1
|
Keo P, Yan T, Wang J, Zhang X, Shi Y, Jie J. Anchored epitaxial growth of single-oriented one-dimensional organic nanowires towards their integration into field-effect transistors and polarization-sensitive photodetector arrays. RSC Adv 2025; 15:9891-9898. [PMID: 40165916 PMCID: PMC11956851 DOI: 10.1039/d4ra08354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The deliberate assembly of organic small molecules into single-oriented one-dimensional (1D) nanowires is essential for the large-scale, on-chip integration of organic nanowire-based (opto)electronic devices. However, achieving single-oriented 1D organic nanowires remains a considerable challenge, predominantly attributed to the intricate nucleation and growth behaviors of the molecules. Herein, an anchored epitaxial growth method was developed to facilitate the single-oriented growth of 1D organic nanowires using the parallel nanogrooves on the annealed sapphire as anchoring seed crystal templates. The depth of the nanogrooves was greater than the length of the molecules, enabling the molecules to be embedded into the V-shaped nanogrooves and to form anchored nuclei during the physical vapor deposition process. Subsequently, these nuclei exhibited directional epitaxial growth along the nanogrooves, resulting in the formation of single-oriented 1D organic nanowires. Various organic small molecule 1D nanowires with uniform molecular packing and orientation were obtained and utilized for subsequent device integration. 2,7-Dioctyl[1]benzothiophene (C8-BTBT) was used as a model material, and the flexible organic field-effect transistor (OFET) based on the single C8-BTBT nanowire exhibited a mobility of up to 1.5 cm2 V-1 s-1. Benefiting from high mobility and uniform orientation, the integrated polarization-sensitive photodetector arrays based on 1D C8-BTBT nanowires exhibited a high dichroic ratio of up to 2.83, which was higher than those of some previously investigated 1D nanowires and two-dimensional materials. This work presents new opportunities to fabricate single-oriented 1D organic nanowires for integrated devices.
Collapse
Affiliation(s)
- Phetluengxay Keo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Tingyi Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jinwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
| |
Collapse
|
2
|
Wu T, Tan L, Feng Y, Zheng L, Li Y, Sun S, Liu S, Cao J, Yu Z. Toward Ultrathin: Advances in Solution-Processed Organic Semiconductor Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61530-61550. [PMID: 39479971 DOI: 10.1021/acsami.4c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In recent years, organic semiconductor (OSC) ultrathin films and their solution-processed organic field-effect transistors (OFETs) have garnered attention for their high flexibility, light weight, solution processability, and tunable optoelectronic properties. These features make them promising candidates for next-generation optoelectronic applications. An ultrathin film typically refers to a film thickness of less than 10 nm, i.e., several molecular layers, which poses challenges for OSC materials and solution-processed methods. In this paper, first we introduce the carrier-transport regulation mechanism under ultrathin limits. Second, we summarize various solution-processed techniques for OSC ultrathin films and elucidate advances in their OFETs performance, such as enhanced or maintained mobilities, improved switching ratios, reduced threshold voltages, and minimized contact resistance. The relationship between the ultrathin-film thickness, microstructure of various OSCs (small molecules and polymers), and device performance is discussed. Third, we explore the recent application of OSC ultrathin-film-based OFETs, such as gas sensors, biosensors, photodetectors, and ferroelectric OFETs (Fe-OFETs). Finally, the conclusion is drawn, and the challenges and prospects of ultrathin OSC transistors are presented. Nowadays, research on ultrathin films is still in its early stages; further experience in precise film deposition control is crucial to advancing research and broadening the scope of applications for OSC ultrathin devices.
Collapse
Affiliation(s)
- Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Lin Tan
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yuguang Feng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Luyao Zheng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yongpeng Li
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengtao Sun
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengzhen Liu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Jin Cao
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Zhaohui Yu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| |
Collapse
|
3
|
Georgiou K, Athanasiou M, Jayaprakash R, Lidzey DG, Itskos G, Othonos A. Strong coupling in mechanically flexible free-standing organic membranes. J Chem Phys 2023; 159:234303. [PMID: 38112504 DOI: 10.1063/5.0178144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Strong coupling of a confined optical field to the excitonic or vibronic transitions of a molecular material results in the formation of new hybrid states called polaritons. Such effects have been extensively studied in Fabry-Pèrot microcavity structures where an organic material is placed between two highly reflective mirrors. Recently, theoretical and experimental evidence has suggested that strong coupling can be used to modify chemical reactivity as well as molecular photophysical functionalities. However, the geometry of conventional microcavity structures limits the ability of molecules "encapsulated" in a cavity to interact with their local environment. Here, we fabricate mirrorless organic membranes that utilize the refractive index contrast between the organic active material and its surrounding medium to confine an optical field with Q-factor values up to 33. Using angle-resolved white light reflectivity measurements, we confirm that our structures operate in the strong coupling regime, with Rabi-splitting energies between 60 and 80 meV in the different structures studied. The experimental results are matched by transfer matrix and coupled oscillator models that simulate the various polariton states of the free standing membranes. Our work demonstrates that mechanically flexible and easy-to-fabricate free standing membranes can support strong light-matter coupling, making such simple and versatile structures highly promising for a range of polariton applications.
Collapse
Affiliation(s)
- Kyriacos Georgiou
- Department of Physics, Laboratory of Ultrafast Science, University of Cyprus, Nicosia 1678, Cyprus
| | - Modestos Athanasiou
- Department of Physics, Experimental Condensed Matter Physics Laboratory, University of Cyprus, Nicosia 1678, Cyprus
| | - Rahul Jayaprakash
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - David G Lidzey
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - Grigorios Itskos
- Department of Physics, Experimental Condensed Matter Physics Laboratory, University of Cyprus, Nicosia 1678, Cyprus
| | - Andreas Othonos
- Department of Physics, Laboratory of Ultrafast Science, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
4
|
Gong H, Lin J, Sun H. Nanocrystal Array Engineering and Optoelectronic Applications of Organic Small-Molecule Semiconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2087. [PMID: 37513098 PMCID: PMC10386679 DOI: 10.3390/nano13142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance. The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen bonds, van der Waals forces, and π-π interactions, which are very sensitive to external stimuli such as mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is a key step towards practical application. To resolve this problem, many conventional nanocrystal array preparation methods have been developed, such as spin coating, etc. In this review, the typical and recent progress of nanocrystal array engineering are summarized. It is the typical and recent innovations that the array of nanocrystal array engineering can be patterned on the substrate through top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned by constructing a series of microscopic structures. Finally, various multifunctional and emerging applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.
Collapse
Affiliation(s)
- Haoyu Gong
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huibin Sun
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
6
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. SMALL METHODS 2022; 6:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Solution-processing approaches are widely used for controlling the aggregation structure of organic semiconductors because they are fast, efficient, and have strong practicability. Effective regulation of the aggregation structure of molecules to achieve highly ordered molecular stacking is key to realizing effective carrier transport and high-performance devices. Numerous studies have achieved highly aligned organic semiconductors using different solution-processing approaches. This article provides a detailed review of the prevalent solution-processing technologies and emerging methods developed over the past few years for the alignment of organic semiconducting materials. These technologies and methods are classified according to the processing principle. This review focuses on the principles of different experimental techniques, improvements upon the conventional methods, and state-of-the-art performance of resulting devices. In addition, a brief discussion of the characteristics and development prospects of various methods is presented.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Chen S, Ma X, Cai Z, Long H, Wang X, Li Z, Qu Z, Zhang F, Qiao Y, Song Y. A Direct Writing Approach for Organic Semiconductor Single-Crystal Patterns with Unique Orientation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200928. [PMID: 35315543 DOI: 10.1002/adma.202200928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Organic semiconductor single-crystal (OSSC) patterns with precisely controlled orientation are of great significance to the integrated fabrication of devices with high and uniform performance. However, it is still challenging to achieve purely oriented OSSC patterns due to the complex nucleation and growth process of OSSCs. Here, a general direct writing approach is presented to readily obtain high-quality OSSC patterns with unique orientation. In specific, a direct writing method is demonstrated wherein the microscale meniscus is manipulated, which makes it possible to precisely control the nucleation and growth process of the OSSC because of its comparable size to the crystal nuclei. The resulting OSSC patterns are highly crystalline and purely oriented, in which each ribbon crystal shows a deviation angle of 33° to the printing direction. The mechanism of orientation purification is revealed experimentally and theoretically, and the results show that the TCL deformation caused by the difference in wettability and adhesive force, as well as the asymmetry of fluid concentration distribution, are the key factors leading to the selective deposition and unique orientation. Moreover, organic field-effect transistors (OFETs) and polarization-sensitive photodetectors are prepared based on the OSSC patterns with unique orientation, which exhibit higher device performance compared to the non-purely oriented crystal-based OFETs.
Collapse
Affiliation(s)
- Shengnan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoying Ma
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheren Cai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoran Long
- State Key Laboratory of Superlattices and Microstructures Institute of Semiconductors, Beijing, 100083, P. R. China
- Chinese Academy of Sciences & Center of Materials Science and Optoelectronics University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Superlattices and Microstructures Institute of Semiconductors, Beijing, 100083, P. R. China
- Chinese Academy of Sciences & Center of Materials Science and Optoelectronics University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Zhiyuan Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengjiao Zhang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Mitobe R, Sasaki Y, Tang W, Zhou Q, Lyu X, Ohshiro K, Kamiko M, Minami T. Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22903-22911. [PMID: 35040626 DOI: 10.1021/acsami.1c21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein report an organic field-effect transistor (OFET) based chemical sensor for multi-oxyanion detection with pattern recognition techniques. The oxyanions ubiquitously play versatile roles in biological systems, and accessing the chemical information they provide would potentially facilitate fundamental research in diagnosis and pharmacology. In this regard, phosphates in human blood serum would be a promising indicator for early case detection of significant diseases. Thus, the development of an easy-to-use chemical sensor for qualitative and quantitative detection of oxyanions is required in real-world scenarios. To this end, an extended-gate-type OFET has been functionalized with a metal complex consisting of 2,2'-dipicolylamine and a copper(II) ion (CuII-dpa), allowing a compact chemical sensor for oxyanion detection. The OFET combined with a uniform CuII-dpa-based self-assembled monolayer (SAM) on the extended-gate gold electrode shows a cross-reactive response, which suggests a discriminatory power for pattern recognition. Indeed, the qualitative detection of 13 oxyanions (i.e., hydrogen monophosphate, pyrophosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, terephthalate, phthalate, isophthalate, malonate, oxalate, lactate, benzoate, and acetate) has been demonstrated by only using a single OFET-based sensor with linear discriminant analysis, which has shown 100% correct classification. The OFET has been further applied to the quantification of hydrogen monophosphate in human blood serum using a support vector machine (SVM). The multiple predictions of hydrogen monophosphate at 49 and 89 μM have been successfully realized with low errors, which indicates that the OFET-based sensor with pattern recognition techniques would be a practical sensing platform for medical assays. We believe that a combination of the OFET functionalized with the SAM-based recognition scaffold and powerful pattern recognition methods can achieve multi-analyte detection from just a single sensor.
Collapse
Affiliation(s)
- Riho Mitobe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
10
|
Lee JC, Seo H, Lee M, Kim D, Lee HS, Park H, Ball N, Woo J, Kim SY, Nam J, Park S. Investigation of the Effect of 3D Meniscus Geometry on Fluid Dynamics and Crystallization via In Situ Optical Microscopy-Assisted Mathematical Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105035. [PMID: 34617325 DOI: 10.1002/adma.202105035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Solution-based thin-film solidification is a complex process involving various transport phenomena that are intricately dependent on multiple experimental parameters. The difficulty of analyzing this process experimentally or conducting exact numerical simulation make it challenging to understand, predict, and control the solidification process. In this work, a simple and effective technique to analyze the thin-film solidification process during solution shearing, based on 3D geometrical model of the meniscus, is proposed. The 3D meniscus geometry, which changes depending on the experimental parameters, is attained using high-speed side-view and top-view in situ microscopy. Thereafter, mass and momentum transport mathematical models are applied to obtain numerical solutions of transport phenomena within the meniscus. Utilizing these results, the underlying mechanism of dendritic growth of small molecule organic semiconductor is elucidated, which has previously been unknown. The 3D meniscus modeling is particularly important for this analysis, as dendrite formation is strongly dependent on the meniscus geometry near the contact line and mass transport variation perpendicular to the coating direction. This technique enables the study of complex relationship between experimental parameters and solidification process, which is widely applicable to various materials and coating systems; whereby, better understanding of thin-film growth and device performance optimization is possible.
Collapse
Affiliation(s)
- Jeong-Chan Lee
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeji Seo
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minho Lee
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjae Kim
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeon Seok Lee
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunmin Park
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Nathaniel Ball
- Department of Mechanical and Aerospace Engineering, University of Florida (UF), Gainesville, 32611, USA
| | - Junhee Woo
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Su Yeong Kim
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewook Nam
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Steve Park
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, Saudi Aramco-KAIST CO2 Management Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Zhang Y, Chen A, Kim MW, Alaei A, Lee SS. Nanoconfining solution-processed organic semiconductors for emerging optoelectronics. Chem Soc Rev 2021; 50:9375-9390. [PMID: 34231620 DOI: 10.1039/d1cs00430a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-processable organic materials for emerging electronics can generally be divided into two classes of semiconductors, organic small molecules and polymers. The theoretical thermodynamic limits of device performance are largely determined by the molecular structure of these compounds, and advances in synthetic routes have led to significant progress in charge mobilities and light conversion and light emission efficiencies over the past several decades. Still, the uncontrolled formation of out-of-equilibrium film microstructures and unfavorable polymorphs during rapid solution processing remains a critical bottleneck facing the commercialization of these materials. This tutorial review provides an overview of the use of nanoconfining scaffolds to impose order onto solution-processed semiconducting films to overcome this limitation. For organic semiconducting small molecules and polymers, which typically exhibit strong crystal growth and charge transport anisotropy along different crystallographic directions, nanoconfining crystallization within nanopores and nanogrooves can preferentially orient the fast charge transport direction of crystals with the direction of current flow in devices. Nanoconfinement can also stabilize high-performance metastable polymorphs by shifting their relative Gibbs free energies via increasing the surface area-to-volume ratio. Promisingly, such nanoconfinement-induced improvements in film and crystal structures have been demonstrated to enhance the performance and stability of emerging optoelectronics that will enable large-scale manufacturing of flexible, lightweight displays and solar cells.
Collapse
Affiliation(s)
- Yuze Zhang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | | | | | | | | |
Collapse
|
12
|
Barani Z, Kargar F, Ghafouri Y, Baraghani S, Sudhindra S, Mohammadzadeh A, Salguero TT, Balandin AA. Electromagnetic-Polarization-Selective Composites with Quasi-1D Van der Waals Fillers: Nanoscale Material Functionality That Mimics Macroscopic Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21527-21533. [PMID: 33929179 DOI: 10.1021/acsami.1c03204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on the preparation of flexible polymer composite films with aligned metallic fillers composed of atomic chain bundles of quasi-one-dimensional (1D) van der Waals material, tantalum triselenide (TaSe3). The material functionality, embedded at the nanoscale level, is achieved by mimicking the design of an electromagnetic aperture grid antenna. The processed composites employ chemically exfoliated TaSe3 nanowires as the grid building blocks incorporated within the thin film. Filler alignment is achieved using the "blade coating" method. Measurements conducted in the X-band frequency range demonstrate that the electromagnetic transmission through such films can be varied significantly by changing the relative orientations of the quasi-1D fillers and the polarization of the electromagnetic wave. We argue that such polarization-sensitive polymer films with unique quasi-1D metallic fillers are applicable to advanced electromagnetic interference shielding in future communication systems.
Collapse
Affiliation(s)
- Zahra Barani
- Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Fariborz Kargar
- Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yassamin Ghafouri
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Saba Baraghani
- Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Sriharsha Sudhindra
- Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Amirmahdi Mohammadzadeh
- Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Tina T Salguero
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Alexander A Balandin
- Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
- Material Science and Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
13
|
Lin CC, Afraj SN, Velusamy A, Yu PC, Cho CH, Chen J, Li YH, Lee GH, Tung SH, Liu CL, Chen MC, Facchetti A. A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS NANO 2021; 15:727-738. [PMID: 33253536 DOI: 10.1021/acsnano.0c07003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 3,5-dithiooctyl dithienothiophene based small molecular semiconductor DDTT-DSDTT (1), end functionalized with fused dithienothiophene (DTT) units, was synthesized and characterized for organic field effect transistors (OFET). The thermal, optical, electrochemical, and computed electronic structural properties of 1 were investigated and contrasted. The single crystal structure of 1 reveals the presence of intramolecular locks between S(alkyl)···S(thiophene), with a very short S-S distance of 3.10 Å, and a planar core. When measured in an OFET device compound 1 exhibits a hole mobility of 3.19 cm2 V-1 s-1, when the semiconductor layer is processed by a solution-shearing deposition method and using environmentally acceptable anisole as the solvent. This is the highest value reported to date for an all-thiophene based molecular semiconductor. In addition, solution-processed small molecule/insulating polymer (1/PαMS) blend films and devices were investigated. Morphological analysis reveals a nanoscopic vertical phase separation with the PαMS layer preferentially contacting the dielectric and 1 located on top of the stack. The OFET based on the blend comprising 50% weight of 1 exhibits a hole mobility of 2.44 cm2 V-1 s-1 and a very smaller threshold voltage shift under gate bias stress.
Collapse
Affiliation(s)
- Chia-Chi Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N Afraj
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Arulmozhi Velusamy
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Po-Chun Yu
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chang-Hui Cho
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jianhua Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi-Hsien Li
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Lee JC, Lee M, Lee HJ, Ahn K, Nam J, Park S. Numerical Simulations and In Situ Optical Microscopy Connecting Flow Pattern, Crystallization, and Thin-Film Properties for Organic Transistors with Superior Device-to-Device Uniformity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004864. [PMID: 33084113 DOI: 10.1002/adma.202004864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Currently, due to the lack of precise control of flow behavior and the understanding of how it influences thin-film crystallization, strict tuning of thin-film properties during solution-based coating is difficult. In this work, a continuous-flow microfluidic-channel-based meniscus-guided coating (CoMiC) is introduced, which is a system that enables manipulation of flow patterns and analysis connecting flow pattern, crystallization, and thin-film properties. Continuous supply of a solution of an organic semiconductor with various flow patterns is generated using microfluidic channels. 3D numerical simulations and in situ microscopy allow the tracking of the flow pattern along its entire path (from within the microfluidic channel to near the liquid-solid boundary), and enable direct observation of thin-film crystallization process. In particular, the generation of chaotic flow results in unprecedented device-to-device uniformity, with coefficient of variation (CV) of 7.3% and average mobility of 2.04 cm2 V-1 s-1 in doped TIPS-pentacene. Furthermore, CV and average mobility of 9.6% and 11.4 cm2 V-1 s-1 are achieved, respectively, in a small molecule:polymer blend system. CoMiC can serve as a guideline for elucidating the relation between flow behavior, liquid-to-solid phase transition, and device performance, which has thus far been unknown.
Collapse
Affiliation(s)
- Jeong-Chan Lee
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minho Lee
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho-Jun Lee
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwangguk Ahn
- Department of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaewook Nam
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
| | - Steve Park
- Organic and Nano Electronics Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Jo Y, Oh JG, Kim C, An TK, Jang J, Lee J. Synthetic strategy for thienothiophene-benzotriazole-based polymers with high backbone planarity and solubility for field-effect transistor applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Zhu H, Fu C, Mitsuishi M. Organic ferroelectric field‐effect transistor memories with
poly(vinylidene fluoride)
gate insulators and conjugated semiconductor channels: a review. POLYM INT 2020. [DOI: 10.1002/pi.6029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huie Zhu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | - Chang Fu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | | |
Collapse
|
17
|
Chou LH, Na Y, Park CH, Park MS, Osaka I, Kim FS, Liu CL. Semiconducting small molecule/polymer blends for organic transistors. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Large-scale patterning of π-conjugated materials by meniscus guided coating methods. Adv Colloid Interface Sci 2020; 275:102080. [PMID: 31809990 DOI: 10.1016/j.cis.2019.102080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022]
Abstract
Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.
Collapse
|
19
|
Kim K, Nam K, Li X, Lee DY, Kim SH. Programmed Design of Highly Crystalline Organic Semiconductor Patterns with Uniaxial Alignment via Blade Coating for High-Performance Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42403-42411. [PMID: 31617995 DOI: 10.1021/acsami.9b12765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A solution-printing technique that enables the patterning and aligning of organic semiconducting crystals is necessary for their practical application. Here, we report the facile growth of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) semiconducting crystal patterns via a novel blade-coating technique. Defining low/high shearing-speed regions alternatively in a programmed manner enables the growth of TIPS-PEN crystals in low-speed regions and their patterning in high-speed regions. Various crystal-analysis tools, including polarized UV-vis absorption spectroscopy, grazing-incidence wide-angle X-ray scattering, and near-edge X-ray absorption fine structure, reveal that a crystal grown at an optimum shearing speed is highly oriented along the shearing direction with high crystallinity, and its molecules have a more edge-on orientation for efficient lateral-charge transport. As a result, organic field-effect transistors comprised of these crystals show a high field-effect mobility of up to 1.74 cm2/(V s). In addition, various crystal patterns can be created by simply changing the programming parameters, suggesting the broad utility of the crystal patterns and printing technique.
Collapse
Affiliation(s)
- Kyunghun Kim
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Kibeom Nam
- Department of Polymer Science and Engineering , Kyungpook National University , Daegu 41566 , Korea
| | - Xinlin Li
- College of Electromechanical Engineering , Qingdao University , Qingdao 266071 , China
| | - Dong Yun Lee
- Department of Polymer Science and Engineering , Kyungpook National University , Daegu 41566 , Korea
| | - Se Hyun Kim
- School of Engineering , Yeungnam University , 280 Daehak-Ro , Gyeongsan , Gyeongbuk 38541 , Korea
| |
Collapse
|