1
|
Chen M, Liu H, He X, Li M, Tang CS, Sun M, Koirala KP, Bowden ME, Li Y, Liu X, Zhou D, Sun S, Breese MBH, Cai C, Wang L, Du Y, Wee ATS, Yin X. Uncovering an Interfacial Band Resulting from Orbital Hybridization in Nickelate Heterostructures. ACS NANO 2024; 18:27707-27717. [PMID: 39327231 DOI: 10.1021/acsnano.4c09921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO3 synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO3 on SrTiO3 (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level. Our comprehensive investigation, which incorporated a wide array of experimental techniques and density functional theory calculations, revealed that the emergence of the interfacial band structure is primarily driven by orbital hybridization between the Ti 3d orbitals of the STO substrate and the O 2p orbitals of the NNO thin film. Furthermore, exciton peaks have been detected in the optical spectra of the NNO/STO film, attributable to the pronounced electron-electron (e-e) and electron-hole (e-h) interactions propagating from the STO substrate into the NNO film. These findings underscore the substantial influence of interfacial orbital hybridization on the electronic structure of oxide thin films, thereby offering key insights into tuning their interfacial properties.
Collapse
Affiliation(s)
- Mingyao Chen
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Huimin Liu
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Xu He
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, Liège B-4000, Belgium
| | - Minjuan Li
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
| | - Mengxia Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yangyang Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xiongfang Liu
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Difan Zhou
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Shuo Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Mark B H Breese
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Chuanbing Cai
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Andrew T S Wee
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research, National University of Singapore, Singapore 117546, Singapore
| | - Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Chen Y, Chen C, Huang WH, Pao CW, Chang CC, Mao T, Wang J, Fu H, Lai F, Zhang N, Liu T. Charge Redistribution in High-Entropy Perovskite Oxide Porous Nanotubes Boosts Nitrate Electroreduction to Ammonia. ACS NANO 2024. [PMID: 39066738 DOI: 10.1021/acsnano.4c05422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
High-entropy perovskite oxides are promising materials in the field of electrocatalysis due to their advantages such as large spatial composition regulation, entropy effects, and tunable material properties. However, the preparation of high-entropy perovskite oxides with stable and controllable structures still remains challenging. Herein, we fabricated a series of high-entropy perovskite oxide porous nanotubes (PNTs) by electrospinning as efficient electrocatalysts for the nitrate reduction reaction (NO3RR). We further revealed that the different diffusion and decomposition behaviors of metal ions and polymers during the calcination process are the key to the formation of high-entropy perovskite oxide PNTs. Especially, LaSrNiCoMnFeCuO3 PNTs show excellent performance of the NO3RR, achieving the maximum NH3 Faradaic efficiency of almost 100%, yield rate of 1657.5 μg h-1 mgcat.-1, and durable stability after successive cycling, being one of the best electrocatalysts for the NO3RR. The mechanism studies show that the charge redistribution induced by the multisite synergistic effect and abundant unsaturated sites in the high-entropy perovskite oxide PNTs favors the adsorption of NO3- and key intermediates and reduces the catalytic energy barrier, thus further achieving high NO3- conversion efficiency.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cun Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chun-Chi Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tingjie Mao
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Juan Wang
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Hui Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Sun Y, Wu CR, Ding TY, Gu J, Yan JW, Cheng J, Zhang KHL. Direct observation of the dynamic reconstructed active phase of perovskite LaNiO 3 for the oxygen-evolution reaction. Chem Sci 2023; 14:5906-5911. [PMID: 37293652 PMCID: PMC10246674 DOI: 10.1039/d2sc07034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Ni-based transition metal oxides are promising oxygen-evolution reaction (OER) catalysts due to their abundance and high activity. Identification and manipulation of the chemical properties of the real active phase on the catalyst surface is crucial to improve the reaction kinetics and efficiency of the OER. Herein, we used electrochemical-scanning tunnelling microscopy (EC-STM) to directly observe structural dynamics during the OER on LaNiO3 (LNO) epitaxial thin films. Based on comparison of dynamic topographical changes in different compositions of LNO surface termination, we propose that reconstruction of surface morphology originated from transition of Ni species on LNO surface termination during the OER. Furthermore, we showed that the change in surface topography of LNO was induced by Ni(OH)2/NiOOH redox transformation by quantifying STM images. Our findings demonstrate that in situ characterization for visualization and quantification of thin films is very important for revealing the dynamic nature of the interface of catalysts under electrochemical conditions. This strategy is crucial for in-depth understanding of the intrinsic catalytic mechanism of the OER and rational design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng-Rong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Tian-Yi Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| |
Collapse
|
4
|
Yan F, Mi Z, Chen J, Hu H, Gao L, Wang J, Chen N, Jiang Y, Qiao L, Chen J. Revealing the role of interfacial heterogeneous nucleation in the metastable thin film growth of rare-earth nickelate electronic transition materials. Phys Chem Chem Phys 2022; 24:9333-9344. [PMID: 35383792 DOI: 10.1039/d1cp05347g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although rare-earth nickelates (ReNiO3, Re ≠ La) exhibit abundant electronic phases and widely adjustable metal to insulator electronic transition properties, their practical electronic applications are largely impeded by their intrinsic meta-stability. Apart from elevating the oxygen reaction pressure, heterogeneous nucleation is expected to be an alternative strategy that enables the crystallization of ReNiO3 at low meta-stability. In this work, the respective roles of high oxygen pressure and heterogeneous interface in triggering ReNiO3 thin film growth in the metastable state are revealed. ReNiO3 (Re = Nd, Sm, Eu, Gd and Dy) thin films grown on a LaAlO3 single crystal substrate show effective crystallization at atmospheric pressure without the necessity to apply high oxygen pressure, suggesting that the interfacial bonding between the ReNiO3 and substrates can sufficiently reduce the positive Gibbs formation energy of ReNiO3, which is further verified by the first-principles calculations. Nevertheless, the abrupt electronic transitions only appear in ReNiO3 thin films grown at high oxygen pressure, in which case the oxygen vacancies are effectively eliminated via high oxygen pressure reactions as indicated by near-edge X-ray absorption fine structure (NEXAFS) analysis. This work unveils the synergistic effects of heterogeneous nucleation and high oxygen pressure on the growth of high quality ReNiO3 thin films.
Collapse
Affiliation(s)
- Fengbo Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Zhishan Mi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. .,Material Digital R&D Center, China Iron & Steel Research Institute Group, Beijing, 100081, China
| | - Jinhao Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haiyang Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. .,Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Nuofu Chen
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Yong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. .,Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Jikun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Li B, Li L, Ren H, Lu Y, Peng F, Chen Y, Hu C, Zhang G, Zou C. Photoassisted Electron-Ion Synergic Doping Induced Phase Transition of n-VO 2/p-GaN Thin-Film Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43562-43572. [PMID: 34468117 DOI: 10.1021/acsami.1c10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a typical correlated metal oxide, vanadium dioxide (VO2) shows specific metal-insulator transition (MIT) properties and demonstrates great potential applications in ultrafast optoelectronic switch, resistive memory, and neuromorphic devices. Effective control of the MIT process is essential for improving the device performance. In the current study, we have first proposed a photoassisted ion-doping method to modulate the phase transition of the VO2 layer based on the photovoltaic effect and electron-ion synergic doping in acid solution. Experimental results show that, for the prepared n-VO2/p-GaN nanojunction, this photoassisted strategy can effectively dope the n-VO2 layer by H+, Al3+, or Mg2+ ions under light radiation and trigger consecutive insulator-metal-insulator transitions. If combined with standard lithography or electron beam etching processes, selective doping with nanoscale size area can also be achieved. This photoassisted doping method not only shows a facile route for MIT modulation via a doping route under ambient conditions but also supplies some clues for photosensitive detection in the future.
Collapse
Affiliation(s)
- Bowen Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hui Ren
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yuan Lu
- State Key Laboratory of Pulsed Power Laser Technology, NUDT, Hefei 230037, P. R. China
- Infrared and Low Temperature Plasma Key Laboratory of Anhui Province, NUDT, Hefei 230037, P. R. China
| | - Fangfang Peng
- Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yuliang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Changlong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
6
|
Ji H, Zhou G, Zhang J, Wang X, Xu X. Reversible control of magnetic and transport properties of NdNiO3– epitaxial films. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Wang L, Yang Z, Yin X, Taylor SD, He X, Tang CS, Bowden ME, Zhao J, Wang J, Liu J, Perea DE, Wangoh L, Wee ATS, Zhou H, Chambers SA, Du Y. Spontaneous phase segregation of Sr 2NiO 3 and SrNi 2O 3 during SrNiO 3 heteroepitaxy. SCIENCE ADVANCES 2021; 7:eabe2866. [PMID: 33674310 PMCID: PMC7935367 DOI: 10.1126/sciadv.abe2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Recent discovery of superconductivity in Nd0.8Sr0.2NiO2 motivates the synthesis of other nickelates for providing insights into the origin of high-temperature superconductivity. However, the synthesis of stoichiometric R 1-x Sr x NiO3 thin films over a range of x has proven challenging. Moreover, little is known about the structures and properties of the end member SrNiO3 Here, we show that spontaneous phase segregation occurs while depositing SrNiO3 thin films on perovskite oxide substrates by molecular beam epitaxy. Two coexisting oxygen-deficient Ruddlesden-Popper phases, Sr2NiO3 and SrNi2O3, are formed to balance the stoichiometry and stabilize the energetically preferred Ni2+ cation. Our study sheds light on an unusual oxide thin-film nucleation process driven by the instability in perovskite structured SrNiO3 and the tendency of transition metal cations to form their most stable valence (i.e., Ni2+ in this case). The resulting metastable reduced Ruddlesden-Popper structures offer a testbed for further studying emerging phenomena in nickel-based oxides.
Collapse
Affiliation(s)
- Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xinmao Yin
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Sandra D Taylor
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xu He
- Catalan Institute of Nanoscience and Nanotechnology-ICN2, CSIC and BIST, Campus UAB, 08193 Bellaterra, Spain
| | - Chi Sin Tang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jiali Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Jishan Liu
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (CAS) , Shanghai 200050, China
| | - Daniel E Perea
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Linda Wangoh
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Andrew T S Wee
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
8
|
Zeng Z, Xu Y, Zhang Z, Gao Z, Luo M, Yin Z, Zhang C, Xu J, Huang B, Luo F, Du Y, Yan C. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 2020; 49:1109-1143. [PMID: 31939973 DOI: 10.1039/c9cs00330d] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As star material, perovskites have been widely used in the fields of optics, photovoltaics, electronics, magnetics, catalysis, sensing, etc. However, some inherent shortcomings, such as low efficiency (power conversion efficiency, external quantum efficiency, etc.) and poor stability (against water, oxygen, ultraviolet light, etc.), limit their practical applications. Downsizing the materials into nanostructures and incorporating rare earth (RE) ions are effective means to improve their properties and broaden their applications. This review will systematically summarize the key points in the design, synthesis, property improvements and application expansion of RE-containing (including both RE-based and RE-doped) halide and oxide perovskite nanomaterials (PNMs). The critical factors of incorporating RE elements into different perovskite structures and the rational design of functional materials will be discussed in detail. The advantages and disadvantages of different synthesis methods for PNMs will be reviewed. This paper will also summarize some practical experiences in selecting suitable RE elements and designing multi-functional materials according to the mechanisms and principles of REs promoting the properties of perovskites. At the end of this review, we will provide an outlook on the opportunities and challenges of RE-containing PNMs in various fields.
Collapse
Affiliation(s)
- Zhichao Zeng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yueshan Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zheshan Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zhansheng Gao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Meng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Chao Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Chang SJ, Chen SY, Chen PW, Huang SJ, Tseng YC. Pulse-Driven Nonvolatile Perovskite Memory with Photovoltaic Read-Out Characteristics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33803-33810. [PMID: 31456402 DOI: 10.1021/acsami.9b08766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents a unique GdFe0.8Ni0.2O3 perovskite thin film for use in pulse-controlled nonvolatile memory devices (combined with a SrTiO3 (STO) substrate) without the need for an electrical-stressing read-out process. The use of pulse voltage imposes permanent downward/upward polarization states on GFNO, which enables greater energy density and higher energy efficiency than the unpoled state for memory. The two polarization states produce carrier migrations in opposing directions across the GFNO/STO interface, which alter the depletion region of the device, as reflected in photovoltaic short-circuit current density (Jsc) values. Modulating the duration (varying the number of sequential pulses but fixing the pulse width and delay time) and direction of continuous pulse voltage is an effective method for controlling Jsc, thereby allowing the fabrication of nondestructive, light-tunable, nonvolatile memory devices. In experiments, Jsc in the downward polarized state was approximately 6 times greater than that in the upward polarized state. It is promising that more memory states can be enabled by the proposed heterostructure by selecting appropriate pulse trains. Real-time interfacial changes (relative to the nonvolatile characteristics of the device) were obtained by applying synchrotron X-ray techniques simultaneously with pulse characterization. This made it possible to separately probe the electronic and chemical states of the GFNO (a p-type-like semiconductor) and STO (an n-type-like semiconductor) while varying the pulse direction, thereby making it possible to identify the mechanisms underlying the observed phenomena.
Collapse
Affiliation(s)
| | | | - Po-Wen Chen
- Division of Physics , Institute of Nuclear Energy Research , Taoyuan 32546 , Taiwan , ROC
| | - Szu-Jung Huang
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu , 30043 , Taiwan , ROC
| | | |
Collapse
|