1
|
He P, He C, Guo R, Ou Y, Chang Y, Xie Z, Tang X, Xu Y, Zhao Y, Wang H, Guo Z, Bai S, Chen Z, Fan F, Du G, Sun X. Tough and waterproof microneedles overcome mucosal immunotolerance by modulating antigen release patterns. J Control Release 2025; 382:113740. [PMID: 40250628 DOI: 10.1016/j.jconrel.2025.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Mucosal vaccines are considered an ideal choice for combating mucosal pathogens due to their ability to neutralize pathogens at the first line of defense. However, the development of mucosal subunit vaccines is constricted by rigorous challenges, such as low immunogenicity, poor antigen delivery efficiency, and mucosal tolerance. Here, a buccal microneedle patch incorporated with engineered nanoparticles loaded with urease B subunit (rUreB) was developed to overcome the above challenges. Specifically, an engineered nanocarrier was developed to protect the antigen and modulate its release profile. Then, the nanoparticles were enriched to form microneedle tips with superior mechanical and waterproof properties, allowing effective penetration of the buccal mucosa and resistance to salivary washout. Besides, the microneedles demonstrated an S-curve antigen release pattern which was crucial for the recruitment of antigen presenting cells (APCs) and the downregulation of mucosal tolerogenic DCs and Treg cells. The buccal microneedle vaccine without any immune stimulators induced potent systemic and mucosal immune responses, resulting in superior protection of mice from the oral challenge of Helicobacter pylori. These results suggested that the rationally designed buccal microneedle vaccine can effectively overcome mucosal delivery barriers and mucosal tolerance, providing a promising alternative strategy for mucosal vaccination of subunit antigens.
Collapse
Affiliation(s)
- Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Chang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanhao Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhengjun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Li X, Zhang Z, Xie J, Cao B, Wang X, Yu Y, Su J. A Smart Injectable Hydrogel with Dual Responsivity to Arginine Gingipain A and Reactive Oxygen Species for Multifunctional Therapy of Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408034. [PMID: 40272094 DOI: 10.1002/smll.202408034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/22/2024] [Indexed: 04/25/2025]
Abstract
Distinct clinical phenotypes of periodontitis are associated with specific microbiome profiles and diverse inflammatory conditions. Current drug delivery systems face challenges in precisely modulating this dynamic microenvironment. Effective inhibition of bone resorption can only be achieved through a strategic response to bacterial infections and inflammation within the periodontal pocket, followed by prompt treatment tailored to disease severity. In this study, tannic acid (TA) is loaded into hollow mesoporous silica nanoparticles (HMSNs) that are functionalized with positively charged polyarginines (R8) and negatively charged human serum albumin (HSA). These HMSNs-R8@TA-HSA (HRT) nanoparticles are then encapsulated within an injectable Nap-Gly-Phe-Phe-Tyr-OH (NapGFFY) hydrogel (NHRT). The intermediate linker R8 can interact with both arginine gingipain A (RgpA) and reactive oxygen species (ROS), which serve as markers of bacterial infections and inflammation, respectively. HSA, arginine, TA, and nitric oxide are differentially released from the hydrogel in response to varying concentrations of RgpA and ROS, demonstrating excellent antibacterial, antioxidant, and anti-inflammatory properties. This smart RgpA/ROS dual-responsive and injectable hydrogel with multifunctional therapy provides new prospects for the management of periodontitis.
Collapse
Affiliation(s)
- Xuejing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zhanwei Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Jian Xie
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Bangping Cao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Xin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yiqiang Yu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| |
Collapse
|
3
|
Anvarian-Asl G, Joudian S, Todisco S, Mastrorilli P, Khorasani M. Controllable synthesis of hollow mesoporous organosilica nanoparticles with pyridine-2,6-bis-imidazolium frameworks for CO 2 conversion. NANOSCALE 2024; 16:16977-16989. [PMID: 39037223 DOI: 10.1039/d4nr02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A series of hard-template-derived hollow mesoporous organosilica nanoparticles (HMONs) with pyridine-2,6-bis-imidazolium frameworks have been described for the first time. As a part of the investigation, to evaluate the effects of the hard template nature, the Si/CTAB and organosilica/TEOS molar ratios, and the stepwise addition of precursors, four reaction conditions denoted as methods A-D were designed. In the presence of polystyrene latex as a hard template, the HMONs that we wished to synthesize were not yielded with a Si/CTAB molar ratio of 3 (method A), but we could synthesize the desired HMONs with a Si/CTAB molar ratio of 9 and an organosilica : TEOS ratio of 1 : 99 (method B). The ratio of organosilica to TEOS could be improved up to 2.5 : 97.5 if the precursor additions are made in a stepwise manner rather than by simultaneous additions (method C). Using sSiO2 as a hard template, a yolk-shell morphology was observed by adopting a Si/CTAB molar ratio of 3 (method D). The HMONs were modified by iodide ions and their activity was explored toward the coupling of CO2 with epoxides. Among the catalysts, I-HMON-L-C-2.5 exhibited excellent results under mild reaction conditions. Well-oriented pore sizes and short channel length facilitated easy mass transfer from one side and the integration of the interior hollow regions of the catalyst particles from the other side improved the CO2 retention time around pores where the imidazolium organocatalysts were located, which made I-HMON-L-C-2.5 an effective catalyst for title CO2 utilization. The catalyst was reused at least six times without exhibiting any changes in its activity. HMONs can also be used as solid CNC ligands for the preparation of copper catalysts for the click reaction between phenyl acetylene and benzyl azide.
Collapse
Affiliation(s)
- Ghazale Anvarian-Asl
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran.
| | - Sadegh Joudian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran.
| | - Stefano Todisco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Pietro Mastrorilli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), No. 444, Prof. Yousef Sobouti Boulevard, Zanjan 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences, IASBS, Zanjan 45137-66731, Iran
| |
Collapse
|
4
|
Wang A, Ma Y, Zhao D. Pore engineering of Porous Materials: Effects and Applications. ACS NANO 2024; 18:22829-22854. [PMID: 39152943 DOI: 10.1021/acsnano.4c08708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Porous materials, characterized by their controllable pore size, high specific surface area, and controlled space functionality, have become cross-scale structures with microenvironment effects and multiple functions and have gained tremendous attention in the fields of catalysis, energy storage, and biomedicine. They have evolved from initial nanopores to multiscale pore-cavity designs with yolk-shell, multishells, or asymmetric structures, such as bottle-shaped, multichambered, and branching architectures. Various synthesis strategies have been developed for the interfacial engineering of porous structures, including bottom-up approaches by using liquid-liquid or liquid-solid interfaces "templating" and top-down approaches toward chemical tailoring of polymers with different cross-linking degrees, as well as interface transformation using the Oswald ripening, Kirkendall effect, or atomic diffusion and rearrangement methods. These techniques permit the design of functional porous materials with diverse microenvironment effects, such as the pore size effect, pore enrichment effect, pore isolation and synergistic effect, and pore local field enhancement effect, for enhanced applications. In this review, we delve into the bottom-up and top-down interfacial-oriented synthesis approaches of porous structures with advanced structures and microenvironment effects. We also discuss the recent progress in the applications of these collaborative effects and structure-activity relationships in the areas of catalysis, energy storage, electrochemical conversion, and biomedicine. Finally, we outline the persisting obstacles and prospective avenues in terms of controlled synthesis and functionalization of porous engineering. The perspectives proposed in this paper may contribute to promote wider applications in various interdisciplinary fields within the confined dimensions of porous structures.
Collapse
Affiliation(s)
- Aixia Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Zhang T, Yu Y, Han S, Cong H, Kang C, Shen Y, Yu B. Preparation and application of UPLC silica microsphere stationary phase:A review. Adv Colloid Interface Sci 2024; 323:103070. [PMID: 38128378 DOI: 10.1016/j.cis.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
In this review, microspheres for ultra-performance liquid chromatography (UPLC) were reviewed in accordance with the literature in recent years. As people's demands for chromatography are becoming more and more sophisticated, the preparation and application of UPLC stationary phases have become the focus of researchers in this field. This new analytical separation science not only maintains the practicality and principle of high-performance liquid chromatography (HPLC), but also improves the step function of chromatographic performance. The review presents the morphology of four types of sub-2 μm silica microspheres that have been used in UPLC, including non-porous silica microspheres (NPSMs), mesoporous silica microspheres (MPSMs), hollow silica microspheres (HSMs) and core-shell silica microspheres (CSSMs). The preparation, pore control and modification methods of different microspheres are introduced in the review, and then the applications of UPLC in drug analysis and separation, environmental monitoring, and separation of macromolecular proteins was presented. Finally, a brief overview of the existing challenges in the preparation of sub-2 μm microspheres, which required further research and development, was given.
Collapse
Affiliation(s)
- Tingyu Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yaru Yu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Shuiquan Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Chuankui Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Jiang Y, Liang W, Wang B, Feng Q, Xia C, Wang Q, Yan Y, Zhao L, Cui W, Liang H. Magnetic mesoporous silica nanoparticles modified by phosphonate functionalized ionic liquid for selective enrichment of phosphopeptides. RSC Adv 2022; 12:26859-26865. [PMID: 36320858 PMCID: PMC9490807 DOI: 10.1039/d2ra04609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, new magnetic nanoparticles (denotated as Fe3O4@mSiO2-PFIL-Ti4+) have been prepared by immobilizing titanium ions with phosphonate functionalized ionic liquid (PFIL) on the wall of core-shell structured mesoporous nanomaterials. The resulting nanoparticles possess large specific surface area, strong hydrophilicity and fast magnetic response. The composites can capture traces of phosphopeptides from the tryptic β-casein digest (0.08 fmol), a digest mixture of β-casein and BSA (1 : 10 000, molar ratio) as well as a blend of β-casein digest and a great quantity of phosphorylated protein (β-casein) and non-phosphorylated protein (BSA) (1 : 2000 : 2000, mass ratio), respectively, showing excellent sensitivity, selectivity and size exclusion ability. Additionally, Fe3O4@mSiO2-PFIL-Ti4+ shows excellent steadiness and can be reused at least 12 times. Moreover, this material was successfully applied to enrich endogenous phosphopeptides from complex bio-samples, including human saliva and serum.
Collapse
Affiliation(s)
- Yufei Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Qiyao Wang
- Ningbo Key Laboratory of Behaviour Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University Ningbo 315211 China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Wei Cui
- Ningbo Key Laboratory of Behaviour Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University Ningbo 315211 China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
7
|
Al-Khafaji MA, Gaál A, Jezsó B, Mihály J, Bartczak D, Goenaga-Infante H, Varga Z. Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness. NANOMATERIALS 2022; 12:nano12071172. [PMID: 35407290 PMCID: PMC9000660 DOI: 10.3390/nano12071172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.
Collapse
Affiliation(s)
- Mohammed A. Al-Khafaji
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, UK; (D.B.); (H.G.-I.)
| | - Heidi Goenaga-Infante
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, UK; (D.B.); (H.G.-I.)
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (M.A.A.-K.); (A.G.); (B.J.); (J.M.)
- Correspondence: ; Tel.: +36-1-382-6568
| |
Collapse
|
8
|
Xu X, Jin C, Zhang K, Cao Y, Liu J, Zhang Y, Ran H, Jin Y. Activatable “Matryoshka” nanosystem delivery NgBR siRNA and control drug release for stepwise therapy and evaluate drug resistance cancer. Mater Today Bio 2022; 14:100245. [PMID: 35345559 PMCID: PMC8956824 DOI: 10.1016/j.mtbio.2022.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
Drug resistance is always a challenge in conquering breast cancer clinically. Recognition of drug resistance and enhancing the sensitivity of the tumor to chemotherapy is urgent. Herein, a dual-responsive multi-function “Matryoshka" nanosystem is designed, it activates in the tumor microenvironment, decomposes layer by layer, and release gene and drug in sequence. The cell is re-educated by NgBR siRNA first to regain the chemosensitivity through regulating the Akt pathway and inhibit ERα activation, then the drugs loaded in the core are controlled released to killing cells. Carbonized polymer dots are loaded into the nanosystem as an efficient bioimaging probe, due to the GE11 modification, the nanosystem can be a seeker to recognize and evaluate drug-resistance tumors by photoacoustic imaging. In the tumor-bearing mouse, the novel nanosystem firstly enhances the sensitivity to chemotherapy by knockdown NgBR, inducing a much higher reduction in NgBR up to 52.09%, then effectively inhibiting tumor growth by chemotherapy, tumor growth in nude mouse was inhibited by 70.22%. The nanosystem also can inhibit metastasis, prolong survival time, and evaluate tumor drug resistance by real-time imaging. Overall, based on regulating the key molecules of drug resistance, we created visualization nanotechnology and formatted new comprehensive plans with high bio-safety for tumor diagnosis and treatment, providing a personalized strategy to overcome drug resistance clinically. Knockdown NgBR regulate the Akt pathway and inhibit ERα activate, enhance the sensitivity of chemotherapy. Knockdown of NgBR inhibits metastasis and prolongs survival. Nanosystem can evaluate drug resistance and kill tumors at the same time.
Collapse
|
9
|
Liang Y. Recent advanced development of metal-loaded mesoporous organosilicas as catalytic nanoreactors. NANOSCALE ADVANCES 2021; 3:6827-6868. [PMID: 36132354 PMCID: PMC9417426 DOI: 10.1039/d1na00488c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 05/10/2023]
Abstract
Ordered periodic mesoporous organosilicas have been widely applied in adsorption/separation/sensor technologies and the fields of biomedicine/biotechnology as well as catalysis. Crucially, surface modification with functional groups and metal complexes or nanoparticle loading has ensured high efficacy and efficiency. This review will highlight the current state of design and catalytic application of transition metal-loaded mesoporous organosilica nanoreactors. It will outline prominent synthesis approaches for the grafting of metal complexes, metal salt adsorption and in situ preparation of metal nanoparticles, and summarize the catalytic performance of the resulting mesoporous organosilica hybrid materials. Finally, the potential prospects and challenges of metal-loaded mesoporous organosilica nanoreactors are addressed.
Collapse
Affiliation(s)
- Yucang Liang
- Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 Tübingen 72076 Germany +49 7071 292436
| |
Collapse
|
10
|
Huang L, Feng J, Fan W, Tang W, Rong X, Liao W, Wei Z, Xu Y, Wu A, Chen X, Shen Z. Intelligent Pore Switch of Hollow Mesoporous Organosilica Nanoparticles for High Contrast Magnetic Resonance Imaging and Tumor-Specific Chemotherapy. NANO LETTERS 2021; 21:9551-9559. [PMID: 34738816 DOI: 10.1021/acs.nanolett.1c03130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hollow mesoporous organosilica nanoparticles (HMONs) are widely considered as a promising drug nanocarrier, but the loaded drugs can easily leak from HMONs, resulting in the considerably decreased drug loading capacity and increased biosafety risk. This study reports the smart use of core/shell Fe3O4/Gd2O3 (FG) hybrid nanoparticles as a gatekeeper to block the pores of HMONs, which can yield an unreported large loading content (up to 20.4%) of DOX. The conjugation of RGD dimer (R2) onto the DOX-loaded HMON with FG capping (D@HMON@FG@R2) allowed for active tumor-targeted delivery. The aggregated FG in D@HMON@FG@R2 could darken the normal tissue surrounding the tumor due to the high r2 value (253.7 mM-1 s-1) and high r2/r1 ratio (19.13), and the intratumorally released FG as a result of reducibility-triggered HMON degradation could brighten the tumor because of the high r1 value (20.1 mM-1 s-1) and low r2/r1 ratio (7.01), which contributed to high contrast magnetic resonance imaging (MRI) for guiding highly efficient tumor-specific DOX release and chemotherapy.
Collapse
Affiliation(s)
- Lin Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| | - Jie Feng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenni Wei
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, China
| | - Yikai Xu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Medical Imaging Center, Nanfang Hospital, School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong 510515, China
| |
Collapse
|
11
|
Xiang G, Zhang L, Chen J, Zhang B, Liu Z. A binary carbon@silica@carbon hydrophobic nanoreactor for highly efficient selective oxidation of aromatic alkanes. NANOSCALE 2021; 13:18140-18147. [PMID: 34724701 DOI: 10.1039/d1nr05695f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoreactors with a delimited void space and a large number of mesoporous structures have attracted great attention as potential heterogeneous catalysts. In this work, a cobalt and nitrogen co-doped binary carbon@silica@carbon hydrophobic nanoreactor was synthesized by an in situ synthesis method. Cobalt porphyrin was used as an active component to construct Co-Nx sites, and the purpose of the double carbon layer coating was to enhance the hydrophobicity of the surface of the nanoreactor. The optimal nanoreactor could achieve 96.9% ethylbenzene conversion and 99.1% acetophenone selectivity and showed outstanding universality to many other aromatic alkanes. The superior performance was mainly due to the presence of double carbon layers and the high content of Co-Nx sites. The double hydrophobic carbon layer coating could not only promote the adsorption of organic molecules, but also implant Co-Nx active sites on both the inner and outer surfaces of the nanoreactor. This work proposed a meaningful strategy to obtain a highly efficient nanoreactor for C-H bond oxidation.
Collapse
Affiliation(s)
- Ganghua Xiang
- Engineering Research Center of Advanced Catalysis of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| | - Lushuang Zhang
- Engineering Research Center of Advanced Catalysis of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Zhigang Liu
- Engineering Research Center of Advanced Catalysis of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
12
|
Watanabe T, Yamamoto E, Uchida S, Cheng L, Wada H, Shimojima A, Kuroda K. Preparation of Sub-50 nm Colloidal Monodispersed Hollow Siloxane-Based Nanoparticles with Controlled Shell Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13833-13842. [PMID: 33190504 DOI: 10.1021/acs.langmuir.0c02190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hollow siloxane-based nanoparticles (HSNs) have attracted significant attention because of their promising unique properties for various applications. For advanced applications, especially in catalysis, drug delivery systems, and smart coatings, high dispersibility and monodispersity of HSNs with precisely controlled shell structures are important. In this study, we established a simple method for preparing colloidal HSNs with a uniform particle size below 50 nm by the reaction of colloidal silica nanoparticles with bridged organoalkoxysilane [1,2-bis(triethoxysilyl)ethylene: (EtO)3Si-C2H2-Si(OEt)3, BTEE] in the presence of a cationic surfactant. Upon the formation of organosiloxane shells by hydrolysis and polycondensation of BTEE, the core silica nanoparticles were spontaneously dissolved, and a part of the silicate species was incorporated into the organosiloxane shells. The size of the colloidal silica nanoparticles, the amount of BTEE added, and the pH of the reaction mixture greatly affected the formation of HSNs. Importantly, colloidal HSNs having micropores and mesopores in the shells were successfully prepared using silica nanoparticles (20, 30, and 40 nm in diameter) at pH values of 9 and 11, respectively. These HSNs are potentially important for applications in drug delivery systems and catalysis.
Collapse
Affiliation(s)
- Tenkai Watanabe
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Eisuke Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Saki Uchida
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Lulu Cheng
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
13
|
Zhou ZH, Zhang RQ, Jia GF, Wang YH, Luo YL, Xu F, Chen YS. Controlled release of DOX mediated by glutathione and pH dual-responsive hollow mesoporous silicon coated with polydopamine graft poly(poly(ethylene glycol) methacrylate) nanoparticles for cancer therapy. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and Glutathione Dual-Responsive Polydopamine-Coated Organic-Inorganic Hybrid Hollow Mesoporous Silica Nanoparticles for Controlled Drug Delivery. ChemMedChem 2020; 15:1940-1946. [PMID: 32762008 DOI: 10.1002/cmdc.202000263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022]
Abstract
Controversial biodegradability and nonspecific pre-drug leakage are major limitations for inorganic nanoparticles in cancer treatment. To solve these problems, we developed organic-inorganic hybridized hollow mesoporous silica nanoparticles with polydopamine modifications on the surface to simultaneously achieve enhanced biodegradability and controllable drug release. The morphology and chemical structure of the nanoparticles were characterized by TEM, N2 adsorption-desorption isotherms, TEM-mapping and XPS. Moreover, the release behavior of nanoparticles under various pH conditions and the degradation behavior in the presence of GSH were evaluated. With effective controlled release, HMONs-PTX@PDA were shown to significantly inhibit cancer cell proliferation and achieve antitumor effects in vivo through dual-response release in the tumor microenvironment. Overall, this nanoplatform has significant potential to achieve tumor microenvironment-responsive degradation and release to enhance tumor accumulation, which is very promising for cancer treatment.
Collapse
Affiliation(s)
- Qi Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Yunna Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Wenjing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qianqian Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Mengru Hu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China
| |
Collapse
|
15
|
Fu Z, Li L, Li F, Ahmed R, Niu X, Liu D, Guo X. Facile Morphology Control during Rapid Fabrication of Nanosized Organosilica Particles. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Fen Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Rizwan Ahmed
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xiaofeng Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, 832000 Shihezi, Xinjiang, P. R. China
| |
Collapse
|
16
|
Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials 2020; 256:120191. [PMID: 32593907 DOI: 10.1016/j.biomaterials.2020.120191] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Despite the advantages of mesoporous silica nanoparticles (MSNs) in drug delivery, the inherent non-biodegradability seriously impedes the clinical translation of inorganic MSNs, so the current research focus has been turned to mesoporous organosilica nanoparticles (MONs) with higher biocompatibility and easier biodegradability. Recent remarkable advances in silica fabrication chemistry have catalyzed the emergence of a library of MONs with various structures and functions. This review will summarize the latest state-of-the-art studies on the precise control of morphology, structure, framework, particle size and pore size of MONs, which enables the precise synthesis of MONs with suitable engineering for precision stimuli-responsive drug delivery/release, bioimaging and synergistic therapy. Besides, the potential challenges about the future development of MONs are also outlooked with the intention of attracting more researchers to promote the clinical translation of MONs.
Collapse
|
17
|
Fu B, Dang M, Tao J, Li Y, Tang Y. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. J Colloid Interface Sci 2020; 570:197-204. [DOI: 10.1016/j.jcis.2020.02.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
|
18
|
Sun Y, Mao Y, Di N, Chen X, Qi D, Shentu B. Core-template-free synthesis of molecularly ethane-bridged hollow mesoporous silica spheres from acid-hydrolyzed precursor. NEW J CHEM 2020. [DOI: 10.1039/d0nj01221a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecularly ethane-bridged hollow mesoporous silica spheres with radial mesochannels and enlarged pore size were synthesized by a core-template-free method only through using acid-hydrolyzed TEOS/bis(triethoxysilyl)ethane (BTEE) as precursor.
Collapse
Affiliation(s)
- Yangyi Sun
- State Key Lab of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yijing Mao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Ningyu Di
- Zhejing Bofay Electric Corporation Limited
- Zhejiang
- China
| | - Xiaolong Chen
- NanoDrug Platform
- Zhejiang California International NanoSystems Institute
- Zhejiang University
- Hangzhou 310058
- China
| | - Dongming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Baoqing Shentu
- State Key Lab of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|