescent probes and their applications in biological imagingin vivo, such as molecular detection, pH and temperature measurement, drug delivery monitoring and treatment evaluation. We further summarized possible optimization on the design of ratiometric probes for quantitative analysis with NIR fluorescence, and prospected the broader optical applications of ratiometric probes in life science and clinical translation.
Collapse
Affiliation(s)
- Haoying Huang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Ruijuan Qiu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|
19
|
Hu R, Zhai X, Ding Y, Shi G, Zhang M. Hybrid supraparticles of carbon dots/porphyrin for multifunctional tongue-mimic sensors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.08.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
21
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Feng H, Fu Q, Du W, Zhu R, Ge X, Wang C, Li Q, Su L, Yang H, Song J. Quantitative Assessment of Copper(II) in Wilson's Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS NANO 2021; 15:3402-3414. [PMID: 33508938 DOI: 10.1021/acsnano.0c10407] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cu2+ is closely related to the occurrence and development of Wilson's disease (WD), and quantitative detection of various copper indicators (especially liver Cu2 and urinary Cu2+) is the key step for the early diagnosis of WD in the clinic. However, the clinic Cu2+ detection approach was mainly based on testing the liver tissue through combined invasive liver biopsy and the ICP-MS method, which is painful for the patient and limited in determining WD status in real-time. Herein, we rationally designed a type of Cu2+-activated nanoprobe based on nanogapped gold nanoparticles (AuNNP) and poly(N-isopropylacrylamide) (PNIPAM) to simultaneously quantify the liver Cu2+ content and urinary Cu2+ in WD by photoacoustic (PA) imaging and ratiometric surface-enhanced Raman scattering (SERS), respectively. In the nanoprobe, one Raman molecule of 2-naphthylthiol (NAT) was placed in the nanogap of AuNNP. PNIPAM and the other Raman molecule mercaptobenzonitrile (MBN) were coated on the AuNNP surface, named AuNNP-NAT@MBN/PNIPAM. Cu2+ can efficiently coordinate with the chelator PNIPAM and lead to aggregation of the nanoprobe, resulting in the absorption red-shift and increased PA performance of the nanoprobe in the NIR-II window. Meanwhile, the SERS signal at 2223 cm-1 of MBN is amplified, while the SERS signal at 1378 cm-1 of NAT remains stable, generating a ratiometric SERS I2223/I1378 signal. Both NIR-II PA1250 nm and SERS I2223/I1378 signals of the nanoprobe show a linear relationship with the concentration of Cu2+. The nanoprobe was successfully applied for in vivo quantitative detection of liver Cu2+ of WD mice through NIR-II PA imaging and accurate quantification of urinary Cu2+ of WD patients by ratiometric SERS. We anticipate that the activatable nanoprobe might be applied for assisting an early, precise diagnosis of WD in the clinic in the future.
Collapse
Affiliation(s)
- Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
23
|
Li CJ, Ye MA, Su PP, Yao C, Zhou Y. Cyanine-modified near-infrared upconversion nanoprobe for ratiometric sensing of N 2H 4 in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119153. [PMID: 33188975 DOI: 10.1016/j.saa.2020.119153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Although being as an important chemical material in industry, hydrazine (N2H4) is highly toxic to the humans and animals. The development of sensitive methods for the detection of hydrazine is meaningful. Herein, we develop a new organic-inorganic hybrid nanoprobe for the detection of N2H4 based on luminescent resonance energy transfer (LRET) process. The nanoprobe contains N2H4-responsive NIR cyanine dye (CQM1) and α-cyclodextrin (CD) anchored on the surface of lanthanide-doped upconversion nanophosphors (UCNPs). In the presence of hydrazine, the hybrid materials (CQM1-UCNPs) showed the a large ratiometric luminescent signal change with high sensitivity and selectivity. More importantly, by taking advantage of ratiometric Upconversion luminescent (UCL) signal and the features of NIR emission/excitation, the nanoprobe was successfully applied for visualization of hydrazine in living cells for the first time.
Collapse
Affiliation(s)
- Chuan-Jian Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Min-An Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Pei-Pei Su
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
24
|
Yan F, Sun X, Zhang Y, Jiang Y, Chen L, Ma T, Chen L. A Schiff base probe for competitively sensing Cu2+ and cysteine through hydrolysis, complexation, and cyclization. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Chouhan RS, Jerman I, Heath D, Bohm S, Gandhi S, Sadhu V, Baker S, Horvat M. Emerging tri‐s‐triazine‐based graphitic carbon nitride: A potential signal‐transducing nanostructured material for sensor applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Ivan Jerman
- National Institute of Chemistry Ljubljana Slovenia
| | - David Heath
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Sivasambu Bohm
- Royal Society Industry Fellow Molecular Science Research Hub Imperial College London London UK
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (DBT‐NIAB) Hyderabad Telangana India
| | - Veera Sadhu
- School of Physical Sciences Kakatiya Institute of Technology & Science (KITS) Warangal Telangana India
| | - Syed Baker
- Department of Microbiology Prof. V.F. Voino‐Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Siberia Russian Federation
| | - Milena Horvat
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
26
|
Hao C, Guo X, Lai Q, Li Y, Fan B, Zeng G, He Z, Wu J. Peptide-based fluorescent chemical sensors for the specific detection of Cu2+ and S2−. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
28
|
An JD, Wang TT, Shi YF, Wu XX, Liu YY, Huo JZ, Ding B. A multi-responsive regenerable water-stable two-dimensional cadmium (II) fluorescent probe for highly selective, sensitive and real-time sensing of nitrofurazone and cupric ion. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Li Y, Zhang X, Zhang Y, Zhang Y, He Y, Liu Y, Ju H. Activatable Photodynamic Therapy with Therapeutic Effect Prediction Based on a Self-correction Upconversion Nanoprobe. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19313-19323. [PMID: 32275130 DOI: 10.1021/acsami.0c03432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Though emerging as a promising therapeutic approach for cancers, the crucial challenge for photodynamic therapy (PDT) is activatable phototoxicity for selective cancer cell destruction with low "off-target" damage and simultaneous therapeutic effect prediction. Here, we design an upconversion nanoprobe for intracellular cathepsin B (CaB)-responsive PDT with in situ self-corrected therapeutic effect prediction. The upconversion nanoprobe is composed of multishelled upconversion nanoparticles (UCNPs) NaYF4:Gd@NaYF4:Er,Yb@NaYF4:Nd,Yb, which covalently modified with an antenna molecule 800CW for UCNPs luminance enhancement under NIR irradiation, photosensitizer Rose Bengal (RB) for PDT, Cy3 for therapeutic effect prediction, and CaB substrate peptide labeled with a QSY7 quencher. The energy of UCNPs emission at 540 nm is transferred to Cy3/RB and eventually quenched by QSY7 via two continuous luminance resonance energy transfer processes from interior UCNPs to its surface-extended QSY7. The intracellular CaB specifically cleaves peptide to release QSY7, which correspondingly activates RB with reactive oxygen species (ROS) generation for PDT and recovers Cy3 luminance for CaB imaging. UCNPs emission at 540 nm remains unchanged during the peptide cleavage process, which is served as an internal standard for Cy3 luminance correction, and the fluorescence intensity ratio of Cy3 over UCNPs (FI583/FI540) is measured for self-corrected therapeutic effect prediction. The proposed self-corrected upconversion nanoprobe implies significant potential in precise tumor therapy.
Collapse
Affiliation(s)
- Yuyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Liu Q, Cheng S, Chen R, Ke J, Liu Y, Li Y, Feng W, Li F. Near-Infrared Lanthanide-Doped Nanoparticles for a Low Interference Lateral Flow Immunoassay Test. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4358-4365. [PMID: 31904925 DOI: 10.1021/acsami.9b22449] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The lateral flow immunoassay test (LFT), as a method of a point of care test, is widely used in disease diagnosis, food security, and environment observation due to its portability and testing rapidity. A fluorescence lateral flow immunoassay was developed recently to enhance the sensitivity and accuracy of the LFT. However, for most fluorescence reporters, their emission and excitation wavelengths are located in the ultraviolet or visible region. Serum or whole blood significantly absorbs and scatters light of this region, and this will result in background signal interference. In this study, we replace traditional fluorescence reporters with near-infrared lanthanide-doped nanoparticles (NIR-RENPs) to establish a NIR-LFT platform. Blood and other biological samples scatter and absorb less near-infrared light than visible light, and the autofluorescence of biological samples is rarely located in this region. Therefore, using NIR light as a signal can diminish the interference of background noise and suffer from less signal attenuation. In addition, compared with commonly used NIR organic dye, NIR-RENPs have better stability. It is promising that lateral flow immunoassays based on NIR lanthanide-doped nanoparticles are able to acquire a lower detection limit and better accuracy, and they are more suitable for application in commercial settings.
Collapse
Affiliation(s)
- Qingyun Liu
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Shengming Cheng
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Rui Chen
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Jiaming Ke
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Yawei Liu
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Yongfang Li
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Wei Feng
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| | - Fuyou Li
- Department of Chemistry , Institutes of Biomedicine Sciences , State Key Laboratory of Molecular Engineering of Polymers , and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P.R. China
| |
Collapse
|
31
|
Wang Y, Hao X, Liang L, Gao L, Ren X, Wu Y, Zhao H. A coumarin-containing Schiff base fluorescent probe with AIE effect for the copper(ii) ion. RSC Adv 2020; 10:6109-6113. [PMID: 35497414 PMCID: PMC9049598 DOI: 10.1039/c9ra10632d] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/26/2020] [Indexed: 01/12/2023] Open
Abstract
A novel coumarin-derived Cu2+-selective Schiff base fluorescent “turn-off” chemosensor CTPE was successfully obtained, which showed an AIE effect. It could identify Cu2+ by quenching its fluorescence. The lower limit of detection was 0.36 μM. CTPE can act as a highly selective and sensitive fluorescence probe for detecting Cu2+. A novel coumarin-derived Schiff base fluorescent “turn-off” chemosensor with AIE effect showed selectivity towards Cu2+. The recognition mechanism is presented.![]()
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Xiaohui Hao
- College of Physics Science and Technology
- Hebei University
- Baoding
- P. R. China
| | - Lixun Liang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Luyao Gao
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Xumin Ren
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Hongchi Zhao
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| |
Collapse
|
32
|
Jia Q, Liu Y, Duan Y, Zhou J. Interference-Free Detection of Hydroxyl Radical and Arthritis Diagnosis by Rare Earth-Based Nanoprobe Utilizing SWIR Emission as Reference. Anal Chem 2019; 91:11433-11439. [DOI: 10.1021/acs.analchem.9b02855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| |
Collapse
|
33
|
Sigaeva A, Ong Y, Damle VG, Morita A, van der Laan KJ, Schirhagl R. Optical Detection of Intracellular Quantities Using Nanoscale Technologies. Acc Chem Res 2019; 52:1739-1749. [PMID: 31187980 PMCID: PMC6639779 DOI: 10.1021/acs.accounts.9b00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Optical probes that can be used to measure certain quantities with subcellular resolution give us access to a new level of information at which physics, chemistry, life sciences, and medicine become strongly intertwined. The emergence of these new technologies is owed to great advances in the physical sciences. However, evaluating and improving these methods to new standards requires a joint effort with life sciences and clinical practice. In this Account, we give an overview of the probes that have been developed for measuring a few highly relevant parameters at the subcellular scale: temperature, pH, oxygen, free radicals, inorganic ions, genetic material, and biomarkers. Luminescent probes are available in many varieties, which can be used for measuring temperature, pH, and oxygen. Since they are influenced by virtually any metabolic process in the healthy or diseased cell, these quantities are extremely useful to understand intracellular processes. Probes for them can roughly be divided into molecular dyes with a parameter dependent fluorescence or phosphorescence and nanoparticle platforms. Nanoparticle probes can provide enhanced photostability, measurement quality, and potential for multiple functionalities. Embedding into coatings can improve biocompatibility or prevent nonspecific interactions between the probe and the cellular environment. These qualities need to be matched however with good uptake properties, colloidal properties and eventually intracellular targeting to optimize their practical applicability. Inorganic ions constitute a broad class of compounds or elements, some of which play specific roles in signaling, while others are toxic. Their detection is often difficult due to the cross-talk with similar ions, as well as other parameters. The detection of free radicals, DNA, and biomarkers at extremely low levels has significant potential for biomedical applications. Their presence is linked more directly to physiological and clinical manifestations. Since existing methods for free radical detection are generally poor in sensitivity and spatiotemporal resolution, new reliable methods that are generally applicable can contribute greatly to advancing this topic in biology. Optical methods that detect DNA or RNA and protein biomarkers exist for intracellular applications, but are mostly relevant for the development of rapid point-of-care sample testing. To elucidate the inner workings of cells, focused multidisciplinary research is required to define the validity and limitations of a nanoparticle probe, in both physical and biological terms. Multifunctional platforms and those that are easily made compatible with conventional research equipment have an edge over other techniques in growing the body of research evidencing their versatility.
Collapse
Affiliation(s)
- Alina Sigaeva
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yori Ong
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aryan Morita
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kiran J. van der Laan
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|