1
|
Kim J, Cho YW, Woo SG, Lee JN, Lee GH. Advancements in Chemical Vapor Deposited Carbon Films for Secondary Battery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410570. [PMID: 39981787 DOI: 10.1002/smll.202410570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Carbon films, synthesized via chemical vapor deposition (CVD), have gained significant attention in secondary battery applications, where stability and capacity are required to be improved for next-generation electronic devices and electric vehicles. Beyond the inherent properties of carbon films, such as high electrical conductivity, mechanical strength, chemical stability, and flexibility, the CVD method provides a high degree of freedom in designing the carbon films in battery applications, enabling conformal coating with structure engineering for modification of its electrical and mechanical properties. In this review, the CVD-grown carbon films are highlighted in the secondary battery applications, enabling them to overcome critical issues, such as volume expansion, sluggish kinetics, and unstable interfaces. To deeply understand the CVD-grown carbon films, such as graphene and amorphous carbon, a comprehensive overview of the CVD process is also provided, focusing on growth mechanisms, control of 3D morphology, and doping techniques. In addition, a broad range of applications are introduced for carbon films in battery components, including their use in cathodes, anodes, and current collectors, as well as their potential in advanced battery systems, such as lithium-sulfur and all-solid-state batteries. This review proposes future directions for optimizing carbon films to achieve practical applications in next-generation energy storage devices.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Wook Cho
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Saenari-ro 25, Bundang-gu, Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Sang-Gil Woo
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Saenari-ro 25, Bundang-gu, Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Je-Nam Lee
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Saenari-ro 25, Bundang-gu, Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Wu Z, Wang E, Zhang G, Shen Y, Shao G. Recent Progress of Vertical Graphene: Preparation, Structure Engineering, and Emerging Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307923. [PMID: 38009514 DOI: 10.1002/smll.202307923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Vertical graphene (VG) nanosheets have garnered significant attention in the field of electrochemical energy applications, such as supercapacitors, electro-catalysis, and metal-ion batteries. The distinctive structures of VG, including vertically oriented morphology, exposed, and extended edges, and separated few-layer graphene nanosheets, have endowed VG with superior electrode reaction kinetics and mass/electron transportation compared to other graphene-based nanostructures. Therefore, gaining insight into the structure-activity relationship of VG and VG-based materials is crucial for enhancing device performance and expanding their applications in the energy field. In this review, the authors first summarize the fabrication methods of VG structures, including solution-based, and vacuum-based techniques. The study then focuses on structural modulations through plasma-enhanced chemical vapor deposition (PECVD) to tailor defects and morphology, aiming to obtain desirable architectures. Additionally, a comprehensive overview of the applications of VG and VG-based hybrids d in the energy field is provided, considering the arrangement and optimization of their structures. Finally, the challenges and future prospects of VG-based energy-related applications are discussed.
Collapse
Affiliation(s)
- Zhiheng Wu
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou, 450100, China
| | - Erhao Wang
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Gongkai Zhang
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yonglong Shen
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou, 450100, China
| | - Guosheng Shao
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Building 2, Zhongyuanzhigu, Xingyang, Zhengzhou, 450100, China
| |
Collapse
|
3
|
Ma Y, Han J, Yue D, Tong Z, Wang M, Xiao L, Jia S, Chen X. Position-Induced Controllable Growth of Vertically Oriented Graphene Using Plasma-Enhanced Chemical Vapor Deposition. Inorg Chem 2023; 62:13505-13511. [PMID: 37561010 DOI: 10.1021/acs.inorgchem.3c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Because the morphology of vertically oriented graphene (VG) synthesized by the plasma-enhanced chemical vapor deposition process determines the application performance of VG, morphology control is always an important part of the research. A concise correspondence between plasma and the morphology of VG is the key to investigating the morphology control of VG, which is still under research. In this study, a simple but effective parameter, position, is used to grow VG, by which the continuous morphology evolution of VG is realized. As a result, the morphology of VGs varies from a porous structure to a "wall-like" structure, thus leading to a continuous change in its hydrophobicity and thermal emissivity. An ultrahigh emissivity of 0.999 with superhydrophobicity is obtained among these VGs, showing great potential in the area of the black body and infrared thermometer. Finally, the states of active particles in plasma depending on the positions are diagnosed to investigate their relations with the morphology of VGs.
Collapse
Affiliation(s)
- Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jiemin Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Zhaomin Tong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of Southeast Norway, Borre N3184, Norway
| |
Collapse
|
4
|
Ma Y, Zhao K, Han J, Han B, Wang M, Tong Z, Suhr J, Xiao L, Jia S, Chen X. Pressure Sensor Based on a Lumpily Pyramidal Vertical Graphene Film with a Broad Sensing Range and High Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13813-13821. [PMID: 36857658 DOI: 10.1021/acsami.3c01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable sensors are vital for the development of electronic skins to improve health monitoring, robotic tactile sensing, and artificial intelligence. Active materials and the construction of microstructures in the sensitive layer are the dominating approaches to improve the performance of pressure sensors. However, it is still a challenge to simultaneously achieve a sensor with a high sensitivity and a wide detection range. In this work, using three-dimensional (3D) vertical graphene (VG) as an active material, in combination with micropyramid arrays and lumpy holders, the stress concentration effects are generated in nano-, micro-, and macroscales. Therefore, the lumpily pyramidal VG film-based pressure sensor (LPV sensor) achieves an ultrahigh sensitivity (131.36 kPa-1) and a wide response range (0.1-100 kPa). Finite element analysis demonstrates that the stress concentration effects are enhanced by the micropyramid arrays and lumpy structures in micro- and macroscales, respectively. Finally, the LPV pressure sensors are tested in practical applications, including wearable health monitoring and force feedback of robotic tactile sensing.
Collapse
Affiliation(s)
- Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ke Zhao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiemin Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Bingkang Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhaomin Tong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jonghwan Suhr
- Department of Polymer Science and Engineering, School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of South-Eastern Norway, N-3184 Borre, Norway
| |
Collapse
|
5
|
Shen C, Xu S, Chen Z, Ji N, Yang J, Zhang J. Fluorobenzene and Water-Promoted Rapid Growth of Vertical Graphene Arrays by Electric-Field-Assisted PECVD. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207745. [PMID: 36650988 DOI: 10.1002/smll.202207745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Vertical graphene (VG) arrays show exposed sharp edges, ultra-low electrical resistance, large surface-to-volume ratio, and low light reflectivity, thus having great potential in emerging applications, including field emission, sensing, energy storage devices, and stray light shields. Although plasma enhanced chemical vapor deposition (PECVD) is regarded as an effective approach for the synthesis of VG, it is still challenging to increase the growth rate and height of VG arrays simultaneously. Herein, a fluorobenzene and water-assisted method to rapidly grow VG arrays in an electric field-assisted PECVD system is developed. Fluorobenzene-based carbon sources are used to produce highly electronegative fluorine radicals to accelerate the decomposition of methanol and promote the growth of VG. Water is applied to produce hydroxyl radicals in order to etch amorphous carbon and accelerate the VG growth. The fastest growth rate can be up to 15.9 µm h-1 . Finally, VG arrays with a height of 144 µm are successfully synthesized at an average rate of 14.4 µm h-1 . As a kind of super black material, these VG arrays exhibit an ultra-low reflectance of 0.25%, showing great prospect in stray light shielding.
Collapse
Affiliation(s)
- Chao Shen
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Shichen Xu
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhuo Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Nannan Ji
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Jinhui Yang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Jin Zhang
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Zhao K, Han J, Ma Y, Tong Z, Suhr J, Wang M, Xiao L, Jia S, Chen X. Highly Sensitive and Flexible Capacitive Pressure Sensors Based on Vertical Graphene and Micro-Pyramidal Dielectric Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:701. [PMID: 36839069 PMCID: PMC9962134 DOI: 10.3390/nano13040701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Many practical applications require flexible high-sensitivity pressure sensors. However, such sensors are difficult to achieve using conventional materials. Engineering the morphology of the electrodes and the topography of the dielectrics has been demonstrated to be effective in boosting the sensing performance of capacitive pressure sensors. In this study, a flexible capacitive pressure sensor with high sensitivity was fabricated by using three-dimensional vertical graphene (VG) as the electrode and micro-pyramidal polydimethylsiloxane (PDMS) as the dielectric layer. The engineering of the VG morphology, size, and interval of the micro-pyramids in the PDMS dielectric layer significantly boosted the sensor sensitivity. As a result, the sensors demonstrated an exceptional sensitivity of up to 6.04 kPa-1 in the pressure range of 0-1 kPa, and 0.69 kPa-1 under 1-10 kPa. Finite element analysis revealed that the micro-pyramid structure in the dielectric layer generated a significant deformation effect under pressure, thereby ameliorating the sensing properties. Finally, the sensor was used to monitor finger joint movement, knee motion, facial expression, and pressure distribution. The results indicate that the sensor exhibits great potential in various applications, including human motion detection and human-machine interaction.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jiemin Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhaomin Tong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jonghwan Suhr
- Department of Polymer Science and Engineering, School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of Southeast Norway, 3184 Borre, Norway
| |
Collapse
|
7
|
Hong T, Zhan R, Zhang Y, Deng S. High Crystallinity Vertical Few-Layer Graphene Grown Using Template Method Assisted ICPCVD Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3746. [PMID: 36364521 PMCID: PMC9658688 DOI: 10.3390/nano12213746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Controllable synthesis of high crystallinity, low defects vertical few-layer graphene (VFLG) is significant for its application in electron emission, sensor or energy storage, etc. In this paper, a template method was introduced to grow high crystallinity VFLG (HCVFLG). A copper mask acted as a template which has two effects in the high-density plasma enhanced deposition which are protecting VFLG from ion etching and creating a molecular gas flow to assist efficient growth. Raman and TEM results confirmed the improved crystallinity of VFLG with the assistance of a copper mask. As a field emitter, the HCVFLG has a large field emission current and a low turn-on field. The maximum field emission current of a single HCVFLG sheet reaches 93 μA which is two orders of magnitude higher than VFLG grown without a mask. The maximum current density of HCVFLG film reached 67.15 mA/cm2 and is 2.6 times of VFLG grown without a mask. The vacuum breakdown mechanism of HCVFLG was contacted interface damage resulting in VFLG detaching from the substrate. This work provides a practical strategy for high-quality VFLG controllable synthesis and provides a simple method to realize the pattern growth of VFLG.
Collapse
|
8
|
Ma Y, Li Z, Han J, Li L, Wang M, Tong Z, Suhr J, Xiao L, Jia S, Chen X. Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32387-32394. [PMID: 35818991 DOI: 10.1021/acsami.2c07658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of microstrain sensors offers significant prospects in diverse applications, such as microrobots, intelligent human-computer interaction, health monitoring, and medical rehabilitation. Among strain sensor materials, vertical graphene (VG) has demonstrated considerable potential as a resistive material; however, VG-based strain sensors with high resolution are yet to be developed. In addition, the detection mechanism of VG has not been extensively investigated. Herein, we developed a VG canal mesh (VGCM) to fabricate a flexible strain sensor for ultralow strain sensing, achieving an accurate response to strains as low as 0.1‰ within a total strain range of 0%-4%. The detection of such low strains is due to the rigorous structural design and strain concentration effect of the three-dimensional micronano structure of the VGCM. Through experimental results and theoretical simulation, the evolution of microcracks in VG and the sensing mechanism of VG and VGCM are elaborated, and the unique advantages of VGCM are revealed. Finally, the VGCM-based strain sensors are proposed as portable breathing test equipment for rapid breathing detection.
Collapse
Affiliation(s)
- Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zijian Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jiemin Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Linhan Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhaomin Tong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jonghwan Suhr
- Department of Polymer Science and Engineering, School of Mechanical Engineering, Sungkyunkwan University, 16419 Suwon, Republic of Korea
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of Southeast Norway, Borre N-3184, Norway
| |
Collapse
|
9
|
Xu S, Cheng T, Yan Q, Shen C, Yu Y, Lin C, Ding F, Zhang J. Chloroform-Assisted Rapid Growth of Vertical Graphene Array and Its Application in Thermal Interface Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200737. [PMID: 35322591 PMCID: PMC9130900 DOI: 10.1002/advs.202200737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Indexed: 05/05/2023]
Abstract
With the continuous progress in electronic devices, thermal interface materials (TIMs) are urgently needed for the fabrication of integrated circuits with high reliability and performance. Graphene as a wonderful additive is often added into polymer to build composite TIMs. However, owing to the lack of a specific design of the graphene skeleton, thermal conductivity of graphene-based composite TIMs is not significantly improved. Here a chloroform-assisted method for rapid growth of vertical graphene (VG) arrays in electric field-assisted plasma enhanced chemical vapor deposition (PECVD) system is reported. Under the optimum intensity and direction of electric field and by introducing the highly electronegative chlorine into the reactor, the record growth rate of 11.5 µm h-1 is achieved and VG with a height of 100 µm is successfully synthesized. The theoretical study for the first time reveals that the introduction of chlorine accelerates the decomposition of methanol and thus promotes the VG growth in PECVD. Finally, as an excellent filler framework in polymer matrix, VG arrays are used to construct a free-standing composite TIM, which yields a high vertical thermal conductivity of 34.2 W m-1 K-1 at the graphene loading of 8.6 wt% and shows excellent cooling effect in interfacial thermal dissipation of light emitting diode.
Collapse
Affiliation(s)
- Shichen Xu
- Center for NanochemistryBeijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
| | - Ting Cheng
- Center for NanochemistryBeijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Qingwei Yan
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and Engineering (NIMTE)Chinese Academy of SciencesNingbo315201P. R. China
| | - Chao Shen
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- College of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021P. R. China
| | - Yue Yu
- Center for NanochemistryBeijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Cheng‐Te Lin
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and Engineering (NIMTE)Chinese Academy of SciencesNingbo315201P. R. China
| | - Feng Ding
- School of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsan44919Korea
| | - Jin Zhang
- Center for NanochemistryBeijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- School of Materials Science and EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
10
|
Effects of Substrates on Nucleation, Growth and Electrical Property of Vertical Few-Layer Graphene. NANOMATERIALS 2022; 12:nano12060971. [PMID: 35335784 PMCID: PMC8950384 DOI: 10.3390/nano12060971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023]
Abstract
A key common problem for vertical few-layer graphene (VFLG) applications in electronic devices is the solution to grow on substrates. In this study, four kinds of substrates (silicon, stainless-steel, quartz and carbon-cloth) were examined to understand the mechanism of the nucleation and growth of VFLG by using the inductively-coupled plasma-enhanced chemical vapor deposition (ICPCVD) method. The theoretical and experimental results show that the initial nucleation of VFLG was influenced by the properties of the substrates. Surface energy and catalysis of substrates had a significant effect on controlling nucleation density and nucleation rate of VFLG at the initial growth stage. The quality of the VFLG sheet rarely had a relationship with this kind of substrate and was prone to being influenced by growth conditions. The characterization of conductivity and field emissions for a single VFLG were examined in order to understand the influence of substrates on the electrical property. The results showed that there was little difference in the conductivity of the VFLG sheet grown on the four substrates, while the interfacial contact resistance of VFLG on the four substrates showed a tremendous difference due to the different properties of said substrates. Therefore, the field emission characterization of the VFLG sheet grown on stainless-steel substrate was the best, with the maximum emission current of 35 µA at a 160 V/μm electrostatic field. This finding highlights the controllable interface of between VFLG and substrates as an important issue for electrical application.
Collapse
|
11
|
Yang Y, Ren Z, Lin Y, Li L, Pan L, Qin H, Hou L. Robust Graphene/
PVA
Aerogel for High‐flux and High‐purity Separation of Water‐in‐oil Emulsion and its
CFD
Simulation. AIChE J 2022. [DOI: 10.1002/aic.17619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yu Yang
- College of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise, Fuzhou University Fuzhou China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center Fuzhou China
| | - Zhiying Ren
- College of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise, Fuzhou University Fuzhou China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center Fuzhou China
| | - Youxi Lin
- College of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise, Fuzhou University Fuzhou China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center Fuzhou China
| | - Linlin Li
- College of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise, Fuzhou University Fuzhou China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center Fuzhou China
| | - Ling Pan
- College of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise, Fuzhou University Fuzhou China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center Fuzhou China
| | - Hongling Qin
- College of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise, Fuzhou University Fuzhou China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center Fuzhou China
| | - Linxi Hou
- Department of Materials‐Oriented Chemical Engineering College of Chemical Engineering Fuzhou University Fuzhou China
- Qingyuan Innovation Laboratory Quanzhou China
| |
Collapse
|
12
|
Han J, Ma Y, Wang M, Li L, Tong Z, Xiao L, Jia S, Chen X. Oxygen-Assisted Trimming Growth of Ultrahigh Vertical Graphene Films in a PECVD Process for Superior Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12400-12407. [PMID: 33667074 DOI: 10.1021/acsami.1c00544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combining the advantages of a three-dimensional structure with intrinsic properties of graphene, vertical graphene (VG) synthesized by the plasma-enhanced chemical vapor deposition (PECVD) process has shown great promise to be applied to energy-storage electrodes. However, the practical application of the VG electrodes suffers from the limited height, which is mostly in a scale of few hundreds of nanometers, as shown in the previous studies. The reason for the unacceptable thin VG film deposition is believed to be the height saturation, stemming from the inevitable confluence of the VG flakes along with the deposition time. In this study, we developed an oxygen-assisted "trimming" process to eliminate the overfrondent graphene nanosheets thereby surmounting the saturation of the VG thickness during growth. In this approach, the height of the VGs reaches as high as 80 μm. Tested as supercapacitor electrodes, a desirable capacitance of 241.35 mF cm-2 is obtained by the VG films, indicating the superior electrochemical properties and the potential for applications in energy storage. It is worth noting, this thickness is by no means the maximum that can be achieved with our synthesis technique and higher capacitance can be achieved by conducting the circulating deposition-correction process in our work.
Collapse
Affiliation(s)
- Jiemin Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Linhan Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhaomin Tong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of Southeast Norway, Borre N-3184, Norway
| |
Collapse
|
13
|
Bao J, Qiu X, Yang H, Lu W, Yang M, Gu W, Wu L, Huo D, Luo Y, Hou C. Disposable 3D GNAs/AuNPs DNA-Circuit Strip for miRNAs Dynamic Quantification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001416. [PMID: 32865862 DOI: 10.1002/smll.202001416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Real-time quantitative monitoring of miRNAs plays an essential role in diagnosis and therapeutics. Herein, a DSN-coupled graphene nanoarray/gold nanoparticles (GNAs/AuNPs) carbon paper (CP) electrode for the dynamic, sensitive, and real-time analysis of miRNAs is reported. GNAs are vertically grown on the conductive CP by radio frequency plasma enhanced chemical vapor deposition, and AuNPs are electrodeposited on CP/GNAs to build a 3D ultrasensitive sensing interface with large specific surface area, good conductivity and biocompatibility. The dynamic quantitative monitoring of microRNA-21 (miR-21) is realized by cyclic voltammetry with a series of different concentrations within 16 min, and this 3D GNAs/AuNPs DNA-circuit strip shows good performance for the simultaneous detection of miR-21 and miR-155, and the detection limits are as low as 21.4 and 30.3 am, respectively. Moreover, comparable detection results are achieved for clinical samples between the proposed sensor and qRT-PCR, suggesting the reliability of the constructed sensor. This ultrasensitive sensing and disposable DNA-circuit strip with 3D structure can efficiently shorten the diffusion distance between reactive biomolecules and the sensing interface, enhance the hybridization of probes and improve the sensitivity of the biosensor, holding great promise for the rapid, quantitative and dynamic monitoring of multiple low concentrations of biomolecules in point-of-care clinical analysis.
Collapse
Affiliation(s)
- Jing Bao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Xiaopei Qiu
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wenqiang Lu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wei Gu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Center of Smart Laboratory and Molecular Medicine, Medical School of Chongqing University, Chongqing, 400044, China
| | - Lixiang Wu
- Department of Clinical Laboratory Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, No. 181 Han Yu Road, Chongqing, 400030, China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, Medical School of Chongqing University, Chongqing, 400044, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Chongqing Key Laboratory of Bio-perception and Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
14
|
Shan J, Wang S, Zhou F, Cui L, Zhang Y, Liu Z. Enhancing the Heat-Dissipation Efficiency in Ultrasonic Transducers via Embedding Vertically Oriented Graphene-Based Porcelain Radiators. NANO LETTERS 2020; 20:5097-5105. [PMID: 32492341 DOI: 10.1021/acs.nanolett.0c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrasonic transducers with large output power have attracted extensive attentions due to their widespread applications in sonar, acoustic levitation, ultrasonic focusing, and so forth. However, the traditional transducer has almost no heat-dissipation capability itself, strictly relying on the assistant coolant system. Introducing high-performance heat-dissipation component is thus highly necessary. Herein, an embedded porcelain radiator component was designed by combining the excellent thermal conductivity of vertically oriented graphene (VG) with the outstanding heat-dissipation characteristics of thermosensitive ceramics, and a new-type transducer with an embedded VG/ceramic-hybrid radiator was constructed to show high heat-dissipation efficiency (up to ∼5 °C/min). Remarkably, prominent heat-dissipation effectiveness (temperature decline of ∼12 °C), enhanced amplitude and vibration uniformity were also achieved for the new-type transducer along with stabilized operating states. This research should pave ways for extending the applications of VG/ceramic hybrids to heat-dissipation scenarios and provide newfangled thoughts for the performance upgrade of multitudinous high-power devices.
Collapse
Affiliation(s)
- Junjie Shan
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P.R. China
| | - Sha Wang
- Shannxi Key Laboratory of Ultrasonics, Shannxi Normal University, Shaanxi 710119, P.R. China
| | - Fan Zhou
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Lingzhi Cui
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P.R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P.R. China
| |
Collapse
|
15
|
Bo Z, Su M, Yang H, Yang S, Yan J, Cen K. Multi-linear antenna microwave plasma assisted large-area growth of 6 × 6 in. 2 vertically oriented graphenes with high growth rate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:076105. [PMID: 32752835 DOI: 10.1063/1.5142756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Vertically oriented graphenes (VGs) are promising for many emerging energy and environmental applications, while their mass production still remains a critical challenge. This note reports a multi-linear antenna microwave plasma device for fabricating VGs on a large-scale. Eight coaxial linear plasma antennas are parallelly arrayed to produce large-area plasma, depositing 6 × 6 in.2 VGs on nickel foil at a high rate of 160 nm min-1. In supercapacitor applications, the potential of VGs for AC line filtering (an RC time of 0.43 ms) and decreasing the interfacial contact resistance within commercial activated carbon supercapacitors is demonstrated.
Collapse
Affiliation(s)
- Zheng Bo
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mengxiang Su
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Huachao Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shiling Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
16
|
Li Y, Zhang G, Gao A, Cui J, Zhao S, Yan Y. Robust Graphene/Poly(vinyl alcohol) Janus Aerogels with a Hierarchical Architecture for Highly Efficient Switchable Separation of Oil/Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36638-36648. [PMID: 31523964 DOI: 10.1021/acsami.9b11277] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the complexity and diversity of actual oily sewages, developing multifunctional separation materials with features of high separation efficiency and low energy consumption for separating diverse oil/water emulsions is urgently needed, yet it remains a formidable challenge till now. Herein, a superior graphene/poly(vinyl alcohol) Janus aerogel (J-CGPA), showing an intriguing three-dimensional (3D) hierarchical architecture (a dense skin-layer and a larger internal cell network) and desirable asymmetric wettability, was exploited via a simple direct freeze-shaping technique and subsequent mussel-inspired hydrophilic modification. Benefiting from the controlled unilateral decoration of dopamine, the resultant aerogels displayed completely opposite superwettability on two antithetic sides, i.e., one side is highly hydrophobic (water contact angle (WCA), 143°), whereas the other side is superhydrophilic. On the basis of the favorable 3D hierarchical structure and binary cooperative superwetting properties, the Janus aerogels achieved a remarkable switchable separation performance for both highly emulsified oil-in-water and water-in-oil emulsions as well as stratified oil/water mixtures accompanied with outstanding separation efficiencies. Particularly, an ultrahigh permeation flux of 1306 L m-2 h-1 along with a high rejection efficiency of 99.7% was acquired solely under the driving of gravity (<1 kPa), which is 1-2 order of magnitude higher than that of pioneering two-dimensional Janus polymeric/inorganic membranes recently reported. Moreover, together with robust reusability, this novel 3D Janus aerogel indicates a promising practical application for high-performance oily wastewater remediation.
Collapse
Affiliation(s)
- Yuzhen Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Guangfa Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Ailin Gao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Shuai Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|