1
|
Sarkar M, Siddhartha Sairam Kalahasti VR, Ghosh PC. A metal-organic framework-derived α-MnS/MWCNT composite as a promising pseudocapacitive material for a flexible quasi-solid-state asymmetric supercapacitor device. NANOSCALE 2025; 17:12911-12928. [PMID: 40331314 DOI: 10.1039/d5nr01156f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The low conductivity of traditionally used pseudocapacitive materials like transition metal oxides has forced researchers to look for alternative materials. Transition metal sulfides are being investigated as viable alternative materials and have shown promising results. In this work, an α-MnS/MWCNT composite is selected as the active material for supercapacitor application. α-MnS has better conductivity than many transition metal oxides but has an extremely low specific surface area (10.5 m2 g-1), which reduces its specific capacitance. Metal-organic framework (MOF)-derived materials are known to possess higher specific surface area and favorable pore size distribution. Herein, α-MnS/MWCNT composites are synthesized via two routes: the conventional solvothermal technique and the MOF route, and their performance is compared. It is proved that the α-MnS/MWCNT composite synthesized through the MOF route shows a favorable porous structure and better performance than the composite synthesized through the conventional route. It shows a specific surface area of 47.6 m2 g-1 and a specific capacitance of 546.3 F g-1 at 1 A g-1 with a mass loading of 1.5 mg cm-2 in 3 M KOH under a 3-electrode configuration. A flexible quasi-solid-state asymmetric supercapacitor device is fabricated with MOF-derived α-MnS/MWCNT as the positive electrode material, and the device achieved a potential window of 1.4 V, a specific capacitance of 82.5 F g-1 at 1 A g-1 and a capacitance retention of 90.1% after 5000 cycles at 10 A g-1. The results clearly indicate that transition metal sulfides like MOF-derived α-MnS can be a viable alternative to traditional materials like transition metal oxides. The assembled device has the potential to power flexible, wearable electronics.
Collapse
Affiliation(s)
- Mithun Sarkar
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Prakash C Ghosh
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
Low-temperature carbonized MXene/protein-based eggshell membrane composite as free-standing electrode for flexible supercapacitors. Int J Biol Macromol 2023; 226:588-596. [PMID: 36521699 DOI: 10.1016/j.ijbiomac.2022.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The demerits of the carbonized eggshell membrane (EM), such as high cost, high brittleness, immutable shape and size, greatly limit its application in demanding supercapacitors as free-standing electrode. Herein, the reconstituted EM (REM) with good flexibility and excellent size-customizability is developed, which is due to their fibrous structure and abundant surface polar groups. Ti3C2 nanosheet (a typical MXene) with ultra-high electrical conductivity and good electrochemical activity is then coated on REM surface, and undergoes a low-temperature carbonization (350 °C) to prepare CREM/T. Multi-functions of Ti3C2 are exhibited: (1) constructing a conductive network on REM surface by randomly stacking to yield a high electrical conductivity of 78.1 S cm-1, (2) being as a protective mold to remain the inherent flexibility and porosity of REM during carbonization, (3) creating nanopores by inducing self-activation, and (4) yielding a large capacitance of 1729 mF cm-2 at 0.5 mA cm-2 and a high rate capability of 82 % after increasing the current density by 50 folds. Furthermore, an all-EM-based supercapacitor is fabricated with REM as the separator and CREM/T as the electrode. It delivers a high energy density of 16.1 μW h cm-2 at 1301 μW cm-2, and shows stable capacitive behaviors during bending.
Collapse
|
3
|
Pradeepa S, Sutharthani K, Subadevi R, Sivakumar M. Exploration, of magnetic sesquioxide nanocomposite as a potential electrode material for the fabrication of high energy density asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
He Y, An N, Meng C, Xiao L, Wei Q, Zhou Y, Yang Y, Li Z, Hu Z. COF-Based Electrodes with Vertically Supported Tentacle Array for Ultrahigh Stability Flexible Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57328-57339. [PMID: 36525593 DOI: 10.1021/acsami.2c15092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an emerging porous crystal polymer, covalent organic frameworks (COFs) possess unique characteristics, such as high porosity, excellent stability, diverse topologies, designable open channels, and functional tunability. However, limited by the solid powder form, most COFs display low active site utilization and weak binding force with the current collector. In this pioneering research, we integrate redox-active COFs onto carbon fiber surfaces (AC-COFs) via strong covalent bridging. The 2,6-diaminoanthraquinone (DAAQ) pillars embedded on the carbon fiber surface are the key to precisely controlling the growth direction of COFs. The obtained tentacle-like array vertically supported on the surface of the carbon fiber can effectively induce charge transfer and prevent COFs from aggregating/collapsing. The strong covalent coupling and increase of accessible active sites contributed to the high specific capacitance of AC-COFs electrode (1034 mF cm-2). In addition, the COF-based flexible electrode retains an initial capacitance of 98% after 20000 charge-discharge cycles. The flexible all-solid-state symmetric supercapacitor is assembled by PVA/H2SO4 gel electrolyte with an areal capacitance of 715 mF cm-2. Besides, a red LED can be easily powered by three-bending AC-COFs//AC-COFs devices. The innovative synthesis strategy opens up new opportunities to develop high-performance flexible energy storage devices based on COFs.
Collapse
Affiliation(s)
- Yuanyuan He
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ning An
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- ESNAC Co. Ltd, Qindao 266042, China
| | - Congcong Meng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- School of Electronic and Information Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Liangzhikun Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qiaoqiao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuying Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhimin Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhongai Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
5
|
Muniraj VKA, Srinivasa MK, Yoo HD. Flexible supercapacitors toward wearable energy storage devices. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vedi Kuyil Azhagan Muniraj
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Republic of Korea
| | | | - Hyun Deog Yoo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Republic of Korea
| |
Collapse
|
6
|
Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203856. [PMID: 36192164 PMCID: PMC9631069 DOI: 10.1002/advs.202203856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Electronic textiles (e-textiles) have drawn significant attention from the scientific and engineering community as lightweight and comfortable next-generation wearable devices due to their ability to interface with the human body, and continuously monitor, collect, and communicate various physiological parameters. However, one of the major challenges for the commercialization and further growth of e-textiles is the lack of compatible power supply units. Thin and flexible supercapacitors (SCs), among various energy storage systems, are gaining consideration due to their salient features including excellent lifetime, lightweight, and high-power density. Textile-based SCs are thus an exciting energy storage solution to power smart gadgets integrated into clothing. Here, materials, fabrications, and characterization strategies for textile-based SCs are reviewed. The recent progress of textile-based SCs is then summarized in terms of their electrochemical performances, followed by the discussion on key parameters for their wearable electronics applications, including washability, flexibility, and scalability. Finally, the perspectives on their research and technological prospects to facilitate an essential step towards moving from laboratory-based flexible and wearable SCs to industrial-scale mass production are presented.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
7
|
Zhang G, Deng L, Liu J, Zhang J, Wang J, Li W, Li X. Controllable intercalated polyaniline nanofibers highly enhancing utilization of delaminated RuO2 nanosheets for high‐performance hybrid supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gaini Zhang
- Xi'an University of Technology School of Materials Science and Engineering CHINA
| | - Lingjuan Deng
- Xianyang Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jinqian Liu
- Xi'an University of Technology School of Materials Science and Engineering CHINA
| | - Jianhua Zhang
- Xi'an University of Technology School of Materials Science and Engineering CHINA
| | - Jingjing Wang
- Xi'an University of Technology School of Materials Science and Engineering CHINA
| | - Wenbin Li
- Xi'an University of Technology School of Materials Science and Engineering CHINA
| | - Xifei Li
- Xi'an University of Technology Institute of Energy No. 5 South Jinhua Rd 710047 Xi'an CHINA
| |
Collapse
|
8
|
Guo Y, Chen Y, Hu X, Yao Y, Li Z. Tween modified CuFe2O4 nanoparticles with enhanced supercapacitor performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chang Y, Li P, Li L, Chang S, Huo Y, Mu C, Nie A, Xiang J, Xue T, Zhai K, Wang B, Zhao Z, Yu D, Wen F, Liu Z, Tian Y. In Situ Grown Ultrafine RuO 2 Nanoparticles on GeP 5 Nanosheets as the Electrode Material for Flexible Planar Micro-Supercapacitors with High Specific Capacitance and Cyclability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47560-47571. [PMID: 34597012 DOI: 10.1021/acsami.1c12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
GeP5, as the most representative phosphorus-based material in two-dimensional layered phosphorous compounds, has shown a fairly bright application prospect in the field of energy storage because of its ultrahigh electrical conductivity. However, high-yield exfoliation methods and effective structure construction strategies for GeP5 nanosheets are still missing, which completely restricts the further application of GeP5-based nanocomposites. Here, we not only improved the yield of GeP5 nanosheets by a liquid nitrogen-assisted liquid-phase exfoliation technique but also constructed the GeP5@RuO2 nanocomposites with the 0D/2D heterostructure by in situ introduction of ultrafine RuO2 nanoparticles on highly conductive GeP5 nanosheets using a simple hydrothermal synthesis method, and then applying it to micro-supercapacitors (MSCs) as electrode materials through a mask-assisted vacuum filtration technique. It is precisely because of the synergy of the electrical double-layer material, GeP5 nanosheets and the pseudocapacitance material RuO2 nanoparticles that endows the GeP5@RuO2 electrode with outstanding electrochemical performance in micro-supercapacitors with a large specific capacitance of 129.5 mF cm-2/107.9 F cm-3, high energy density of 17.98 μWh cm-2, remarkable long-term cycling stability with 98.4% capacitance retention after 10 000 cycles, the exceptional mechanical stability, outstanding environmental stability, and excellent integration features. This work opens up a new avenue to construct GeP5-based nanocomposites as a most promising novel electrode material for practical application in flexible portable/wearable micro-nanoelectronic devices.
Collapse
Affiliation(s)
- Yukai Chang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Penghui Li
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lei Li
- Northwest Institute for Non-ferrous Metal Research, Xian 710016, China
| | - Shaopeng Chang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yingjie Huo
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Congpu Mu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Anmin Nie
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Tianyu Xue
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zhisheng Zhao
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Dongli Yu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yongjun Tian
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Yu H, Sridhar D, Omanovic S. Ru
x
Bi
1‐x
‐oxide as an electrode material for pseudocapacitors. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hao Yu
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| | - Deepak Sridhar
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| | - Sasha Omanovic
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| |
Collapse
|
11
|
Guo Y, Li Z, Xia Y, Wei Y, Zhang J, Wang Y, He H. Facile synthesis of ruhtenium nanoparticles capped by graphene and thiols for high-performance supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Majumder M, Choudhary RB, Thakur AK, Khodayari A, Amiri M, Boukherroub R, Szunerits S. Aluminum based metal-organic framework integrated with reduced graphene oxide for improved supercapacitive performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Yu H, Rouelle N, Qiu A, Oh JA, Kempaiah DM, Whittle JD, Aakyiir M, Xing W, Ma J. Hydrogen Bonding-Reinforced Hydrogel Electrolyte for Flexible, Robust, and All-in-One Supercapacitor with Excellent Low-Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37977-37985. [PMID: 32697569 DOI: 10.1021/acsami.0c05454] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible supercapacitors are promising energy storage devices for emerging wearable electronics. However, due to the poor mechanical strength, complicated device manufacturing process, and unsatisfactory low-temperature tolerance, their overall performance for practical applications is hindered. Herein, we report a hydrogen bonding-reinforced, dual-crosslinked poly(vinyl alcohol), acrylic acid, and H2SO4 (PVA-AA-S) hydrogel electrolyte for all-in-one flexible supercapacitors. The PVA-AA-S hydrogel demonstrates excellent compressive/tensile properties and high ionic conductivity. It tolerates compressive stress of 0.53 MPa and is stretchable up to 500%. The hydrogel-based all-in-one supercapacitor shows promising electrochemical performance under various harsh conditions. The device energy density and power density reach up to 14.2 μWh cm-2 and 0.94 mW cm-2, respectively. Furthermore, it retains nearly 80% capacitance after being stored at -35 °C for 23 days. The excellent performance of the hydrogel electrolyte originates from its abundant strong hydrogen bonding between polymer chains and water molecules.
Collapse
Affiliation(s)
- Huimin Yu
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Nathalie Rouelle
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Aidong Qiu
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Jeong-A Oh
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Devaraju M Kempaiah
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Jason D Whittle
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Mathias Aakyiir
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| | - Wenjin Xing
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Jun Ma
- University of South Australia, UniSA STEM and Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|