1
|
Jamei S, Dehghan G, Rashtbari S, Dadakhani S, Marefat A. Bioinspired construction of ATP/Co-Al-Zn LDH nanozyme with enhanced peroxidase-mimic performance for efficient bactericidal activity through membrane disruption. Int J Biol Macromol 2024; 278:134968. [PMID: 39181364 DOI: 10.1016/j.ijbiomac.2024.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
In recent years, overuse of antibiotics has led to emerging antibiotic-resistant strains of bacteria. Consequently, creating new, highly productive antibacterial agents is crucial. In this work, we synthesized copper-aluminum-zinc layered double hydroxide (Co-Al-Zn LDH) and modified it using adenosine triphosphate. After characterization, the enzyme-like activity of the prepared particles was evaluated. The results indicated peroxidase-mimic performance of ATP/Co-Al-Zn LDH with Km values of 0.38 mM and 1.69 mM for TMB (3,3',5,5'-tetramethylbenzidine) and hydrogen peroxide (H2O2), respectively, which were lower than that of horseradish peroxidase. The highest peroxidase-like activity of ATP/Co-Al-Zn LDH was achieved at 20 °C, pH 4, with a 1.02 mg/mL catalyst, 231 μM TMB, and 1.9 mM H2O2. The bactericidal activity of the developed nanozyme was studied against E. coli and S. aureus. The peroxidase-mimic nanozyme decomposes H2O2 and generates free radicals to kill bacteria in vitro. The minimum inhibitory concentration (MIC) of ATP/Co-Al-Zn LDH was 15 μg/mL and 20 μg/mL for S. aureus and E. coli, respectively. The morphological characteristics of the nanozyme-treated bacterial cells showed dramatic changes in bacterial morphology. Our results revealed higher antibacterial activity of ATP/Co-Al-Zn LDH against S. aureus. Therefore, the developed nanozyme could serve as a substitute for conventional antibiotics.
Collapse
Affiliation(s)
- Sina Jamei
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Samaneh Rashtbari
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Sonya Dadakhani
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Arezu Marefat
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|
2
|
Ecer Ü, Ulaş B, Yılmaz Ş. Application of ANN and RSM for Rhodamine B and Safranine-O Decolorization on Zinc-Carbon Battery Waste Derived Ag/CoFe-LDH/rGO Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19870-19884. [PMID: 39230244 DOI: 10.1021/acs.langmuir.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The present work is first aimed at recovering graphite from carbon rods of waste zinc-carbon (Zn-C) batteries for applications such as wastewater treatment, in order to contribute to the development of a sustainable environment. Then, a composite material, cobalt-iron layered double hydroxide combination with reduced graphene oxide, and with subsequent Ag nanoparticles deposition via NaBH4 reduction method (Ag/CoFe-LDH/rGO) was prepared for the catalytic activity of Rhodamine B (RhB) and Safranine-O (SO) as model contaminants from aquatic media. The catalytic activity of RhB and SO by Ag/CoFe-LDH/rGO in the presence of NaBH4 was studied to model and optimize the process parameters (NaBH4 amount, reaction time, initial dye concentration (Co), and catalyst dosage) via central composite design (CCD)-response surface methodology (RSM). Also, an artificial neural network (ANN) model was developed to estimate the catalytic activity of each dye using an RSM data set. The catalytic activities of 99.54% and 99.96% were obtained for RhB and SO dyes, respectively, under the optimal conditions: NaBH4 amount 12.32 mM, reaction time 3.19 min, Co 33.46 mg/L, and catalyst dosage 1.24 mg/mL for RhB dye; NaBH4 amount 16.76 mM, reaction time 3.06 min, Co 15.10 mg/L, and catalyst dosage 1.46 mg/mL for SO dye. The optimum conditions of process parameters by ANN with gray wolf optimizer (GWO) were in good agreement with the points determined the RSM-CCD. These results demonstrate that RSM and ANN approaches can be applied practically and efficiently to maximize the catalytic activity of RhB and SO by Ag/CoFe-LDH/rGO in the existence of NaBH4. On the other hand, from the kinetic and thermodynamic studies, the positive activation enthalpy, ΔH# and the negative activation entropy, ΔS# values for each dye demonstrated that the catalytic performance was endothermic and less random at the solid/liquid interface.
Collapse
Affiliation(s)
- Ümit Ecer
- Eskişehir Osmangazi University, Faculty of Engineering and Architectural Sciences, Department of Chemical Engineering, 26040, Eskişehir, Turkey
| | - Berdan Ulaş
- Van Yuzuncu Yil University, Institute of Natural and Applied Sciences, Department of Chemical Engineering, 65080, Van, Turkey
- Van Yuzuncu Yil University, Faculty of Engineering, Department of Mining Engineering, 65080, Van, Turkey
| | - Şakir Yılmaz
- Van Yuzuncu Yil University, Institute of Natural and Applied Sciences, Department of Chemical Engineering, 65080, Van, Turkey
- Van Yuzuncu Yil University, Faculty of Engineering, Department of Mining Engineering, 65080, Van, Turkey
| |
Collapse
|
3
|
Khataee S, Dehghan G, Shaghaghi Z, Khataee A. An enzyme-free sensor based on La-doped CoFe-layered double hydroxide decorated on reduced graphene oxide for sensitive electrochemical detection of urea. Mikrochim Acta 2024; 191:152. [PMID: 38388755 DOI: 10.1007/s00604-024-06221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The successful synthesis of La-doped CoFe LDH@rGO nanocomposite is reported combining the advantages of LDH and rGO and shows promising performances in electrochemical sensors. The structure of the obtained nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), and field emission scanning electron microscope images (FE-SEM). Then, it was directly utilized to construct a carbon paste electrode (CPE) for urea detection. The electrochemical performance of the sensor was evaluated by various electrochemical methods. The La-CoFe LDH@rGO electrode exhibited excellent electrocatalytic properties, including a wide linear working range of 0.001-23.5 mM, very high sensitivity of 1.07 ± 0.023 µA µM-1 cm-2, a low detection limit of 0.33 ± 0.11 µM, and rapid response time of 5 s towards urea detection at the working potential of 0.4 V. Furthermore, the sensor displayed a high selectivity in different matrices, appropriate reproducibility, and long shelf life without activity loss during 3 months of storage under ambient conditions. Further tests were performed on serum and milk samples to confirm the capability of the proposed sensor for practical applications, demonstrating a reasonable recovery of 94.8 to 102% with an RSD value below 3%. Consequently, the synergistic effect of each component led to the good electrocatalytic activity of the modified electrode towards urea.
Collapse
Affiliation(s)
- Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Gholamrez Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
4
|
Dadakhani S, Dehghan G, Khataee A. A robust and facile label-free method for highly sensitive colorimetric detection of ascorbic acid in fresh fruits based on peroxidase-like activity of modified FeCo-LDH@WO 3 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123016. [PMID: 37354854 DOI: 10.1016/j.saa.2023.123016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Many compounds such as amino acids and oligonucleotides have been shown to effectively change peroxidase-like activity of nanoparticles. While a few studies have focused on mimicking the active site of natural enzymes on nanozymes and thus increasing their substrate affinity. Therefore, in this work, the surface of FeCo@WO3 nanocomposite was modified using guanosine triphosphate (GTP) to mimic the histidine of peroxidase enzyme's active site and its modification was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). Then, the peroxidase-mimicking activity of the modified nanocomposite was tested using a colorimetric method, based on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). It was found that GTP improves the activity of FeCo@WO3 as a natural peroxidase active site's distal histidine residue. Ascorbic acid (AA) is a powerful antioxidant that induces the reduction of blue color (oxidized TMB) ox-TMB to colorless TMB. The colorimetric method was applied for the sensitive detection of AA in common fruits. The linear range of AA was 10-100 μM with a limit of detection (LOD) of 0.27 μM, which provides a rapid and sensitive method for testing AA in the field of food analysis.
Collapse
Affiliation(s)
- Sonya Dadakhani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
5
|
Chandrasekar N, Steffi AP, Ramachandran B, Hwang MT, Faramarzi V, Govarthanan M. MXenes - Versatile 2D materials for identification of biomarkers and contaminants in large scale environments - A review. ENVIRONMENTAL RESEARCH 2023; 228:115900. [PMID: 37059325 DOI: 10.1016/j.envres.2023.115900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Recent years have seen a lot of interest in transition metal carbides/carbonitrides (MXenes), Which is one of newly proliferating two-dimensional (2D) materials.The advantages and applications of synthesizing MXenes-based biosensing systems are interesting. There is an urgent requirement for synthesis of MXenes. Through foliation, physical adsorption, and interface modification,it has been proposed that many biological disorders are related to genetic mutation. Majority of mutations were discovered to be nucleotide mismatches. Consequently, accurate -nucleotide mismatched discrimination is crucial for both diagnosing and treating diseases. To differentiate between such a sensitivealterations in the DNA duplex, several detection methods, particularly Electrochemical-luminescence (ECL) ones, have really been investigated.Mn+1XnTx is common name for MXenes, a novel family of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, where T stands for interface termination units (i.e. = O, OH, and/or F). These electronic characteristics of MXenes may be changed between conductive to semiconducting due to abundant organometallic chemistry.Solid-state ECL sensors predicated on MXene would provide the facile nucleotide detection and convenience for usage with minimal training, mobility and possibly minimal cost.This study emphasizes upcoming requirements and possibilities in this area while describing the accomplishments achieved in the usage and employing of MXenes in the research and development of facile biomarkerdetection and their significance in designing electrochemical sensors. Opportunities are addressed for creating 2D MXene materials sensors and devices with incorporated biomolecule sensing. MXenes Carry out this process sensors, address the advantages of using MXenes and their variants as detecting materials for gathering different types of data, and attempt to clarify the design principles and operation of related MXene-based sensors, such as nucleotide detection, Single nucleotide detectors, Cancer theranostics, Biosensing capabilities, Gliotoxin detection, SARS-COV-2 nucleocapsid detection, electrochemical sensors, visual sensors, and humidity sensors. Finally, we examine the major issues and prospects for MXene-based materials used in various sensing applications.
Collapse
Affiliation(s)
- Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| | - Alexander Pinky Steffi
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
| | - Balaji Ramachandran
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, 522302, India.
| | - Michael Taeyoung Hwang
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| | - Vahid Faramarzi
- Department of Electrical and Computer Engineering, Tarbiat Modares University, 14115-194, Tehran, Iran
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
6
|
Mohamed AM, Sayed DM, Allam NK. Optimized Fabrication of Bimetallic ZnCo Metal-Organic Framework at NiCo-Layered Double Hydroxides for Multiple Storage and Capability Synergy All-Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16755-16767. [PMID: 36947435 DOI: 10.1021/acsami.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design and structural regulation of hybrid nanomaterials with superior electrochemical performance are crucial for developing sustainable energy storage platforms. Among these materials, NiCo-layered double hydroxides (NiCo-LDHs) demonstrate an exceptional charge storage capabilities owing to their tunable 2D lamellar structure, large interlayer spacing, and rich redox electrochemically active sites. However, NiCo-LDHs still suffer from sever agglomeration of their particles with limited charge transfer rates, resulting in an inadequate rate capability. In this study, bimetallic ZnCo-metal organic framework (MOF) tripods were grown on the surface of NiCo-LDH nanowires, which significantly reduced the self-agglomeration and stacking of the NiCo-LDH nanowire arrays, offering more accessible active sites for charge transfer and shortening the path for ion diffusion. The fabricated hybrid ZnCo-MOF@NiCo-LDH and its individual counterparts were tested as supercapacitor electrodes. The ZnCo-MOF@NiCo-LDH electrode demonstrated a remarkable specific capacitance of 1611 F g-1 at 2 A g-1 with an enhanced rate capability of 66% from 2 to 20 A g-1. Moreover, an asymmetric all solid-state supercapacitor device was constructed using ZnCo-MOF@NiCo-LDH and palm tree-derived activated carbon (P-AC) as positive and negative poles, respectively. The constructed device can store a high specific energy of 44.5 Wh Kg-1 and deliver a specific power of 876.7 W Kg-1 with outstanding Columbic efficiency over 10,000 charging/discharging cycles at 15 A g-1.
Collapse
Affiliation(s)
- Aya M Mohamed
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Doha M Sayed
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
7
|
Sarigamala KK, Struck A, Shukla S, Saxena S. Heterophase Interfacial Hybrid//Graphene Nanoscrolls based High Performance Lithium-Ion Hybrid Supercapacitor. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Shuai C, Yang F, Shuai Y, Peng S, Chen S, Deng Y, Feng P. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold. J Adv Res 2022:S2090-1232(22)00198-9. [PMID: 36087925 DOI: 10.1016/j.jare.2022.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION The aggregation of graphene oxide (GO) is considered as main challenge, although GO possesses excellent mechanical properties which arouses widespread attention as reinforcement for polymers. OBJECTIVES In this study, silicon dioxide (SiO2) nanoparticles were decorated onto surface of GO nanosheets through in situ growth method for promoting dispersion of GO in poly(l-lactic acid) (PLLA) bone scaffold. METHODS Hydroxyl and carboxyl functional groups of GO provided sites for SiO2 nucleation, and SiO2 grew with hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) and finally formed nanoparticles onto surface of GO with covalent bonds. Then, the GO@ SiO2 nanocomposite was blended with PLLA for the fabrication of bone scaffold by selective laser sintering (SLS). RESULT The results indicated that the obtained SiO2 were distributed relatively uniformly on surface of GO under TEOS concentration of 0.10 mol/L (GO@SiO2-10), and the covering of SiO2 on GO could increase interlayer distance of GO nanosheets from 0.799 nm to 0.894 nm, thus reducing van der Waals forces between GO nanosheets and facilitating the dispersion. Tensile and compressive strength of scaffold containing GO@SiO2 hybrids were significantly enhanced, especially for the scaffold containing GO@SiO2-10 hybrids with enhancement of 30.95 % in tensile strength and 66.33 % in compressive strength compared with the scaffold containing GO. Additionally, cell adhesion and fluorescence experiments demonstrated excellent cytocompatibility of the scaffold. CONCLUSIONS The good dispersion of GO@SiO2 enhances the mechanical properties and cytocompatibility of scaffold, making it a potential candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Zhao X, Li H, Zhang M, Pan W, Luo Z, Sun X. Hierarchical Nanocages Assembled by NiCo-Layered Double Hydroxide Nanosheets for a High-Performance Hybrid Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34781-34792. [PMID: 35867900 DOI: 10.1021/acsami.2c08903] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered double hydroxides (LDHs) have attracted broad attention as cathode materials for hybrid supercapacitors (HSCs) because of their ultrahigh theoretical specific capacitance, high compositional flexibility, and adjustable interlayer spacing. However, as reported, specific capacitance of LDHs is still far below the theoretical value, inspiring countless efforts to these ongoing challenges. Herein, a hierarchical nanocage structure assembled by NiCo-LDH nanosheet arrays was rationally designed and fabricated via a facile solvothermal method assisted by the ZIF-67 template. The transformation from the ZIF-67 template to this hollow structure is achieved by a synergistic effect involving the Kirkendall effect and the Ostwald ripening process. The enlarged specific surface area co-occurred with broadened interlayer spacing of LDH nanosheets by finely increasing the Ni concentration, leading to synchronous improvement of electron/ion transfer kinetics. The optimized NiCo-LDH-210 electrode displays a maximum specific capacitance of 2203.6 F g-1 at 2 A g-1, excellent rate capability, and satisfactory cycling stability because of the highly exposed active sites and shortened ion transport paths provided by vertically aligned LDH nanosheets together with the cavity. Furthermore, the assembled HSC device achieves a superior energy density of 57.3 Wh kg-1 with prominent cycling stability. Impressively, the design concept of complex construction derived from metal-organic frameworks (MOF) derivatives shows tremendous potential for use in energy storage systems.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Hui Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| | - Wei Pan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| |
Collapse
|
10
|
Feng D, Wei Z, Wang Q, Feng A, Zhang H. Controllable Synthesis of Cobalt-Containing Nanosheet Array-Like Ternary CuCoAl-LDH/rGO Hybrids To Boost the Catalytic Efficiency for 4-Nitrophenol Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24265-24280. [PMID: 35604135 DOI: 10.1021/acsami.2c01637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of Co-doped ternary CuxCo3-xAl-layered double hydroxide (LDH)/rGO nanosheet array hybrids (x = 0.5, 1.0, 1.5, and 2.0) were successfully prepared using the preconditioned pH value aqueous-phase coprecipitation strategy. The CuxCo3-xAl-LDH/rGO hybrids are featured as hexagonal CuCoAl-LDH nanosheets in situ anchoring onto both sides of the rGO surface in an ab-plane vertically interlaced growth pattern. The CuxCo3-xAl-LDH/rGO hybrids show excellent activity for the complete conversion of 4-nitrophenol to 4-aminophenol, especially Cu1.5Co1.5Al-LDH/rGO with the highest kapp value of 49.2 × 10-3 s-1 and TOF of 232.8 h-1, clearly higher than most copper-containing samples in the literature and even some precious ones. Thermodynamic analysis was carried out, and the values of Ea, ΔH#, ΔS#, and ΔG# were estimated. The best activity of Cu1.5Co1.5Al-LDH/rGO can be mainly ascribed to the in situ-formed ultrafine Cu2O NPs (∼4.3 nm) along with a small amount of Cu0 species, the electron transfer effect induced by atomically dispersed Co2+ species leading to the formation of electron-rich Cu species along with the Co2+/Co3+ redox couple, the strong Cu2O-CuCoAl-LDH-rGO synergy upon the nanosheet array morphology with a high surface area and pore volume, and enhanced adsorption of reactants upon π-π stacking via an rGO layer. Meanwhile, the Cu1.5Co1.5Al-LDH/rGO exhibits an excellent universality and good cycling stability for 10 continuous runs. The Cu1.5Co1.5Al-LDH/rGO also shows superior efficiency in the catalytic reduction of 4-NP solution with a high concentration (20 mM) and displays excellent reduction performance in the fixed-bed test, implying the potential applications of the current Co-doped hierarchical ternary Cu-based LDH/rGO hybrids in the continuous treatment of practical wastewater.
Collapse
Affiliation(s)
- Danyang Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuojun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinglin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - An Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Zhao T, Liu C, Meng T, Deng W, Zheng L, Yi F, Gao A, Shu D. Graphene Quantum Dots Pinned on Nanosheets-Assembled NiCo-LDH Hollow Micro-Tunnels: Toward High-Performance Pouch-Type Supercapacitor via the Regulated Electron Localization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201286. [PMID: 35434915 DOI: 10.1002/smll.202201286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
A combined delicate micro-/nano-architecture and corresponding surface modification at the nanometer level can co-tailor the physicochemical properties to realize an advanced supercapacitor electrode material. Herein, nanosheets-assembled nickel-cobalt-layered double hydroxide (NiCo-LDH) hollow micro-tunnels strongly coupled with higher-Fermi-level graphene quantum dots (GQDs) are reported. The unique hollow structure endows the electrolyte accessible to more electroactive sites, while 2D nanosheets have excellent surface chemistry, which favors rapid ion/electron transfer, synergistically resulting in more super-capacitive activities. The experimental and density functional theory calculations recognize that such a precise decoration generally tunes the charge density distribution at the near-surface due to the Fermi-level difference of two components, thus regulating the electron localization, while decorating with conductive GQDs co-improves the charge mobility, affording superior capacitive response and electrode integrity. The as-acquired GQDs@LDH-2 electrode yields excellent capacitance reaching ≈1628 F g-1 at 1 A g-1 and durable cycling longevity (86.2% capacitive retention after 8000 cycles). When coupled with reduced graphene oxide-based negative electrode, the hybrid device unveils an impressive energy/power density (46 Wh kg-1 / 7440 W kg-1 ); moreover, a flexible pouch-type supercapacitor can be constructed based on this hybrid system, which holds high mechanical properties and stable energy and power output at various situations, showcasing superb application prospects.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Cong Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Tao Meng
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenyue Deng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lihong Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Fenyun Yi
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou, 510006, P. R. China
| | - Aimei Gao
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou, 510006, P. R. China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
12
|
Design and Fabrication of a Novel LDH@GO Nanohybrid Material for Its Application Potentials in Polypropylene. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Khorshidi M, Asadpour S, Sarmast N, Dinari M. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Li L, Guo X, Chen S, Chen X, Qin J, Lu Z. Fabrication of MgAl LDH@graphene oxide nanohybrids and their effect on the thermal stability and crystallization behavior of polypropylene. SOFT MATTER 2021; 17:10149-10159. [PMID: 34730169 DOI: 10.1039/d1sm01123e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The co-precipitation method is used to fabricate layered double hydroxide (LDH) nanohybrids with surface engineering of graphene oxide (GO) by radially grafting borate-LDH (BLDH) to BLDH@GO nanosheets, aiming at improving the surface characteristics and compatibility of LDH with the polymer matrix. The results prove the successful fabrication of BLDH@GO and LDH@GO nanosheets. The nanosheets are mixed into polypropylene (PP) by melt blending to study the structure and properties of the composites. The PP composites with BLDH@GO and BLDH have both exfoliation structures and aggregation structures, and the two nanosheets show enhanced interfacial interactions with the PP matrix compared with LDH and LDH@GO. The initial decomposition temperatures of the PP composites are lower than those of the neat PP, but the thermal degradation temperatures of the PP composites are higher. Compared with the other samples, BLDH@GO provides a higher nucleation density, reflected in a smaller spherulite size and a higher crystallization temperature confirmed by the differential scanning calorimetry (DSC) results. BLDH@GO shifts the crystallization temperature of PP to higher values (compared to the neat PP) due to the nucleation effect, which is in line with the increase in the nucleation density detected by polarized optical microscopy (POM).
Collapse
Affiliation(s)
- Lingtong Li
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xincheng Guo
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaopeng Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- Sichuan Jiahe Copoly Technology Co., Ltd., Chengdu 610015, China
| | - Jun Qin
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550003, China.
| | - Zongcheng Lu
- Sichuan Jiahe Copoly Technology Co., Ltd., Chengdu 610015, China
| |
Collapse
|
15
|
Li Z, Mi H, Guo F, Ji C, He S, Li H, Qiu J. Oriented Nanosheet-Assembled CoNi-LDH Cages with Efficient Ion Diffusion for Quasi-Solid-State Hybrid Supercapacitors. Inorg Chem 2021; 60:12197-12205. [PMID: 34324812 DOI: 10.1021/acs.inorgchem.1c01413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fast-charged energy-storage technologies have become important nowadays as they are required by many applications, including automobiles. This inspires the exploitation of hybrid supercapacitors (HSCs) with the advantages of fast charge offered by the capacitor characters and high energy density from the property of battery technology. The challenges lay in the construction of advanced materials with high pseudocapacitive activity. Herein, a metal-organic framework derivative is utilized to address the problems. Specifically, polyhedral CoNi layered double hydroxide (CoNi-LDHx) cages assembled in the form of nanosheet arrays are prepared from ZIF-67 using a facile ion-exchange approach. Based on the control over the mass ratio of ZIF-67 to Ni salt, the optimal CoNi-LDH2 is attained. It exhibits ultrahigh capacities ranging from 1031.4 to 667.3 C g-1 under 1-25 A g-1, thanks to rich Faradaic active spots and the accelerated kinetics provided by the synergy between nanosheet arrays and the hollow structure. The CoNi-LDH2-based HSC with the gel electrolyte shares remarkable energy output of 49 Wh kg-1 and approving cyclability with almost no capacity decay after 12 000 cycles. This is an advancement vs many related studies and can arouse tremendous interests of researchers in solving the main problems of energy storage.
Collapse
Affiliation(s)
- Zixiao Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Hongyu Mi
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Fengjiao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Chenchen Ji
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Shixue He
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Han Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Qin J, Li X, Lv Q, He M, Chen M, Xu Y, Chen X, Yu J. Selective dispersion of neutral nanoplates and the interfacial structure of copolymers based on coarse-grained molecular dynamics simulations. SOFT MATTER 2021; 17:5950-5959. [PMID: 34046651 DOI: 10.1039/d1sm00352f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The selective dispersion of neutral nanoplates (NNP) and the control of the interfacial structure of copolymers are challenging. In this work, we employ coarse-grained molecular dynamics (CGMD) to investigate the dispersion of NNP and the interfacial structure. The introduction of NNP significantly changes the interfacial structure and formation mechanism of diblock copolymers (DBCP), which is related to the matrix phase, distribution, composition, and length of two different chain segments (A and B) in AmBn-DBCP. The phase-weak groups that have a poor interaction with NNP will stack easily, whereas the stacking degree for the phase-rich groups that have a strong interaction with NNP decreases due to the addition of NNP. The interaction between two phases will be enhanced, which is favorable for the formation of a random network structure. Due to the strong interaction of the phase-rich groups with NNP, the NNP change the accumulation types of phase-weak groups and enhances the combination of two chain segments in favor of the formation of a cylindrical micelle-like structure. The transmission electron microscopy (TEM) images show that layered double hydroxide (LDH) orientationally distributes in the acrylic acid chain segments in ethylene acrylic acid (EAA) random copolymers, which is in agreement with the theoretical simulation results. This proves that the selective dispersion of LDH in copolymers affects their interfacial structure.
Collapse
Affiliation(s)
- Jun Qin
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China. and Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xing Li
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qing Lv
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Min He
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Mengyu Chen
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yong Xu
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Yu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China. and National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550058, China
| |
Collapse
|
17
|
Tian H, Zhu K, Jiang Y, Wang L, Li W, Yu Z, Wu C. Heterogeneous assembly of Ni-Co layered double hydroxide/sulfonated graphene nanosheet composites as battery-type materials for hybrid supercapacitors. NANOSCALE ADVANCES 2021; 3:2924-2933. [PMID: 36134181 PMCID: PMC9419522 DOI: 10.1039/d1na00001b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based hybrid composites as positive electrodes have aroused great interest in the field of hybrid supercapacitors. However, the charge storage capability of hybrid composites suffers from the scarce interaction between their end members to some extent. Herein, a hybrid composite with electrostatic interaction was obtained by employing a heterogeneous assembly strategy of Ni-Co layered double hydroxide (LDH) and sulfonated graphene nanosheets (SGN). Depending on the substitution of the negatively charged SGN for the interlayer nitrate anions compensating for the positively charged LDH host slabs, the abundance of Ni3+ on the surface of the hybrid composite could be increased to intensify the electrostatic interaction within hybrid composites. As expected, the effective coupling of LDH with SGN ensured the uniform incorporation of heterogeneous components. The unique structure of the hybrid composite accelerated electron transfer and ion diffusion processes during electrochemical reactions, which is beneficial to improve the electrochemical performance of battery-type electrodes. Further evaluation showed that the specific capacity of the LDH/SGN hybrid composite is 1177 C g-1 (2354 F g-1) at 1 A g-1. Additionally, the LDH/SGN//AC hybrid supercapacitor achieved an energy density of 43 W h kg-1 at 800 W kg-1 and still retained 94% of its initial specific capacitance over 10 000 cycles. The boosting effect of the electrostatic interaction within the hybrid composite on electrochemical properties offers a novel pathway for the development of supercapacitors.
Collapse
Affiliation(s)
- Hua Tian
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Kaixin Zhu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yang Jiang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Lin Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Wang Li
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhifeng Yu
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Cunqi Wu
- The State Key Laboratory of Electroanalytic, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
18
|
Cao J, Zhou T, Xu Y, Qi Y, Jiang W, Wang W, Sun P, Li A, Zhang Q. Oriented Assembly of Anisotropic Nanosheets into Ultrathin Flowerlike Superstructures for Energy Storage. ACS NANO 2021; 15:2707-2718. [PMID: 33543923 DOI: 10.1021/acsnano.0c08088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hierarchical ultrathin nanostructures are excellent electrode materials for supercapacitors because of their large surface area and their ability to promote ion and electron transport. Herein, we investigated nine l-amino acids (LAs) as inductive agents to synthesize a series of CoNi-OH/LAs materials for energy storage. With the different amino acids, the assembled CoNi-OH/LAs form a lamellar, flower-shaped, and bulk structure. Among all materials, the ultrathin flowerlike CoNi2-OH/l-asparagine (CoNi2-OH/l-Asn) exhibits an excellent specific capacity of 405.4 mAh g-1 (2608 F g-1) and a 100% retention rate after 3000 cycles. We also assembled asymmetrical supercapacitor CoNi2-OH/l-Asn//N-rGO devices, which demonstrated an energy density of 64.9 Wh kg-1 at 799.9 W kg-1 and superlong cycling stability (82.4% at 10 A g-1) over 5000 cycles.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianpeng Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunlong Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunbiao Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen 5007, Norway
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Li Y, Shi J, Wu L, Zhang J, Lu J. Organic Electron Donor‐Acceptor Co‐intercalated NiMn‐LDHs – Photocatalysts with Enhanced Separation of Charge Carriers for Photocatalytic Reduction of CO
2. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuexian Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Jingjing Shi
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Lei Wu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Junzheng Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| |
Collapse
|
20
|
Khataee A, Fazli A, Zakeri F, Joo SW. Synthesis of a high-performance Z-scheme 2D/2D WO3@CoFe-LDH nanocomposite for the synchronic degradation of the mixture azo dyes by sonocatalytic ozonation process. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
He L, Chang Y, Zhu J, Bi Y, An W, Dong Y, Liu JH, Wang S. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1950-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Sarigamala KK, Shukla S, Struck A, Saxena S. Rationally engineered 3D-dendritic cell-like morphologies of LDH nanostructures using graphene-based core-shell structures. MICROSYSTEMS & NANOENGINEERING 2019; 5:65. [PMID: 34567615 PMCID: PMC8433191 DOI: 10.1038/s41378-019-0114-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/12/2019] [Accepted: 09/09/2019] [Indexed: 05/30/2023]
Abstract
Functionalization of graphene-based materials using chemical moieties not only modify the electronic structure of the underlying graphene but also enable in limited enhancement of targeted properties. Surface modification of graphene-based materials using other nanostructures enhances the effective properties by minimally modifying the properties of pristine graphene backbone. In this pursuit, we have synthesized bio-inspired hierarchical nanostructures based on Ni-Co layered double hydroxide on reduced graphene oxide core-shells using template based wet chemical approach. The material synthesized have been characterized structurally and electrochemically. The fabricated dendritic morphology of the composite delivers a high specific capacity of 1056 Cg-1. A cost effective solid state hybrid supercapacitor device was also fabricated using the synthesized electrode material which shows excellent performance with high energy density and fast charging capability.
Collapse
Affiliation(s)
- Karthik Kiran Sarigamala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076 India
| | - Shobha Shukla
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076 India
| | - Alexander Struck
- Faculty of Technology and Bionics, Rhein-Waal University of Applied Sciences, 47533 Kleve, Germany
| | - Sumit Saxena
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076 India
| |
Collapse
|