1
|
Wen T, Ma T, Qian J, Song Z, Jiang X, Yao Y. Phase-transition-induced dynamic surface wrinkle pattern on gradient photo-crosslinking liquid crystal elastomer. Nat Commun 2024; 15:10821. [PMID: 39738029 DOI: 10.1038/s41467-024-55180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR). The surface wrinkle is stabilized by the orientation of liquid crystal mesogens in the crosslinked top layer, while it can be erased by heating due to the isotropic phase-transition and recovered by stretching-releasing again. The dynamic natures cooperated with multi display modes under natural light, UV light and polarized light enable wrinkled AnLCE as a dynamic and multi-mode display platform. This strategy provide a path for modifying LCEs and regulating surface polarized images via wrinkling, which may be potential in soft sensors and optics, smart windows and anti-counterfeiting.
Collapse
Affiliation(s)
- Tao Wen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China
| | - Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Qian
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxin Song
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuan Yao
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Shang H, Sheng T, Dong H, Wu Y, Ma Q, Zhang X, Lv L, Cao H, Deng F, Liang X, Hu S, Shen S. Synthesizing ordered polar patterns in nonpolar SrTiO 3 nanofilms via wrinkle-induced flexoelectricity. Proc Natl Acad Sci U S A 2024; 121:e2414500121. [PMID: 39589883 PMCID: PMC11626192 DOI: 10.1073/pnas.2414500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Ordered polar structures in oxide nanofilms play a pivotal role in the development of nanoelectronic applications. Hitherto, ordered polar structures have been restricted to a limited number of ferroelectric materials, and there is no effective scheme to induce and manipulate ordered polar patterns in centrosymmetric nonpolar nanofilms due to the absence of spontaneous symmetry breaking. Here, we circumvent these limitations by utilizing the wrinkle-induced strain gradient modulation associated with flexoelectricity as a general means of inducing and manipulating ordered polar patterns in nonpolar nanofilms. Leveraging the surface instability caused by strain mismatch between oxide nanofilms and pre-strained compliant substrate, we successfully fabricate striped SrTiO3 wrinkles, where well-ordered strain gradients and corresponding periodic polar patterns are readily achieved. Through in-situ piezoresponse force microscopy experiments, we show that the generated polar patterns can be manipulated by varying strain boundaries. Furthermore, the atomistic resolution images and first-principles calculations reveal that such wrinkle-induced ordered polar patterns primarily emerge from the flexoelectric coupling between the local polarization and strain gradients. These findings provide implications for manipulating polar structures by strain gradient and flexoelectric engineering, which in turn enable the realization of nontrivial polar structures in a broader range of materials.
Collapse
Affiliation(s)
- Hongxing Shang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Tang Sheng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Huiting Dong
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Yihan Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou350108, China
| | - Qianqian Ma
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Xin Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Lingtong Lv
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Hongyu Cao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Feng Deng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Xu Liang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Shuling Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| |
Collapse
|
3
|
Liu N, Lu Y, Li Z, Zhao H, Yu Q, Huang Y, Yang J, Huang L. Smart Wrinkled Interfaces: Patterning, Morphing, and Coding of Polymer Surfaces by Dynamic Anisotropic Wrinkling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18837-18856. [PMID: 39207273 DOI: 10.1021/acs.langmuir.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In contrast to traditional static surfaces, smart patterned surfaces with periodical and reversible morphologies offer limitless opportunities for encoding surface functions and properties on demand, facilitating their widespread application as functional building blocks in various devices. Advances in intelligently controlling the macroscopic properties of these smart surfaces have been accomplished through various techniques (such as three-dimensional printing, imprint lithography and femtosecond laser) and responsive materials. In contrast to the sophisticated techniques above, dynamic anisotropic wrinkling, taking advantage of dynamic programmable manipulation of surface wrinkling and its orientation, offers a powerful alternative for fabricating dynamic periodical patterns due to its spontaneous formation, versatility, convenient scale-up fabrication, and sensitivity to various stimuli. This review comprehensively summarizes recent advances in smart patterned surfaces with dynamic oriented wrinkles, covering design principles, fabrication techniques, representative types of physical and chemical stimuli, as well as fine-tuning of wrinkle dimensions and orientation. Finally, advanced applications of these smart patterned surfaces are presented, along with a discussion of current challenges and future prospects in this rapidly evolving field. This review would offer some insights and guidelines for designing and engineering novel stimuli-responsive smart wrinkled surfaces, thereby facilitating their sustainable development and progressing toward commercialization.
Collapse
Affiliation(s)
- Ning Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yenie Lu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziyue Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongyang Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyue Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaxin Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Feng D, Guo Q, Huang Z, Zhou B, Gong L, Lu S, Yang Y, Yu D, Zheng Z, Chen X. Viscoelasticity‐Controlled Relaxation in Wrinkling Surface for Multistage Time‐Resolved Optical Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314201. [PMID: 38444232 DOI: 10.1002/adma.202314201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 03/07/2024]
Abstract
As counterfeit techniques continue to evolve, ensuring the security of conventional "static" encryption methods becomes increasingly challenging. Here, the viscoelasticity-controlled relaxation is introduced for the first time in a bilayer wrinkling system by regulating the density of hydrogen bond networks in polymer to construct a "dynamic" encryption material. The wrinkling surface can manipulate light during the dynamic relaxation process, exhibiting three stages with frosted glass, structural color, and mirror reflection. By regulating the viscoelasticity of skin layer through UV irradiation, the wavelength and the relaxation rate of the wrinkles can be controlled. As a result, dynamic wrinkling anti-counterfeiting patterns and time-resolved multistage information encryption are achieved. Crucially, the encryption material is developed as an anti-counterfeiting label for packing boxes in daily applications, allowing the encrypted information to be activated manually and identified by naked eyes, surpassing the existing time-resolved encryption materials in utilization potential. Besides, the dynamic hydrogen bond networks are extended to various dynamic interaction networks, demonstrating the versatility of the dynamic encryption strategy. This work not only provides an additional dimension for dynamic information encryption in daily practical use, but also offers theoretical guidance for the development of advanced optical anti-counterfeiting and smart display materials in the future.
Collapse
Affiliation(s)
- Dengchong Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Guo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenjie Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baiyang Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Gong
- Instrumental Analysis Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaolin Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Yuzhao Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| |
Collapse
|
5
|
Sarabia-Vallejos MA, Cerda-Iglesias FE, Pérez-Monje DA, Acuña-Ruiz NF, Terraza-Inostroza CA, Rodríguez-Hernández J, González-Henríquez CM. Smart Polymer Surfaces with Complex Wrinkled Patterns: Reversible, Non-Planar, Gradient, and Hierarchical Structures. Polymers (Basel) 2023; 15:polym15030612. [PMID: 36771913 PMCID: PMC9920088 DOI: 10.3390/polym15030612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This review summarizes the relevant developments in preparing wrinkled structures with variable characteristics. These include the formation of smart interfaces with reversible wrinkle formation, the construction of wrinkles in non-planar supports, or, more interestingly, the development of complex hierarchically structured wrinkled patterns. Smart wrinkled surfaces obtained using light-responsive, pH-responsive, temperature-responsive, and electromagnetic-responsive polymers are thoroughly described. These systems control the formation of wrinkles in particular surface positions and the reversible construction of planar-wrinkled surfaces. This know-how of non-planar substrates has been recently extended to other structures, thus forming wrinkled patterns on solid, hollow spheres, cylinders, and cylindrical tubes. Finally, this bibliographic analysis also presents some illustrative examples of the potential of wrinkle formation to create more complex patterns, including gradient structures and hierarchically multiscale-ordered wrinkles. The orientation and the wrinkle characteristics (amplitude and period) can also be modulated according to the requested application.
Collapse
Affiliation(s)
- Mauricio A. Sarabia-Vallejos
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Sede Santiago, Santiago 8420524, Chile
| | - Felipe E. Cerda-Iglesias
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa PhD en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Dan A. Pérez-Monje
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Nicolas F. Acuña-Ruiz
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Claudio A. Terraza-Inostroza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain
| | - Carmen M. González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
- Correspondence:
| |
Collapse
|
6
|
Wu X, Zou J, Yang J, Jiang J, Feng Q, Ye Z, Huang W. Evolution of electrical conductivity in semi‐interpenetrating polymer network of shape memory polyvinyl chloride and polyaniline. J Appl Polym Sci 2022. [DOI: 10.1002/app.53283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuelian Wu
- School of Mechanical Engineering Jiangsu University Zhenjiang China
| | - Jiaxing Zou
- School of Mechanical Engineering Jiangsu University Zhenjiang China
| | - Jian Yang
- School of Mechanical Engineering Jiangsu University Zhenjiang China
| | - Jiang Jiang
- School of Mechanical Engineering Jiangsu University Zhenjiang China
| | - Qin Feng
- School of Mechanical Engineering Jiangsu University Zhenjiang China
| | - Zihao Ye
- School of Mechanical Engineering Jiangsu University Zhenjiang China
| | - Weimin Huang
- School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore Singapore
| |
Collapse
|
7
|
Wen X, Lu X, Li J, Wei C, Qin H, Liu Y, Yang S. Multi-responsive, flexible, and structurally colored film based on a 1D diffraction grating structure. iScience 2022; 25:104157. [PMID: 35434567 PMCID: PMC9010745 DOI: 10.1016/j.isci.2022.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
In nature, many organisms (e.g., chameleons) protect themselves by changing their colors in response to environmental changes. Inspired by these organisms, we present a multi-responsive, flexible, and structurally colored hydrogel film with a one-dimensional (1D) ordered periodic groove structure. The groove structure endows the film with bright, highly angle-dependent structural colors, which can be reversibly tuned by stretching and releasing. In addition, because of the thermosensitive properties of the hydrogel, the film can be switched between colored state and opaque white state with temperature. In addition, the optical state of the film is sensitive to solvent and can be reversibly changed between colored state and transparent state with soaking and evaporation of the solvent. This reversible, multi-responsive, flexible, and structurally colored hydrogel film has great potential to be used in the fields of color display, sensors, anti-counterfeiting, and so on because of its flexible and diverse tuning methods, excellent optical performance, and convenient preparation process. Multi-responsive hydrogel film with surface 1D grating structure is fabricated The hydrogel film shows reversible color change during stretching and releasing The film can be switched between colored and opaque white with temperature The film can be switched between colored and transparent states using a solvent
Collapse
Affiliation(s)
- Xiaoxiang Wen
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xuegang Lu
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Corresponding author
| | - Jianing Li
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Chaoping Wei
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Hongji Qin
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Yuting Liu
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Sen Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Corresponding author
| |
Collapse
|
8
|
Ichimura K, Sonoda T, Ubukata T. UV-Vis Higher-Order Derivative Spectra Disclose the Involvement of Two Processes in the Solid-State 4+4 Photocycloaddition of an Amorphous Bisanthracene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kunihiro Ichimura
- R & D centre, Murakami Co. Ltd., 1-6-12 Ohnodai, Midori-ku, Chiba 267-0056, Japan
| | - Taishi Sonoda
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
9
|
Saghatforoush L, Hakimi M, Gholipour A, Bakhtiari A, Moeini K, Eigner V, Dušek M. Formation of 1D coordination polymers by reaction of a tetrazine ligand and PbX2 (X: Br, I) salts: Spectral, structural and theoretical studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zhu Y, Deng S, Zhao X, Xia G, Zhao R, Chan HF. Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomater 2021; 134:32-42. [PMID: 34325076 DOI: 10.1016/j.actbio.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The folding of tissues/organs into complex shapes is a common phenomenon that occurs in organisms such as animals and plants, and is both structurally and functionally important. Deciphering the process of tissue folding and applying this knowledge to engineer folded systems would significantly advance the field of tissue engineering. Although early studies focused on investigating the biochemical signaling events that occur during the folding process, the physical or mechanical aspects of the process have received increasing attention in recent years. In this review, we will summarize recent findings on the mechanical aspects of folding and introduce strategies by which folding can be controlled in vitro. Emphasis will be placed on the folding events triggered by mechanical effects at the cellular and tissue levels and on the different cell- and biomaterial-based approaches used to recapitulate folding. Finally, we will provide a perspective on the development of engineering tissue folding toward preclinical and clinical translation. STATEMENT OF SIGNIFICANCE: Tissue folding is a common phenomenon in a variety of organisms including human, and has been shown to serve important structural and functional roles. Understanding how folding forms and applying the concept in tissue engineering would represent an advance of the research field. Recently, the physical or mechanical aspect of tissue folding has gained increasing attention. In this review, we will cover recent findings of the mechanical aspect of folding mechanisms, and introduce strategies to control the folding process in vitro. We will also provide a perspective on the future development of the field towards preclinical and clinical translation of various bio fabrication technologies.
Collapse
Affiliation(s)
- Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai 200233, China
| | - Ruike Zhao
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China.
| |
Collapse
|
11
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
12
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
13
|
Li J, Li T, Ma X, Su Z, Yin J, Jiang X. Light-Induced Programmable 2D Ordered Patterns Based on a Hyperbranched Poly(ether amine) (hPEA)-Functionalized Graphene Film. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1704-1713. [PMID: 33347761 DOI: 10.1021/acsami.0c15099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic complex surface topography with ordered and tunable morphologies, which can provide on-demand control of surface properties to realize smart surfaces, is gaining much attention yet remains challenging in terms of fabrication. Here, a facile, robust, and controllable method is demonstrated to fabricate programmable two-dimensional (2D) ordered patterns with multiresponsive 2D ultrathin materials, comprised of anthracene-capped hyperbranched poly(ether amine) (hPEA-AN)-functionalized graphene (hPEA-AN@G). By combining the stimuli-responsiveness and UV sensitivity of hPEA-AN and excellent out-of-plane deformation and NIR-to-thermal conversion of graphene, the process of "writing/uploading" initial information is conducted through the initial exposure to 365 nm UV light to generate the 2D ordered pattern first; second, inducing swelling strain via moisture to create the hierarchical topographic pattern (orderly oriented pattern) is the process of "modification and erasable rewriting"; third, alternating NIR or 254 nm UV light blanket exposure are the two ways of erasing the information. Consequently, taking advantage of the multiresponsive dynamic wrinkling/ordered patterning, we can program globally 2D ordered surface patterns with diverse morphologies on demand and manipulate the resulted surface properties as desired.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong Su
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Hou W, Wang Y, Bian Y, Zhang J, Li S, Zeng Y, Du X, Gu Z. Reconfigurable Surface with Photodefinable Physicochemical Properties for User-Designable Cell Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:2230-2238. [PMID: 35025275 DOI: 10.1021/acsabm.0c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surfaces with specific topography and chemical composition are quite useful in many applications ranging from functional interfaces to cell incubation scaffolds. Although these surfaces can be easily fabricated by combining topography-construction methods and surface-functionalization strategies, their properties are often static after fabrication or merely switchable between "on" and "off" states. Developing surfaces that can be on-demand regulated are quite important for the generation of smart surfaces for future applications. In this paper, we present a reconfigurable surface with adjustable topography and chemical functionality utilizing the photodynamic feature of the disulfide bond. Structured surfaces, composed of disulfide-cross-linked polymer networks, were prepared by using disulfide-containing methacrylate as the monomer. We show that the topography and chemical functionality of the surface can be on-demand regulated after its fabrication, with 254 and 365 nm UV light, respectively, allowing to "define" the physicochemical properties of the surface using light before the usage. We also demonstrate the application of such surface as a user-designable cell scaffold, that different cell scaffolds can be generated from one original surface with a simple exposure process, to define the desired bioactivity onto every point of the surface and therefore exactly control cell behaviors on the scaffold.
Collapse
Affiliation(s)
- Wei Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Sen Li
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Zeng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Jiang B, Liu L, Gao Z, Feng Z, Zheng Y, Wang W. Fast Dual-Stimuli-Responsive Dynamic Surface Wrinkles with High Bistability for Smart Windows and Rewritable Optical Displays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40406-40415. [PMID: 31613079 DOI: 10.1021/acsami.9b10747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic dual-stimuli-responsive surface wrinkles on a bilayer film with high bistability are unattainable and attractive for the applications of smart windows and optical displays. Here, we report a new strategy in developing moisture and temperature dual-responsive surface wrinkles on the polyvinyl alcohol/polydimethylsiloxane (PVA/PDMS) bilayer film by rationally designing the modulus changes of the PVA skin layer upon moisture and temperature. By optimizing the thickness of the PVA layer to 4.5 μm, the as-prepared surface wrinkles show long-awaited properties, such as fast response time, excellent reversibility without degradation of optical contrast, and high light transmittance modulation, which greatly outperforms the reported surface wrinkles. Moreover, the surface wrinkles on the bilayer film remain highly bistable without additional energy consumption for more than five months in ambient room conditions both in the opaque and transparent states. These promising dual-stimuli-responsive surface wrinkles on bilayer films hold great promises for various applications triggered by moisture and temperature, such as smart windows and rewritable optical displays.
Collapse
Affiliation(s)
- Baolai Jiang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Luntao Liu
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Zongpeng Gao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Zhenyu Feng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Yiqun Zheng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Wenshou Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| |
Collapse
|
16
|
Zhang B, Ke J, Vakil JR, Cummings SC, Digby ZA, Sparks JL, Ye Z, Zanjani MB, Konkolewicz D. Dual-dynamic interpenetrated networks tuned through macromolecular architecture. Polym Chem 2019. [DOI: 10.1039/c9py01387c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled polymerization is used to make well defined polymers that are assembled into dynamic interpenetrated network materials. Self-healing, toughness and stress relaxation are imparted into the material through the dynamic linkages.
Collapse
Affiliation(s)
- Borui Zhang
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jun Ke
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jafer R. Vakil
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Sean C. Cummings
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jessica L. Sparks
- Department of Chemical
- Paper and Biomedical Engineering
- Miami University
- Oxford
- USA
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering
- Miami University
- Oxford
- USA
| | - Mehdi B. Zanjani
- Department of Mechanical and Manufacturing Engineering
- Miami University
- Oxford
- USA
| | | |
Collapse
|