1
|
Reddyhoff T, Montgomery W, Suhaimee MA, Deshpande P, Xia Y, Wang P, Ewen J. Breaking the Tradeoff between Oil Film Thickness and Viscous Friction: n-Alcohol-Containing Lubricants in High-Pressure Contacts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19143-19155. [PMID: 40097275 PMCID: PMC11955952 DOI: 10.1021/acsami.4c22374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
Low-friction lubricant formulations are urgently needed to improve the energy efficiency of machines. Here, we show that blending 1-dodecanol with a hydrocarbon oil improves lubrication in nonconformal sliding/rolling contacts by simultaneously increasing hydrodynamic film thickness and reducing viscous friction. This is due to pressure-induced polymorphic phase transformations in the 1-dodecanol molecules after they flow through the film-thickness-determining inlet and reach the load-supporting zone. At relatively low pressures, 1-dodecanol forms a lamellar hexagonal solid polymorph that gives durable superlubricity and then, at higher pressures, it forms an orthorhombic polymorph. Both polymorphs cause anomalously low friction when blended into various hydrocarbon base oils over a wide range of speed, pressure, and shear rate conditions representative of rolling bearing and gear contacts. By breaking the ubiquitous tradeoff between friction and film thickness and enabling superlubricity, these blends pave the way for considerable energy efficiency improvements in widespread lubricated contacts.
Collapse
Affiliation(s)
- Tom Reddyhoff
- Department
of Mechanical Engineering, Imperial College
London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Wren Montgomery
- Science
Innovation Platform, The Natural History
Museum, Cromwell Road, South Kensington, London SW7 5BD, U.K.
| | - Muhammad Aqif Suhaimee
- Department
of Mechanical Engineering, Imperial College
London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Pushkar Deshpande
- Department
of Mechanical Engineering, Imperial College
London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Yunhao Xia
- Department
of Mechanical Engineering, Imperial College
London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - Peng Wang
- Department
of Mechanical Engineering, Imperial College
London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| | - James Ewen
- Department
of Mechanical Engineering, Imperial College
London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
| |
Collapse
|
2
|
Wang L, Zhang L, Zheng R, Du C, Yu T, Li K, Bu W, Wang D. Macroscale Superlubrication Achieved with Shear-Thinning Semisolid Lubricants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412257. [PMID: 39548934 DOI: 10.1002/adma.202412257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Macrosuperlubric materials are pivotal for reducing friction and wear in engineering applications. However, current solid superlubricants require intricate fabrication and specific conditions (e.g., vacuum or inert atmospheres), while liquid superlubricants are prone to creep, leakage, and corrosion. Here, a novel semisolid subnanometer nanowire (SNW) superlubrication material based on the shear-thinning effect is introduced to overcome these challenges. The SNWs achieve an exceptionally low friction coefficient (0.008-0.009) with silicon nitride (Si3N4) and polytetrafluoroethylene (PTFE) tribo-pairs, demonstrating a brief running-in period (≈39 s) and stable superlubrication over extended friction (12 h, >120 000 cycles). The combination of the shear-thinning network structure mechanism, the adsorption membrane mechanism, and hydrodynamic effects provides a synergistic effect, playing a crucial role in achieving superlubricity. Additionally, SNWs can be combined with various base oils to create semisolid gel lubricants with superlubricating properties. This innovative approach addresses the limitations of current superlubrication systems and introduces a new category of semisolid gel lubricants, significantly expanding the applications of superlubrication materials.
Collapse
Affiliation(s)
- Liucheng Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266104, China
| | - Runhao Zheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Changhe Du
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| | - Tongtong Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266104, China
| | - Kunpeng Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266104, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| |
Collapse
|
3
|
Dong C, Liu Y, Meng Y, Du S, Zhu S, Tian Y, Ma L. Ion-specific ice provides a facile approach for reducing ice friction. J Colloid Interface Sci 2024; 675:451-460. [PMID: 38981254 DOI: 10.1016/j.jcis.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
HYPOTHESIS Ice friction plays a crucial role in both basic study and practical use. Various strategies for controlling ice friction have been developed. However, one unsolved puzzle regarding ice friction is the effect of ion-ice interplay on its tribological properties. EXPERIMENTS AND SIMULATIONS Here, we conducted ice friction experiments and summarized the specific effects of hydrated ions on ice friction. By selecting cations and anions, the coefficient of ice friction can be reduced by more than 70 percent. Experimental spectra, low-field nuclear magnetic resonance (LF-NMR), density functional theory (DFT) calculations, and Molecular dynamics (MD) simulations demonstrated that the addition of ions could break the H-bonds in water. FINDINGS The link between the charge density of ions and the coefficients of ice friction was revealed. A part of the ice structure was changed from an ice-like to a liquid-like interfacial water structure with the addition of ions. Lower charge density ions led to weaker ionic forces with the water molecules in the immobilized water layer, resulting in free water molecules increasing in the lubricating layer. This study provides guidance for preparing ice-making solutions with low friction coefficients and a fuller understanding of the interfacial water structure at low temperatures.
Collapse
Affiliation(s)
- Chang Dong
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Yuan Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Yanan Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Shaonan Du
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Shicai Zhu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Yu Tian
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Liu H, Wang X, Zhao L, Yang S, Zhang X. Synergistic Tribological Effects of Ti 3C 2T x MXene and ZDDP under Simple Grafting Strategies for Efficient Lubrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59096-59108. [PMID: 39404742 DOI: 10.1021/acsami.4c13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
MXenes, a novel class of two-dimensional materials, possess exceptional physical and chemical properties, positioning them as promising candidates for lubricant additives. However, their potential is constrained by challenges in dispersion and stability, coupled with a paucity of research on interactions with additives in full-formula oils. In this study, hexadecylphosphonic acid (HDPA) is grafted onto Ti3C2Tx to formulate a polyalkylene glycol dispersion system. The findings reveal that the HDPA-modified Ti3C2Tx (HDPA-Ti3C2) is successfully synthesized, demonstrating superior dispersion stability and notable friction-reduction and antiwear properties. Notably, when combined with zinc dialkyl dithiophosphate (ZDDP), the HDPA-Ti3C2/ZDDP composite additive outperforms single additives in tribological performance, suggesting synergistic effects between them. This enhanced performance may be attributed to the formation of an amorphous polyphosphate tribofilm offering wear resistance, followed by the generation of a TiO2 tribofilm that further safeguards and repairs the worn surface, thereby enhancing the load-bearing capacity. Concurrently, the interlayer sliding mechanism of nanosheets, which substitutes the relative motion of the friction pair, reduces friction under boundary lubrication, ensuring prolonged effective lubrication. This work broadens the application prospects of Ti3C2Tx MXene for the design and development of commercial lubricating additives.
Collapse
Affiliation(s)
- Huanchen Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoyu Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lehao Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuyan Yang
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xia Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| |
Collapse
|
5
|
Liang H, Zou S, Liu M, Yin T, Xia X, Hua X, Fu Y, Bu Y. Highly Concentrated Electrolyte Superlubricants Enhanced by Interfacial Water Competition Around Chemically Active MgO Additives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11997-12006. [PMID: 38394677 DOI: 10.1021/acsami.3c15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The low concentration of water-based lubricants and the high chemical inertness of the additives involved are often regarded as basic norms in the design of liquid lubricants. Herein, a novel liquid superlubricant of an aqueous solution containing a relatively high concentration of salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), is reported for the first time, and the superlubricity stability and load-bearing capacity of the optimized system (MgO0.10/LiTFSI10) are effectively strengthened by the addition of only trace (0.10 wt %) water-chemically active MgO additives. It demonstrates higher applicable loads, lower COF (∼0.004), and stability relative to the base solution. Only a trace amount of MgO additive is needed for the superlubricity, which makes up for the cost and environmental deficiencies of LiTFSI10. The weak interaction region between free water and the outer-layer water of Li+ hydration shells becomes a possible ultralow shear resistance sliding interface; the Mg(OH)2 layer, generated by the reaction of MgO with water, further creates additional weakly interacting interfaces, leading to the formation of an asymmetric contact between the clusters/particles within the hydrodynamic film by moderating the competition between interfacial water and free water, thus achieving high load-bearing macroscopic superlubricity. This study deepens the contribution of electrolyte concentration to ionic hydration and superlubricity due to the low shear slip layer formed by interfacial water competition with water-activated solid additives, providing new insights into the next generation of high load-bearing water-based liquid superlubricity systems.
Collapse
Affiliation(s)
- Hongyu Liang
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shijing Zou
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Manqiang Liu
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianqiang Yin
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojie Xia
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xijun Hua
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghong Fu
- Institute of Advanced Manufacturing and Modern Equipment Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongfeng Bu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Ge X, Wu X, Shi Q, Song S, Liu Y, Wang W. Study on the Superlubricity Behavior of Ions under External Electric Fields at Steel Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18757-18767. [PMID: 38096544 DOI: 10.1021/acs.langmuir.3c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Realizing macroscopic superlubricity in the presence of external electric fields (EEFs) at the steel interfaces is still challenging. In this work, macroscopic superlubricity with a coefficient of friction value of approximately 0.008 was realized under EEFs with the lubrication of LiPF6-based ionic liquids at steel interfaces. The roles of cations and anions in the superlubricity realization under EEFs were studied. Based on the experimental results, the macroscopic superlubricity behavior of Li(PEG)PF6 under EEFs at steel interfaces is attributed to the strong hydration effect of Li+ cations and the complete reactions of anions that contributed to the formation of a boundary film on the appropriate surface. Moreover, the reduction in the number of iron oxides in the boundary film on the disc was beneficial for friction reduction. We also provide a calculation model to describe the relationship between the hydration effect and the optimal voltage position, at which the lowest friction might occur. Ultimately, this work proves that macroscopic superlubricity can be realized under EEFs at steel interfaces and provides a foundation for engineering applications of superlubricity in an electrical environment.
Collapse
Affiliation(s)
- Xiangyu Ge
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiuyu Shi
- State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
| | - Shiyi Song
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfei Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenzhong Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Han T, Zhao M, Sun C, Zhao R, Xu W, Zhang S, Singh S, Luo J, Zhang C. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42094-42103. [PMID: 37625155 DOI: 10.1021/acsami.3c09277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cations can achieve excellent hydration lubrication at smooth interfaces under both microscale and macroscale conditions due to the boundary layer composed of hydration shells surrounding charges, but what about anions? Commonly used friction pairs are negatively charged at the solid/solution interface. Achieving anionic adsorption through constructing positively charged surfaces is a prerequisite for studying the hydration lubrication of anions. Here we report the hydration layer composed of anions adsorbed on the positively charged polymer/sapphire interface at acidic electrolyte solutions with pH below the isoelectric point, which contributes to the hydration lubrication of anions. Strongly hydrated anions (for the case of SO42-) exhibit stable superlubricity comparable to cations, with strikingly low boundary friction coefficient of 0.003-0.007 under contact pressures above 15 MPa without a running-in period. The hydration lubrication performance of anions is determined by both the ionic hydration strength and ion adsorption density based on the surface potential and tribological experiments. The results shed light on the role of anions in superlubricity and hydration lubrication, which may be relevant for understanding the lubrication mechanism and improving lubrication performance in acidic environments, for example, in acid pumps, sealing rings of compressors for handling acidic media, and processing devices of nuclear waste.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Mingbo Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chuan Sun
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Ruiqi Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Wanxing Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Shumin Zhang
- Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China
| | - Sudesh Singh
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chenhui Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Sun S, Yi S, Li J, Ding Z, Song W, Luo J. Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19705-19714. [PMID: 37018161 DOI: 10.1021/acsami.3c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An amorphous carbon (a-C) film shows substantial potential for friction and wear reduction. In this work, the robust superlubricity state with a coefficient of friction of 0.002 at the maximal pressure of 1.15 GPa was realized when lithium citrate (LC) was applied as the lubricating additive in ethylene glycol (EG) to lubricate the Si3N4/a-C friction pair based on the ball-on-plate friction test. The wear rate of the a-C film was 4.5 × 10-10 mm3/N·m, which was reduced by 98.3% compared to that of the film lubricated with EG. Friction promoted the chemisorption of the LC molecules via the tribochemical reaction between the carboxylate radicals and the a-C film. The exposed lithium ions could adsorb water molecules to form a hydration layer, providing extremely low shear strength. Furthermore, the colloidal silica layer formed on the Si3N4 ball via the tribochemical reaction could reduce friction. It was difficult to destroy the formed tribochemical films under high contact pressure because they were robust, preventing the direct contact of the friction pair and resulting in the near-zero wear of the a-C film.
Collapse
Affiliation(s)
- Shouyi Sun
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Northwestern Polytechnical University (Chang'an Campus), Xi'an 710129, China
| | - Shuang Yi
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jinjin Li
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Zhengmao Ding
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Wei Song
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Du C, Yu T, Zhang L, Deng H, Shen R, Li X, Feng Y, Wang D. Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (∼1 s) through Phytic Acid-Based Complex Green Liquid Lubricants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10302-10314. [PMID: 36755437 DOI: 10.1021/acsami.2c22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid superlubricity has attracted much attention, due to its ability to significantly reduce friction on the macroscale. However, the severe wear caused by the long running-in period is still one of the bottlenecks restricting the practical application of liquid superlubricating materials. In this work, the obtained polyethylene glycol-phytic acid (PEG-PA) composite liquid lubricants showed outstanding superlubricating properties (μ ≈ 0.006) for Si3N4/glass friction pairs with an ultrashort running-in period (∼1 s) under high Hertzian contact pressure of ∼758 MPa. More importantly, even after up to 12 h (∼700 m of travel), only about 100 nm deep wear scars were found on the surface of the glass sheet (wear rate = 2.51× 10-9 mm3 N-1 m-1). From the molecular point of view, the water molecules anchored between the two friction pairs have extremely low shear force during the friction process, and the strong hydrogen bond interaction between PEG and PA greatly improves the bearing capacity of the lubricant. This work addresses the challenge of liquid superlubricant simultaneously exhibiting low shear force and high load-carrying capacity and makes it possible to obtain liquid superlubrication performance with an extremely short running-in time.
Collapse
Affiliation(s)
- Changhe Du
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| | - Haoyu Deng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Shen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojuan Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| |
Collapse
|
10
|
Macroscale Superlubricity of Black Phosphorus Quantum Dots. LUBRICANTS 2022. [DOI: 10.3390/lubricants10070158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present work, Black Phosphorus Quantum Dots (BPQDs) were synthesized via sonication-assisted liquid-phase exfoliation. The average size of the BPQDs was 3.3 ± 0.85 nm. The BPQDs exhibited excellent dispersion stability in ultrapure water. Macroscale superlubricity was realized with the unmodified BPQDs on rough Si3N4/SiO2 interfaces. A minimum coefficient of friction (COF) of 0.0022 was achieved at the concentration of 0.015 wt%. In addition, the glycerol was introduced to promote the stability of the superlubricity state. The COF of the BPQDs-Glycerol aqueous solution (BGaq) was 83.75% lower than that of the Glycerol aqueous solution (Gaq). Based on the above analysis, the lubrication model was presented. The hydrogen-bonded network and silica gel layer were formed on the friction interface, which played a major role in the realization of macroscale superlubricity. In addition, the adsorption water layer could also prevent the worn surfaces from making contact with each other. Moreover, the synergistic effect between BPQDs and glycerol could significantly decrease the COF and maintain the superlubricity state. The findings theoretically support the realization of macroscale superlubricity with unmodified BPQDs as a water-based lubrication additive.
Collapse
|
11
|
Ge X, Chai Z, Shi Q, Liu Y, Tang J, Wang W. Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts. MATERIALS 2022; 15:ma15103546. [PMID: 35629573 PMCID: PMC9143536 DOI: 10.3390/ma15103546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
In this study, graphene oxide (GO) nanoflakes and lithium salt (LiPF6) were utilized as lubrication additives in ether bond−containing dihydric alcohol aqueous solutions (DA(aq)) to improve lubrication performances. The apparent friction reduction and superlubricity were realized at the Si3N4/sapphire interface. The conditions and laws for superlubricity realization have been concluded. The underlying mechanism was the synergy effect of GO and LiPF6. It was proven that a GO adsorption layer was formed at the interface, which caused the shearing interface to transfer from solid asperities to GO interlayers (weak interlayer interactions), resulting in friction reduction and superlubricity realization. In addition to the GO adsorption layer, a boundary layer containing phosphates and fluorides was formed by tribochemical reactions of LiPF6 and was conducive to low friction. Additionally, a fluid layer contributed to friction reduction as well. This work proved that GO−family materials are promising for friction reduction, and provided new insights into realizing liquid superlubricity at macroscale by combining GO with other materials.
Collapse
Affiliation(s)
- Xiangyu Ge
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (Z.C.); (J.T.); (W.W.)
| | - Zhiyuan Chai
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (Z.C.); (J.T.); (W.W.)
| | - Qiuyu Shi
- State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China;
| | - Yanfei Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (Z.C.); (J.T.); (W.W.)
- Correspondence:
| | - Jiawei Tang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (Z.C.); (J.T.); (W.W.)
| | - Wenzhong Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (Z.C.); (J.T.); (W.W.)
| |
Collapse
|
12
|
Wang J, Liu C, Miao K, Zhang K, Zheng W, Chen C. Macroscale Robust Superlubricity on Metallic NbB 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103815. [PMID: 35266647 PMCID: PMC9069360 DOI: 10.1002/advs.202103815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Robust superlubricity (RSL), defined by concurrent superlow friction and wear, holds great promise for reducing material and energy loss in vast industrial and technological operations. Despite recent advances, challenges remain in finding materials that exhibit RSL on macrolength and time scales and possess vigorous electrical conduction ability. Here, the discovery of RSL is reported on hydrated NbB2 films that exhibit vanishingly small coefficient of friction (0.001-0.006) and superlow wear rate (≈10-17 m3 N-1 m-1 ) on large length scales reaching millimeter range and prolonged time scales lasting through extensive loading durations. Moreover, the measured low resistivity (≈10-6 Ω m) of the synthesized NbB2 film indicates ample capability for electrical conduction, extending macroscale RSL to hitherto largely untapped metallic materials. Pertinent microscopic mechanisms are elucidated by deciphering the intricate load-driven chemical reactions that generate and sustain the observed superlubricating state and assessing the strong stress responses under diverse strains that produce the superior durability.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
- Department of Materials Science and EngineeringJilin Jianzhu UniversityChangchun130118China
| | - Chang Liu
- International Center for Computational Methods and SoftwareCollege of PhysicsJilin UniversityChangchun130012China
| | - Kaifei Miao
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
| | - Kan Zhang
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
| | - Weitao Zheng
- State Key Laboratory of Superhard MaterialsDepartment of Materials Science and Key Laboratory of Automobile MaterialsMOEJilin UniversityChangchun130012China
| | - Changfeng Chen
- Department of Physics and AstronomyUniversity of Nevada, Las VegasLas VegasNV89154USA
| |
Collapse
|
13
|
Luo C, Jiang Y, Liu Y, Wang Y, Sun J, Qian L, Chen L. Role of Interfacial Bonding in Tribochemical Wear. Front Chem 2022; 10:852371. [PMID: 35464217 PMCID: PMC9019232 DOI: 10.3389/fchem.2022.852371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tribochemical wear of contact materials is an important issue in science and engineering. Understanding the mechanisms of tribochemical wear at an atomic scale is favorable to avoid device failure, improve the durability of materials, and even achieve ultra-precision manufacturing. Hence, this article reviews some of the latest developments of tribochemical wear of typical materials at micro/nano-scale that are commonly used as solid lubricants, tribo-elements, or structural materials of the micro-electromechanical devices, focusing on their universal mechanisms based on the studies from experiments and numerical simulations. Particular focus is given to the fact that the friction-induced formation of interfacial bonding plays a critical role in the wear of frictional systems at the atomic scale.
Collapse
Affiliation(s)
- Chunsheng Luo
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yilong Jiang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yangqin Liu
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yang Wang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junhui Sun
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Junhui Sun, ; Lei Chen,
| | - Linmao Qian
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu, China
| | - Lei Chen
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Junhui Sun, ; Lei Chen,
| |
Collapse
|
14
|
Liu J, Dong C, Lu X, Qiao Z, Zhou F, Liu W, Riedel R. Sn-containing Si3N4-based composites for adaptive excellent friction and wear in a wide temperature range. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Voroshylova IV, Ers H, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro MNDS. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid-Au Interface. J Phys Chem Lett 2020; 11:10408-10413. [PMID: 33253582 DOI: 10.1021/acs.jpclett.0c03212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this Letter, we report the first observation of the capacitance-potential hysteresis at the ionic liquid | electrode interface in atomistic molecular dynamics simulations. While modeling the differential capacitance dependence on the potential scan direction, we detected two long-living types of interfacial structure for the BMImPF6 ionic liquid at specific charge densities of the gold Au(111) surface. These structures differ in how counterions overscreen the surface charge. The high barrier for the transition from one structure to another slows down the interfacial restructuring process and leads to the marked capacitance-potential hysteresis.
Collapse
Affiliation(s)
- Iuliia V Voroshylova
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Heigo Ers
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - Piret Pikma
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
16
|
Han T, Yi S, Zhang C, Li J, Chen X, Luo J, Banquy X. Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes. J Colloid Interface Sci 2020; 579:479-488. [PMID: 32622097 DOI: 10.1016/j.jcis.2020.06.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Superlubricity is known to dramatically reduce frictional energy consumption and to improve service life of mechanical devices and biological systems. However, reduction of wear during the running-in period of friction pairs, especially under high contact pressures, still remains an unresolved issue affecting all machines. EXPERIMENTS Here the lubrication, adsorption, and conformational properties of hydrated ions and polyethylene glycol (PEG) mixtures were evaluated at different mass fractions and concentrations of PEG and salts by ball-on-disc tribometer, ζ-potential, quartz crystal microbalance with dissipation (QCM-D), and dynamic light scatting (DLS) analyses. FINDINGS These mixtures exhibited superlubricity between Si3N4 and sapphire surfaces in a wide range of concentrations and ions valency. Interestingly, a running-in phase shorter than 1 min and low wear rate of 1.85 μm3/(N·m) were observed at contact pressures up to 555 MPa, significantly higher to earlier findings. PEG chains retain random coils filling the bulk of the interfacial film without strongly adsorbing on the interfaces but significantly increasing the viscosity of lubricating film, thereby favoring hydrodynamic lubrication. Hydrated ions are strongly adsorbed on the negatively charged ceramic surfaces, ensuring a sustained hydration effect maintaining superlubricity. The outstanding lubrication characteristics of the PEG/ions mixtures were attributed to the synergistic action of hydration and hydrodynamic lubrication, which appears as a promising avenue for developing new green lubricants and has implications for industrial and biological applications.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Shuang Yi
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Chenhui Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Jinjin Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xinchun Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
17
|
Liu Y, Li J, Ge X, Yi S, Wang H, Liu Y, Luo J. Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18859-18869. [PMID: 32233416 DOI: 10.1021/acsami.0c01515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Introduction of graphene-family nanoflakes in liquid results in a reduction in friction and enhanced wear resistance. However, the high demand for dispersity and stability of the nanoflakes in liquid largely restricted the choice of graphene-family nanoflakes thus far. This study proposed a new strategy to overcome this limitation, involving the formation of a graphene coating with deposited graphene-family nanoflakes, followed by the lubrication of the coating with glycerol solution. Pristine graphene (PG), fluorinated graphene (FG), and graphene oxide (GO) nanoflakes were chosen to be deposited on the respective SiO2 substrates to form graphene coatings, and then an aqueous solution of glycerol was used as lubricant. The coefficient of friction (COF) and wear rate were reduced for all deposited coatings. However, the PG coating exhibited better lubrication and antiwear performance than FG and GO coatings. A robust superlubricity with COF of approximately 0.004 can be achieved by combining glycerol with the PG coating. The superlubricity mechanism was attributed to the formation of a tribofilm, mainly composed of graphene nanoflakes in the contact zone. The extremely low friction achieved on the hydrophobic graphene coating with liquid can aid in the development of a high-performing new lubrication system for industrial applications.
Collapse
Affiliation(s)
- Yanfei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jinjin Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xiangyu Ge
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Shuang Yi
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongdong Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Chen G, Zhao J, Chen K, Liu S, Zhang M, He Y, Luo J. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:852-861. [PMID: 31898907 DOI: 10.1021/acs.langmuir.9b03214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aqueous lubrication in nature is attracting increasing attention in the tribological fields for reducing friction energy consumption and improving anti-wear durability. Generally, adding nanolubricant additives is one of the most important strategies to effectively enhance the interface performance under boundary lubrication via the formation of a protective tribofilm on rubbing surfaces. However, the adsorbed tribofilms are unstable and are prone to failure during friction, and the interaction mechanism between the tribofilms and frictional interfaces is partly disclosed. In this study, inspired by mussels, an in situ-assembled polydopamine (PDA) tribofilm is achieved with PDA nanoparticles as aqueous lubricant additives, which shows excellent lubrication properties. The coefficient of friction is interface-independent and is reduced by as much as 83%. The results show that the PDA tribofilm can not only form chemical bonding with metal interfaces but also present a synergistic lubrication effect with the upper ceramic surface. Especially, a self-repairing effect of the PAD tribofilm is observed, by which the ultrastable lubricating properties can be achieved during friction, and thus, the friction and wear can be effectively controlled. This work provides an effective method for improving the interface stability of friction pairs under aqueous lubrication and also shows great meaning for industrial applications.
Collapse
Affiliation(s)
- Guangyan Chen
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| | - Jun Zhao
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology , No. 15 North Third Ring Road East, Chaoyang District , Beijing 100029 , China
| | - Kai Chen
- School of Materials Science and Engineering , China University of Mining and Technology , No. 1 University Road, Quanshan District , Xuzhou 221116 , China
| | - Siyu Liu
- School of Materials Science and Engineering , China University of Mining and Technology , No. 1 University Road, Quanshan District , Xuzhou 221116 , China
| | - Minyi Zhang
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| | - Yongyong He
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| | - Jianbin Luo
- State Key Laboratory of Tribology , Tsinghua University , No. 30 Shuangqing Road, Haidian District , Beijing 100084 , China
| |
Collapse
|
19
|
Han T, Zhang C, Li J, Yuan S, Chen X, Zhang J, Luo J. Origins of Superlubricity Promoted by Hydrated Multivalent Ions. J Phys Chem Lett 2020; 11:184-190. [PMID: 31826621 DOI: 10.1021/acs.jpclett.9b03098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strong hydration repulsion exists between two negatively charged surfaces in the alkali metal salt solutions, together with the fluid response to the shear of hydration layers, leading to superlubricity. However, whether the multivalent ions can obtain superlubricity has not been revealed yet. Here, we evaluate the lubrication and adsorption properties of multivalent ions at different concentrations between Si3N4 and sapphire surfaces. The divalent and trivalent ions exhibit extremely low friction coefficients of 0.005-0.006 and 0.002-0.004, respectively, under contact pressures above 0.25 GPa, and three trivalent ions can achieve superlubricity at quite low sliding speeds (3.1 mm/s), which is a significant breakthrough for superlubricity under boundary lubrication. Moreover, compared with monovalent ions, divalent ions can reduce surface potential and lower surface charge density even further, and trivalent ions can neutralize the negatively charged ceramic surfaces and even lead to charge inversion due to excess adsorption of the cations, which ensures strong adsorption of hydrated multivalent ions on friction surfaces.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , China
| | - Chenhui Zhang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , China
| | - Jinjin Li
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , China
| | - Shihua Yuan
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , China
| | - Xinchun Chen
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , China
| | - Jiyang Zhang
- Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms , Beijing Institute of Control Engineering , Beijing 100084 , China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084 , China
| |
Collapse
|
20
|
Ta HT, Tieu AK, Zhu H, Yu H, Tran NV, Tran BH, Wan S, Ta TD. Ab initio study on physical and chemical interactions at borates and iron oxide interface at high temperature. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Jia W, Bai P, Zhang W, Ma L, Meng Y, Tian Y. On Lubrication States after a Running-In Process in Aqueous Lubrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15435-15443. [PMID: 31125241 DOI: 10.1021/acs.langmuir.9b01105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, many studies have reported the ultralow friction coefficient of sliding friction between rigid solid surfaces in aqueous lubrication. A running-in process that goes through high-friction and friction-decreasing regions to a stable ultralow friction region is often required. However, the role of the friction-decreasing region is often ascribed to tribofilm formation in which complexity hindered the quantitative description of the running-in process and the prediction of its subsequent lubrication state. In this work, the frictional energy (Ef) dissipated in the running-in process of a poly(oligo(ethylene glycol) methyl ether acrylate) aqueous lubrication was related to the wear of solid surfaces under different conditions and lubrication states. Experimental results indicated that the high-friction region was in a boundary lubrication state, contributed to most of the wear, and significantly reduced the contact pressure, whereas the friction-decreasing region was in a mixed lubrication state, contributed only to the slight and slow removal of materials, and slightly reduced the contact pressure. Therefore, by establishing relationships among the wear scar diameter, Ef, and the Stribeck curve of the tribological system, the subsequent lubrication state after a running-in process under various working loads and sliding speeds could be quantitatively predicted. The running-in experiments with different aqueous lubrication systems showed good agreement with the prediction of this method. This investigation provides an effective method for the wear and lubrication state prediction after a running-in process, further proving the importance of the Stribeck curve for a lubrication system. This study may also have important implications for the strategy design of the running-in process in various industrial applications.
Collapse
Affiliation(s)
- Wenpeng Jia
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Pengpeng Bai
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Wenling Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Liran Ma
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yonggang Meng
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|