1
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
2
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2025; 45:66-96. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Wang Y, Yang R, Xie Y, Zhou XQ, Yang JF, Shi YY, Liu S. Comprehensive review of drug-mediated ICD inhibition of breast cancer: mechanism, status, and prospects. Clin Exp Med 2024; 24:230. [PMID: 39325106 PMCID: PMC11427550 DOI: 10.1007/s10238-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
The escalating incidence of breast cancer (BC) in women underscores its grave health threat. Current molecular insights into BC's post-adjuvant therapy cure remain elusive, necessitating active treatment explorations. Immunotherapy, notably chemotherapy-induced immunogenic cell death (ICD), has emerged as a promising BC therapy. ICD harnesses chemotherapeutics to activate anti-tumor immunity via DAMPs, fostering long-term T-cell memory and primary BC cure. Besides chemotherapy drugs, Nanodrugs, traditional Chinese medicine (TCM) and ICIs also induce ICD, boosting immune response. ICIs, like PD-1/PD-L1 inhibitors, revolutionize cancer treatment but face limited success in cold tumors. Thus, ICD induction combined with ICIs is studied extensively for BC immunotherapy. This article reviews the mechanism of ICD related drugs in BC and provides reference for the research and development of BC treatment, in order to explore more effective clinical treatment of BC, we hope to explore more ICD inducers and make ICIs more effective vaccines.
Collapse
Affiliation(s)
- Yang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Shanxi Province Cancer Hospital/Shanxi Hospital Afiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital, Afiliated to Shanxi Medical University, 030013, Shanxi, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Xi-Qiu Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jian-Feng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - You-Yang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
- Graduate School, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
4
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Yu B, Liu M, Jiang L, Xu C, Hu H, Huang T, Xu D, Wang N, Li Q, Tang BZ, Huang X, Zhang W. Aggregation-Induced Emission Photosensitizer-Engineered Anticancer Nanomedicine for Synergistic Chemo/Chemodynamic/Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2303643. [PMID: 38115727 DOI: 10.1002/adhm.202303643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Photodynamic therapy (PDT) with aggregation-induced emission (AIE) photosensitizers (PSs) is a promising therapeutic strategy to achieve better anticancer results. However, eradicating solid tumors completely by PDT alone can be difficult owing to the inherent drawbacks of this treatment, and the combination of PDT with other therapeutic modalities provides opportunities to achieve cooperative enhancement interactions among various treatments. Herein, this work presents the construction of a biocompatible nanocomposite, namely CaO2@DOX@ZIF@ASQ, featuring light-responsive reactive oxygen species (ROS) generation and tumor-targeting oxygen and hydrogen peroxide discharge, as well as controlled doxorubicin (DOX) and copper ion release, thus allowing the combined PDT/CT/CDT effect by AIE PS-enhanced PDT, DOX-based chemotherapy (CT), and copper-involved Fenton-like reaction-driven chemodynamic therapy (CDT). In vitro and in vivo studies verify that the generation of both ROS and O2 by this nanomedicine, stimulated by light, exhibits superior anticancer efficacy, alleviating tumor hypoxia and achieving synergistic PDT/CT/CDT therapeutic effect. This multifunctional nanomedicine remarkably suppresses the tumor growth with minimized systemic toxicity, providing a new strategy for constructing multimodal PDT/CT/CDT therapeutic systems to overcome hypoxia limitations, and potentially increase the antitumor efficacy at lower doses of PSs and chemotherapeutic drugs, thus minimizing potential toxicity to non-malignant tissues.
Collapse
Affiliation(s)
- Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
| | - Mingshan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Lei Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
| | - Chuan Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Huoli Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
| | - Tong Huang
- Department of Cardiothoracic Surgery, Zhongshan People's Hospital, Zhongshan, Guangdong, 528499, P. R. China
| | - Dunwu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Ning Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Wan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| |
Collapse
|
6
|
Wang T, Han M, Han Y, Jiang Z, Zheng Q, Zhang H, Li Z. Antigen Self-Presented Personalized Nanovaccines Boost the Immunotherapy of Highly Invasive and Metastatic Tumors. ACS NANO 2024; 18:6333-6347. [PMID: 38349234 DOI: 10.1021/acsnano.3c11189] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Dendritic cell (DC)-based vaccines have shown promise in adoptive cell therapy for enhancing the antigen-specific response of antitumor immunity. However, their clinical efficacy is limited by the less-presented tumor-associated antigens (TAAs) through MHC I and low lymph node homing efficiency. Herein, to address these issues, we rationally design and fabricate DC-based nanovaccines by coating Cu2-xSe nanoparticles (CS NPs) with the membrane of matured DCs (named as DCNV(CSD) nanovaccines). We reveal the important roles of CS NPs in the DCNV(CSD) nanovaccines from three aspects: (1) inducing the immunogenic cell death of tumor cells to expose abundant TAAs; (2) promoting the escape of TAAs from the lysosomes of DCs during the antigen presenting process through MHC I; (3) sustainably releasing traces of copper ions to promote the proliferation of T cells. Our DCNV(CSD) nanovaccines are characterized with high expressions of MHC I, CD80, CD86, CCR7, and ICAM-1 proteins, which not only endow them with abundantly processed specific TAAs, but also a strong capability of homing to the lymph nodes. The homing capability of our small DCNV(CSD) nanovaccines is better than that of matured DCs. More importantly, they can elicit the strong response of potent antispecific CD8+ T cells for antitumor immunotherapy, as tested in the treatment of highly invasive glioblastoma and highly metastatic melanoma. Additionally, DCNV(CSD) nanovaccines can generate memory T cells (TEM) in the spleen of mice to effectively prevent the recurrence of treated tumors. This work demonstrates a universal approach to fabricate high-performance DC-based nanovaccines for tumor immunotherapy by using versatile CS NPs.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
7
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
8
|
Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater 2024; 31:63-86. [PMID: 37601277 PMCID: PMC10432724 DOI: 10.1016/j.bioactmat.2023.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Natural killer (NK) cells display a unique inherent ability to identify and eliminate virus-infected cells and tumor cells. They are particularly powerful for elimination of hematological cancers, and have attracted considerable interests for therapy of solid tumors. However, the treatment of solid tumors with NK cells are less effective, which can be attributed to the very complicated immunosuppressive microenvironment that may lead to the inactivation, insufficient expansion, short life, and the poor tumor infiltration of NK cells. Fortunately, the development of advanced nanotechnology has provided potential solutions to these issues, and could improve the immunotherapy efficacy of NK cells. In this review, we summarize the activation and inhibition mechanisms of NK cells in solid tumors, and the recent advances in NK cell-based tumor immunotherapy boosted by diverse nanomaterials. We also propose the challenges and opportunities for the clinical application of NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
9
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
10
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
11
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
12
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
13
|
Yoon J, Le XT, Kim J, Lee H, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Macrophage-reprogramming upconverting nanoparticles for enhanced TAM-mediated antitumor therapy of hypoxic breast cancer. J Control Release 2023; 360:482-495. [PMID: 37423526 DOI: 10.1016/j.jconrel.2023.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
In an attempt to achieve antitumor effects by switching the phenotype of macrophages from the tumor-promoting M2 type to the tumor-suppressing M1 type, we fabricated mannose-decorated/macrophage membrane-coated, silica-layered NaErF4@NaLuF4 upconverting nanoparticles (UCNPs) co-doped with perfluorocarbon (PFC)/chlorin e6 (Ce6) and loaded with paclitaxel (PTX) (UCNP@mSiO2-PFC/Ce6@RAW-Man/PTX: ∼61 nm; -11.6 mV). These nanoparticles were designed to have two major functionalities, (i) efficient singlet oxygen generation aided by an oxygen supply and (ii) good targeting to tumor-associated macrophage (TAMs) (M2-type), to induce polarization to M1 type macrophages that release proinflammatory cytokines and suppress breast cancers. The primary UCNPs consisted of lanthanide elements (erbium and lutetium) in a core@shell structure, and they facilely emitted 660 nm light in response to a deep-penetrating 808 nm near-infrared laser. Moreover, the UCNPs@mSiO2-PFC/Ce6@RAW-Man/PTX were able to release O2 and generate 1O2 because of the co-doped PFC/Ce6 and upconversion. Our nanocarriers' excellent uptake to RAW 264.7 macrophage cells (M2 type) and efficient M1-type polarization activity were clearly demonstrated using qRT-PCR and immunofluorescence-based confocal laser scanning microscopy. Our nanocarriers displayed significant cytotoxicity to 4T1 cells in 2D culture and 3D co-culture systems of 4T1/RAW 264.7 cells. More importantly, UCNPs@mSiO2-PFC/Ce6@RAW-Man/PTX (+808 nm laser) noticeably suppressed tumor growth in 4T1-xenografted mice, compared with the other treatment groups (332.4 vs. 709.5-1185.5 mm3). We attribute this antitumor efficacy to the prominent M1-type macrophage polarization caused by our nanocarriers through efficient ROS/O2 generation and targeting of M2-type TAMs via mannose ligands on coated macrophage-membrane.
Collapse
Affiliation(s)
- Johyun Yoon
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Juho Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyunjun Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
14
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
15
|
He Y, Chen H, Li W, Xu L, Yao H, Cao Y, Wang Z, Zhang L, Wang D, Zhou D. 3-Bromopyruvate-loaded bismuth sulfide nanospheres improve cancer treatment by synergizing radiotherapy with modulation of tumor metabolism. J Nanobiotechnology 2023; 21:209. [PMID: 37408010 DOI: 10.1186/s12951-023-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) is one of the most mainstream cancer therapeutic modalities. However, due to the lack of specificity of the radiation adopted, both normal and cancerous cells are destroyed indiscriminately. This highlights the crucial need to improve radiosensitization. This study aims to address this issue by constructing a multifunctional nanospheres that can sensitize multiple aspects of radiotherapy. RESULTS Nanospheres containing high atomic element Bi can effectively absorb ionizing radiation and can be used as radiosensitizers. Cell viability after Bi2S3 + X-ray treatment was half that of X-ray treatment alone. On the other hand, exposed 3-bromopyruvate (3BP) could reduce the overactive oxygen (O2) metabolism of tumor cells and alleviate tumor hypoxia, thereby promoting radiation-induced DNA damage. The combination index (CI) of 3BP and Bi2S3-based RT in Bi2S3-3BP + X-ray was determined to be 0.46 with the fraction affected (fa) was 0.5 via Chou-Talalay's isobolographic method, which indicated synergistic effect of 3BP and Bi2S3-based RT after integration into Bi2S3-3BP + X-ray. Under the combined effect of 3BP and RT, autophagy was over-activated through starvation-induced and redox homeostasis dysregulation pathways, which in turn exhibited pro-death effects. In addition, the prepared nanospheres possess strong X-ray attenuation and high near-infrared (NIR) optical absorption, thus eliminating the need for additional functional components and could serve as bimodal contrast agents for computed tomography/photoacoustic (CT/PA) imaging. CONCLUSIONS The rational design of multifunctional nanospheres with the unique properties provided a novel strategy to achieving high therapeutic efficacy in RT. This was accomplished through simultaneous activation of multiple sensitization pathways by increasing ionizing radiation, reducing tumor oxygen consumption, inducing pro-death autophagy, and providing multiple-imaging guidance/monitoring.
Collapse
Affiliation(s)
- Yiman He
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Huawan Chen
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Wenbo Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Lu Xu
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Huan Yao
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Liang Zhang
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China
| | - Dong Wang
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China.
| | - Di Zhou
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, P.R. China.
| |
Collapse
|
16
|
Bai Y, Wu J, Liu K, Wang X, Shang Q, Zhang H. Integrated supramolecular nanovalves for photothermal augmented chemodynamic therapy through strengthened amplification of oxidative stress. J Colloid Interface Sci 2023; 637:399-407. [PMID: 36716664 DOI: 10.1016/j.jcis.2023.01.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The amplified oxidative stress strategy has been emerged as one promising method to enhance the chemodynamic therapy (CDT) efficacy due to the H2O2 up-regulation and glutathione (GSH) down-regulation behavior in tumor cells. However, how to further achieve the satisfied CDT efficacy is still a big challenge. In this paper, the supramolecular nanovalves (SNs) with oxidative amplification agents cinnamaldehyde-(phenylboronic acid pinacol ester) conjugates (CA-BE) encapsulated inside were developed to accelerate and amplify the generation of ·OH and consumption of GSH while augmenting the CDT efficacy. SNs were obtained through ferrocene/Au modified mesoporous silica nanoparticles (MSN@Au-Fc) and active targeting β-cyclodextrin modified hyaluromic acid (HA-CD). After CD44 receptor-mediated cellular internalization, the CA-BE were released to elevate H2O2 amount and consume GSH for the desired generation of higher cytotoxic hydroxyl radicals (·OH). Moreover, the NIR-activated MSN@Au-Fc can increase the temperature for the accelerated and amplified oxidative stress. As such, the therapeutic efficacy of our synthesized CA-BE and the accompanied hyperthermia were augmented toward synergistically inhibiting tumor growth.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kun Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoning Wang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Qingqing Shang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haitao Zhang
- School of Light Industry Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
17
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Hu W, Ye B, Yu G, Huang F, Mao Z, Ding Y, Wang W. Recent Development of Supramolecular Cancer Theranostics Based on Cyclodextrins: A Review. Molecules 2023; 28:molecules28083441. [PMID: 37110674 PMCID: PMC10147063 DOI: 10.3390/molecules28083441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
With the development of personalized medical demands for precise diagnosis, rational management and effective cancer treatment, supramolecular theranostic systems have received widespread attention due to their reversibly switchable structures, sensitive response to biological stimuli and integration ability for multiple capabilities in a single platform with a programmable fashion. Cyclodextrins (CDs), benefiting from their excellent characteristics, such as non-toxicity, easy modification, unique host-guest properties, good biocompatibility, etc., as building blocks, serve as an all-purpose strategy for the fabrication of a supramolecular cancer theranostics nanodevice that is capable of biosafety, controllability, functionality and programmability. This review focuses on the supramolecular systems of CD-bioimaging probes, CD-drugs, CD-genes, CD-proteins, CD-photosensitizers and CD-photothermal agents as well as multicomponent cooperation systems with regards to building a nanodevice with functions of diagnosis and (or) therapeutics of cancer treatment. By introducing several state-of-the-art examples, emphasis will be placed on the design of various functional modules, the supramolecular interaction strategies under the fantastic topological structures and the hidden "bridge" between their structures and therapeutic efficacy, aiming for further comprehension of the important role of a cyclodextrin-based nanoplatform in advancing supramolecular cancer theranostics.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
19
|
Lu Y, Sun W, Du J, Fan J, Peng X. Immuno-photodynamic Therapy (IPDT): Organic Photosensitizers and Their Application in Cancer Ablation. JACS AU 2023; 3:682-699. [PMID: 37006765 PMCID: PMC10052235 DOI: 10.1021/jacsau.2c00591] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Photosensitizer-based photodynamic therapy (PDT) has been considered as a promising modality for fighting diverse types of cancers. PDT directly inhibits local tumors by a minimally invasive strategy, but it seems to be incapable of achieving complete eradication and fails to prevent metastasis and recurrence. Recently, increasing events proved that PDT was associated with immunotherapy by triggering immunogenic cell death (ICD). Upon a specific wavelength of light irradiation, the photosensitizers will turn the surrounding oxygen molecules into cytotoxic reactive oxygen species (ROS) for killing the cancer cells. Simultaneously, the dying tumor cells release tumor-associated antigens, which could improve immunogenicity to activate immune cells. However, the progressively enhanced immunity is typically limited by the intrinsic immunosuppressive tumor microenvironment (TME). To overcome this obstacle, immuno-photodynamic therapy (IPDT) has come to be one of the most beneficial strategies, which takes advantage of PDT to stimulate the immune response and unite immunotherapy for inducing immune-OFF tumors to immune-ON ones, to achieve systemic immune response and prevent cancer recurrence. In this Perspective, we provide a review of recent advances in organic photosensitizer-based IPDT. The general process of immune responses triggered by photosensitizers (PSs) and how to enhance the antitumor immune pathway by modifying the chemical structure or conjugating with a targeting component was discussed. In addition, future perspectives and challenges associated with IPDT strategies are also discussed. We hope this Perspective could inspire more innovative ideas and provide executable strategies for future developments in the war against cancer.
Collapse
Affiliation(s)
- Yang Lu
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
20
|
Zhang L, Liu X, Mao Y, Rong S, Chen Y, Qi Y, Cai Z, Li H. Inhibition of melanoma using a nanoceria-based prolonged oxygen-generating phototherapy hydrogel. Front Oncol 2023; 13:1126094. [PMID: 37007107 PMCID: PMC10060878 DOI: 10.3389/fonc.2023.1126094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Tumor hypoxic environment is an inevitable obstacle for photodynamic therapy (PDT) of melanoma. Herein, a multifunctional oxygen-generating hydrogel loaded with hyaluronic acid-chlorin e6 modified nanoceria and calcium peroxide (Gel-HCeC-CaO2) was developed for the phototherapy of melanoma. The thermo-sensitive hydrogel could act as a sustained drug delivery system to accumulate photosensitizers (chlorin e6, Ce6) around the tumor, followed by cellular uptake mediated by nanocarrier and hyaluronic acid (HA) targeting. The moderate sustained oxygen generation in the hydrogel was produced by the reaction of calcium peroxide (CaO2) with infiltrated H2O in the presence of catalase mimetic nanoceria. The developed Gel-HCeC-CaO2 could efficiently alleviate the hypoxia microenvironment of tumors as indicated by the expression of hypoxia-inducible factor -1α (HIF-1α), meeting the “once injection, repeat irradiation” strategy and enhanced PDT efficacy. The prolonged oxygen-generating phototherapy hydrogel system provided a new strategy for tumor hypoxia alleviation and PDT.
Collapse
Affiliation(s)
- Lidong Zhang
- Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoguang Liu
- Department of Gynecology, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yinghua Mao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Shu Rong
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Yonghong Chen
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Zhipeng Cai
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Hong Li
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
- *Correspondence: Hong Li,
| |
Collapse
|
21
|
Su H, Hu K, Huang W, Wang T, Zhang X, Chen B, Miao H, Zhang X, Zhang G. Functional Roles of Polymers in Room-Temperature Phosphorescent Materials: Modulation of Intersystem Crossing, Air Sensitivity and Biological Activity. Angew Chem Int Ed Engl 2023; 62:e202218712. [PMID: 36718871 DOI: 10.1002/anie.202218712] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Organic room-temperature phosphorescent (RTP) materials routinely incorporate polymeric components, which usually act as non-functional or "inert" media to protect excited-state phosphors from thermal and collisional quenching, but are lesser explored for other influences. Here, we report some exemplary "active roles" of polymer matrices played in organic RTP materials, including: 1) color modulation of total delayed emissions via balancing the population ratio between thermally-activated delayed fluorescence (TADF) and RTP due to dielectric-dependent intersystem crossing; 2) altered air sensitivity of RTP materials by generating various surface morphologies such as nano-sized granules; 3) enhanced bacterial elimination for enhanced electrostatic interactions with negatively charged bio-membranes. These active roles demonstrated that the vast library of polymeric structures and functionalities can be married to organic phosphors to broaden new application horizons for RTP materials.
Collapse
Affiliation(s)
- Hao Su
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Kan Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wenhuan Huang
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Tao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Miao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
22
|
Wang T, Zhang H, Han Y, Zheng Q, Liu H, Han M, Li Z. Reversing T Cell Dysfunction to Boost Glioblastoma Immunotherapy by Paroxetine-Mediated GRK2 Inhibition and Blockade of Multiple Checkpoints through Biomimetic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204961. [PMID: 36698265 PMCID: PMC10037995 DOI: 10.1002/advs.202204961] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/02/2022] [Indexed: 05/19/2023]
Abstract
T cell dysfunction-induced tumor immune escape is particularly severe in glioblastoma (GBM), and significantly affects the efficacy of immunotherapy. It is crucial to innovatively reverse the T cell dysfunction for improving GBM immunotherapy. Herein, T cell dysfunction is remarkably reversed and immunotherapy of GBM is boosted by repurposing the U. S. Food and Drug Administration-approved antidepressant paroxetine (PX) with biomimetic nanoparticles (CS-J@CM/6 NPs). The PX is successfully applied to abrogate T cell sequestration in the bone marrow of GBM-bearing mice and increase their infiltration in tumor. The biomimetic NPs are composed of ultrasmall Cu2- x Se NPs, JQ1, and tumor cell membrane modified with CD6, and are efficiently delivered into tumor through the specific interactions between CD6 and activated leukocyte cell adhesion molecule. They ameliorate the T cell dysfunction through the double roles of loaded JQ1, which simultaneously decreases the expression of PD-1 and TIM-3 on T cells, and the expression of PD-L1 on tumor cells. The NP also induces the immunogenic cell death of tumor cells to activate immune response. The synergistic roles of PX and biomimetic CS-J@CM/6 NPs notably enhance the survival of GBM-bearing mice. This work provides new insights into tumor immunotherapy by repurposing "old drugs" with advanced NPs.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Qing Zheng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| |
Collapse
|
23
|
Wan G, Chen X, Chen J, Gou R, Wang H, Liu S, Zhang M, Chen H, Wang D, Zhang Q. Endoplasmic reticulum-targeted NIR-II phototherapy combined with inflammatory vascular suppression elicits a synergistic effect against TNBC. Biomater Sci 2023; 11:1876-1894. [PMID: 36692120 DOI: 10.1039/d2bm01823c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recurrence and metastasis are the main reasons for failure in the treatment of triple-negative breast cancer (TNBC). Phototherapy, one of the most well-known potent cancer treatment models is highlighted by ablating primitive tumors with immunogenic cell death (ICD) and is associated with endoplasmic reticulum (ER) stress to elicit long-lasting anti-tumor immunity. However, the provoked inflammatory response after phototherapy will stimulate angiogenesis, which provides nutrition for tumor recurrence. Here, an ER-targeted nanoplatform was constructed based on hollow mesoporous Cu2-XS (HMCu2-XS) nanoparticles to suppress recurrence and metastasis of TNBC by combining photo-ablation and microenvironment remodeling. Profiting from the metal ion coordination and large hollow space, HMCu2-XS can be easily modified with p-toluenesulfonamide for ER-targeting and quantitatively loaded celecoxib (CXB) as a vascular inhibitor, thus obtaining ER-HMCu2-XS/CXB. ER-HMCu2-XS showed great photothermal and photodynamic efficiency for ablating 4T1 tumors and inducing ICD under NIR-II laser irradiation. Compared with non-ER-targeted nanosystems, the ER-targeted nanosystem elicited stronger ICDs and recruited more immune cells. Moreover, the thermal-responsively released CXB successfully inhibited angiogenesis after photothermal therapy. The data showed that the ER-HMCu2-XS/CXB mediated the triplicate therapeutic effect of photo-ablation, immune response activation, and vascular suppression effectively, preventing the recurrence and metastasis of TNBC. In conclusion, this work provides a synergistic strategy to enhance therapeutic outcomes in TNBC.
Collapse
Affiliation(s)
- Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xuheng Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Shuhao Liu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyang Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Dan Wang
- Xuzhou Central Hospital, Xuzhou 221009, China.
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
24
|
Li X, Zhou Y, Li L, Wang T, Wang B, Che R, Zhai Y, Zhang J, Li W. Metal selenide nanomaterials for biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113220. [PMID: 36889108 DOI: 10.1016/j.colsurfb.2023.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
Metal selenide nanomaterials have received enormous attention as they possess diverse compositions, microstructures, and properties. The combination of selenium with various metallic elements gives the metal selenide nanomaterials distinctive optoelectronic and magnetic properties, such as strong near-infrared absorption, excellent imaging properties, good stability, and long in vivo circulation. This makes metal selenide nanomaterials advantageous and promising for biomedical applications. This paper summarizes the research progress in the last five years in the controlled synthesis of metal selenide nanomaterials in different dimensions and with different compositions and structures. Then we discuss how surface modification and functionalization strategies are well-suited for biomedical fields, including tumor therapy, biosensing, and antibacterial biological applications. The future trends and issues of metal selenide nanomaterials in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Zhou
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China.
| | - Ting Wang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Rere Che
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiantao Zhang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China.
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
25
|
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2023; 6:349-364. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
26
|
Zhan C, Jin Y, Xu X, Shao J, Jin C. Antitumor therapy for breast cancer: Focus on tumor-associated macrophages and nanosized drug delivery systems. Cancer Med 2023. [PMID: 36794651 DOI: 10.1002/cam4.5489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND In breast cancer (BC), tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment and are closely related to poor prognosis. A growing number of studies have focused on the role of TAMs in BC progression and therapeutic strategies targeting TAMs. As an emerging treatment, the application of nanosized drug delivery systems (NDDSs) in the treatment of BC by targeting TAMs has attracted much attention. AIMS This review is to summarize the characteristics and treatment strategies targeting TAMs in BC and to clarify the applications of NDDSs targeting TAMs in the treatment of BC by targeting TAMs. MATERIALS & METHODS The existing results related to characteristics of TAMs in BC, BC treatment strategies by targeting TAMs, and the applications of NDDSs in these strategies are described. Through analyzing these results, the advantages and disadvantages of the treatment strategies using NDDSs are discussed, which could provide advices on designing NDDSs for BC treatment. RESULTS TAMs are one of the most prominent noncancer cell types in BC. TAMs not only promote angiogenesis, tumor growth and metastasis but also lead to therapeutic resistance and immunosuppression. Mainly four strategies have been used to target TAMs for BC therapy, which include depleting macrophages, blocking recruitment, reprogramming to attain an anti-tumor phenotype, and increasing phagocytosis. Since NDDSs can efficiently deliver drugs to TAMs with low toxicity, they are promising approaches for targeting TAMs in tumor therapy. NDDSs with various structures can deliver immunotherapeutic agents and nucleic acid therapeutics to TAMs. In addition, NDDSs can realize combination therapies. DISCUSSION TAMs play a critical role in the progression of BC. An increasing number of strategies have been proposed to regulate TAMs. Compared with free drugs, NDDSs targeting TAMs improve drug concentration, reduce toxicity and realize combination therapies. However, in order to achieve better therapeutic efficacy, there are still some disadvantages that need to be considered in the design of NDDSs. CONCLUSION TAMs play an important role in the progression of BC, and targeting TAMs is a promising strategy for BC therapy. In particular, NDDSs targeting TAMs have unique advantages and are potential treatments for BC.
Collapse
Affiliation(s)
- Cuiping Zhan
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xinzhi Xu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiangbo Shao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Wu R, Yu T, Liu S, Shi R, Jiang G, Ren Y, van der Mei HC, Busscher HJ, Liu J. A Heterocatalytic Metal-Organic Framework to Stimulate Dispersal and Macrophage Combat with Infectious Biofilms. ACS NANO 2023; 17:2328-2340. [PMID: 36692081 PMCID: PMC9933606 DOI: 10.1021/acsnano.2c09008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Eradication of infectious biofilms is becoming increasingly difficult due to the growing number of antibiotic-resistant strains. This necessitates development of nonantibiotic-based, antimicrobial approaches. To this end, we designed a heterocatalytic metal-organic framework composed of zirconium 1,4-dicarboxybenzene (UiO-66) with immobilized Pt nanoparticles (Pt-NP/UiO-66). Pt-NP/UiO-66 enhanced singlet-oxygen generation compared with Pt nanoparticles or UiO-66, particularly in an acidic environment. Singlet-oxygen generation degraded phosphodiester bonds present in eDNA gluing biofilms together and therewith dispersed biofilms. Remaining biofilms possessed a more open structure. Concurrently, Pt-NP/UiO-66 stimulated macrophages to adapt a more M1-like, "fighting" phenotype, moving faster toward their target bacteria and showing increased bacterial killing. As a combined effect of biofilm dispersal and macrophage polarization, a subcutaneous Staphylococcus aureus biofilm in mice was more readily eradicated by Pt-NP/UiO-66 than by Pt nanoparticles or UiO-66. Therewith, heterocatalytic Pt-NP/UiO-66 metal-organic frameworks constitute a nonantibiotic-based strategy to weaken protective matrices and disperse infectious biofilms, while strengthening macrophages in bacterial killing.
Collapse
Affiliation(s)
- Renfei Wu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Tianrong Yu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Sidi Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Rui Shi
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Guimei Jiang
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Yijin Ren
- University
of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700
RBGroningen, The
Netherlands
| | - Henny C. van der Mei
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
| |
Collapse
|
28
|
Recent Advances in Supramolecular-Macrocycle-Based Nanomaterials in Cancer Treatment. Molecules 2023; 28:molecules28031241. [PMID: 36770907 PMCID: PMC9920387 DOI: 10.3390/molecules28031241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Cancer is a severe threat to human life. Recently, various therapeutic strategies, such as chemotherapy, photodynamic therapy, and combination therapy have been extensively applied in cancer treatment. However, the clinical benefits of these therapeutics still need improvement. In recent years, supramolecular chemistry based on host-guest interactions has attracted increasing attention in biomedical applications to address these issues. In this review, we present the properties of the major macrocyclic molecules and the stimulus-response strategies used for the controlled release of therapeutic agents. Finally, the applications of supramolecular-macrocycle-based nanomaterials in cancer therapy are reviewed, and the existing challenges and prospects are discussed.
Collapse
|
29
|
Li Y, Chen G. Upconversion Nanoparticles for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
30
|
Wang T, Zhang H, Qiu W, Han Y, Liu H, Li Z. Biomimetic nanoparticles directly remodel immunosuppressive microenvironment for boosting glioblastoma immunotherapy. Bioact Mater 2022; 16:418-432. [PMID: 35386309 PMCID: PMC8965726 DOI: 10.1016/j.bioactmat.2021.12.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM), as a very aggressive cancer of central nervous system, is very challenging to completely cure by the conventional combination of surgical resection with radiotherapy and chemotherapy. The success of emerging immunotherapy in hot tumors has attracted considerable interest for the treatment of GBM, but the unique tumor immunosuppressive microenvironment (TIME) of GBM leads to the failure of immunotherapy. Here, we show the significant improvement of the immunotherapy efficacy of GBM by modulating the TIME through novel all-in-one biomimetic nanoparticles (i.e. CS-I/J@CM NPs). The nanoparticles consist of utrasmall Cu2-x Se nanoparticles (NPs) with outstanding intrinsic properties (e.g., photo-responsive Fenton-like catalytic property for inducing immunogenic cell death (ICD) and alleviating the hypoxia of tumor), indoximod (IND, an inhibitor of indoleamine-2,3-dioxygenease in tumor), JQ1 (an inhibitor for reducing the expression of PD-L1 by tumor cells), and tumor cell membrane for improving the targeting capability and accumulation of nanoparticles in tumor. We reveal that these smart CS-I/J@CM NPs could drastically activate the immune responses through remodeling TIME of GBM by multiple functions. They could (1) increase M1-phenotype macrophages at tumor site by promoting the polarization of tumor-associated macrophages through the reactive oxygen species (ROS) and oxygen generated from the Fenton-like reaction between nanoparticles and H2O2 within tumor under NIR II irradiation; (2) decrease the infiltration of Tregs cells at tumor site through the release of IND; (3) decrease the expression of PD-L1 on tumor cells through JQ1. The notable increments of anti-tumor CD8+T cells in the tumor and memory T cells (TEM) in the spleen show excellent therapy efficacy and effectively prevent the recurrence of GBM after modulation of the TIME. This work demonstrates the modulation of TIME could be a significant strategy to improve the immunotherapy of GBM and other cold tumors.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| |
Collapse
|
31
|
Hu P, Zhao S, Shi J, Li F, Wang S, Gan Y, Liu L, Yu S. Precisely NIR-II-activated and pH-responsive cascade catalytic nanoreactor for controlled drug release and self-enhanced synergetic therapy. NANOSCALE 2022; 14:12219-12231. [PMID: 35582977 DOI: 10.1039/d2nr00487a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mesoporous polydopamine (MPDA) and MPDA-based nanosystems have been widely used in the field of photothermal therapy (PTT) and drug delivery. However, synthesis of the corresponding nanoplatforms for efficient PTT and controlled drug release simultaneously in the second near infrared (NIR-II) region remains a great challenge. Herein, a NIR-II and pH dual-responsive HMPDA@Cu2-xSe cascade catalytic nanoplatform was constructed by assembling hollow mesoporous polydopamine (HMPDA) with ultra-small Cu2-xSe, which could compensate the inadequate NIR-II-induced PTT effect of HMPDA and enhance the efficacy of chemodynamic therapy (CDT) simultaneously under NIR-II laser irradiation. Meanwhile, doxorubicin (DOX) and glucose oxidase (GOx) were encapsulated into the synthesized HMPDA@Cu2-xSe using the photothermal-induced phase change material (PCM) tetradecyl (1-TD) as a gatekeeper to achieve the controlled release of the cargo. Under 1064 nm laser, the generated heat could cause 1-TD melting, resulting in the release of large amounts of DOX and GOx. The released GOx could further catalyze glucose to H2O2 and gluconic acid, which in turn promoted the effects of PTT/CDT and the release of drugs. In vitro and in vivo experiments showed that the synthesized HMPDA@Cu2-xSe-DOX-GOx@PCM (HMPC-D/G@PCM) nanosystem exhibited a significant tumor cell inhibition effect by combining different treatment modes. Thus, this smart nanoplatform with multiple stimuli-activated cascade reactions provided a new idea for designing effective multi-modal combination therapy for tumors.
Collapse
Affiliation(s)
- Peng Hu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Shuang Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Fan Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Shaochen Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Ying Gan
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Lei Liu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Shuling Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
32
|
Zhang S, Sun X, Wang Z, Sun J, He Z, Sun B, Luo C. Molecularly Self-Engineered Nanoamplifier for Boosting Photodynamic Therapy via Cascade Oxygen Elevation and Lipid ROS Accumulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38497-38505. [PMID: 35977115 DOI: 10.1021/acsami.2c09209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photodynamic therapy (PDT) has been extensively explored as a noninvasive cancer treatment modality. However, the dilemma of tumor hypoxia and short half-life of singlet oxygen (1O2) severely restrict the therapeutic efficacy of PDT. Herein, we develop a facile three-in-one PDT nanoamplifier (AA@PPa/Hemin NPs) assembled by pyropheophorbide a (PPa), hemin, and arachidonic acid (AA). Interestingly, AA not only acts as an enabler to facilitate the assembly of PPa and hemin in the construction of ternary hybrid nanoassemblies but also acts as a lipid reactive oxygen species (ROS) amplifier for robust PDT. In tumor cells, hemin plays the role of a catalase-like catalyst that accelerates the production of oxygen (O2) from hydrogen peroxide (H2O2), significantly alleviating tumor hypoxia. Under laser irradiation, vast amounts of 1O2 generated by PPa trigger the peroxidation of AA to produce large amounts of cytotoxic lipid ROS, immensely amplifying the efficiency of PDT by promptly eliciting cellular oxidative stress. As expected, AA@PPa/Hemin NPs exert potent antitumor activity in a 4T1 breast-tumor-bearing BALB/c mice xenograft model. Such a cascade nanohybrid amplifier provides a novel codelivery platform for accurate and effective PDT of cancer.
Collapse
Affiliation(s)
- Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
33
|
Yun B, Gu Z, Liu Z, Han Y, Sun Q, Li Z. Reducing Chemo-/Radioresistance to Boost the Therapeutic Efficacy against Temozolomide-Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38617-38630. [PMID: 35974468 DOI: 10.1021/acsami.2c12348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemo-/radioresistance is the most important reason for the failure of glioblastoma (GBM) treatment. Reversing the chemo-/radioresistance of GBM for boosting therapeutic efficacy is very challenging. Herein, we report a significant decrease in the chemo-/radioresistance of GBM by the in situ generation of SO2 within a tumor, which was released on demand from the prodrug 5-amino-1,3-dihydrobenzo[c]thiophene 2,2-dioxide (ATD) loaded on rare-earth-based scintillator nanoparticles (i.e., NaYF4:Ce@NaLuF4:Nd@ATD@DSPE-PEG5000, ScNPs) under X-ray irradiation. Our novel X-ray-responsive ScNPs efficiently converted highly penetrating X-rays into ultraviolet rays for controlling the decomposition of ATD to generate SO2, which effectively damaged the mitochondria of temozolomide-resistant U87 cells to lower the production of ATP and inhibit P-glycoprotein (P-gp) expression to reduce drug efflux. Meanwhile, the O6-methylguanine-DNA methyltransferase (MGMT) of drug-resistant tumor cells was also reduced to prevent the repair of damaged DNA and enhance cell apoptosis and the efficacy of chemo-/radiotherapy. The tumor growth was obviously suppressed, and the mice survived significantly longer than untreated temozolomide-resistant GBM-bearing mice. Our work demonstrates the potential of SO2 in reducing chemo-/radioresistance to improve the therapeutic effect against resistant tumors if it can be well controlled and in situ generated in tumor cells. It also provides insights into the rational design of stimuli-responsive drug delivery systems for the controlled release of drugs.
Collapse
Affiliation(s)
- Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhengpeng Gu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Xin X, Ni X, Shi K, Shao J, Zhang Y, Peng X, Yang W, Tian C, Zhou W, Zhang B. Iodine-Rich Nanoadjuvants for CT Imaging-Guided Photodynamic Immunotherapy of Breast Cancer. Front Bioeng Biotechnol 2022; 10:915067. [PMID: 36072292 PMCID: PMC9442603 DOI: 10.3389/fbioe.2022.915067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy, which stimulates the body's own immune system to kill cancer cells, has shown great promise in the field of cancer therapy. However, the uncontrolled biodistribution of immunotherapeutic drugs may cause severe side effects. Herein, we report an iodine-rich nanoadjuvant (INA) for photo-immunotherapy. INA is prepared by encapsulating a toll-like receptor 7 agonist (R837) and a photosensitizer (phthalocyanine) into an iodine-rich amphiphilic copolymer PEG-PHEMA-I. By virtue of the enhanced permeation and retention (EPR) effect, INA can effectively accumulate into the tumor site. Under light irradiation, photodynamic therapy (PDT) triggered by INA will induce immunogenic cell death (ICD) in the tumor region to trigger the release of immune-associated cytokines. Such a process may further induce the maturation of dendritic cells which will be accelerated by R837, leading to the proliferation of effector T cells for immunotherapy. The photo-immunotherapy mediated by INA shows good anticancer efficacy both in vitro and in vivo. Meanwhile, INA is also a CT contrast agent owing to its high density of iodine, which can successfully illuminate tumors by CT imaging. Thus, our study develops a light-triggered nanoadjuvant for CT imaging-guided enhanced photo-immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyue Ni
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Kang Shi
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yanqiu Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Peng
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Yang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chuanshuai Tian
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
35
|
Zhang X, Wang S, Tang K, Pan W, Xu H, Li Y, Gao Y, Li N, Tang B. Cu 2+ Embedded Three-Dimensional Covalent Organic Framework for Multiple ROS-Based Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30618-30625. [PMID: 35763788 DOI: 10.1021/acsami.2c07739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS)-based cancer treatments have attracted much attention in recent years. However, most patients respond poorly to the monotypic ROS during these treatments. In this work, a multiple ROS-based cancer immunotherapy synergistic strategy has been developed to enhance the therapeutic effect of cancer. We prepare a three-dimensional covalent organic framework (3D COF-TATB), and embed copper ions (Cu2+) into the skeleton to obtain multifunctional nanomaterial, 3D Cu@COF-TATB. In this system, porphyrins in 3D COF-TATB serve not only as the photosensitizer for photodynamic process to produce singlet oxygen(1O2), but also as the binding sites to complex with Cu2+. Cu2+ can be reduced by the GSH to generate Cu+ to produce hydroxyl radical (•OH) through the Fenton-like reaction. Moreover, the generated multiple types of ROS induce the immunogenic cell death (ICD) of cancer cells to improve the immunogenicity and further activate an immune response for attacking the tumor. Combining with the immunoblocking inhibitor (aPD-1), 3D Cu@COF-TATB can effectively inhibit the tumor growth. This work will provide a guidance for multimodal cancer therapy in future clinical treatment settings.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, P. R. China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Huanjun Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
36
|
Wang Q, Li T, Yang J, Zhao Z, Tan K, Tang S, Wan M, Mao C. Engineered Exosomes with Independent Module/Cascading Function for Therapy of Parkinson's Disease by Multistep Targeting and Multistage Intervention Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201406. [PMID: 35435282 DOI: 10.1002/adma.202201406] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Current exosome engineering methods usually lead to the damage of exosome morphology and membrane, which cannot meet the complex needs of disease treatment. Herein, the concept of an "independent module/cascading function" is proposed to construct an engineered exosome nanotherapy platform including an independent artificial module and a natural module. The artificial module with movement/chemotaxis function is first synthesized, and then it is controllably combined with the natural exosome module with "one by one" mode through a "differentiated" modification method. The whole process can not only maintain the activity of the natural exosome module, but also endows it with motion ability, so as to realize the purpose of "cascading function" in the process of disease treatment. The above engineered exosomes are used in the treatment of Parkinson's disease (PD). Moreover, the multistep targeting strategy of "disease microenvironment-damaged cells-diseased mitochondria" and the multistage intervention concept of "inhibiting deterioration and promoting repair" are proposed, so as to break through the bottleneck of the existing treatment of PD.
Collapse
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Kaiyuan Tan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shuwan Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
37
|
Wu X, Chen Y, Guo Q, Tao L, Ding Y, Ding X, Shen X. Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022; 14:1375. [PMID: 35890271 PMCID: PMC9323899 DOI: 10.3390/pharmaceutics14071375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host-guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Collapse
Affiliation(s)
- Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China;
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (Y.C.); (Q.G.); (L.T.)
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| |
Collapse
|
38
|
Lu J, Fu S, Dai J, Hu J, Li S, Ji H, Wang Z, Yu J, Bao J, Xu B, Guo J, Yang H. Integrated metabolism and epigenetic modifications in the macrophages of mice in responses to cold stress. J Zhejiang Univ Sci B 2022; 23:461-480. [PMID: 35686526 PMCID: PMC9198231 DOI: 10.1631/jzus.b2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.
Collapse
Affiliation(s)
- Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Dai
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Jianwen Hu
- Shanghai Bioprofile Co. Ltd., Shanghai 201100, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhiquan Wang
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T5J 4P6, Canada
| | - Jiahong Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiming Bao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
39
|
Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210166. [PMID: 37323705 PMCID: PMC10190945 DOI: 10.1002/exp.20210166] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Reprogramming the immunosuppressive tumor microenvironment by modulating macrophages holds great promise in tumor immunotherapy. As a class of professional phagocytes and antigen-presenting cells in the innate immune system, macrophages can not only directly engulf and clear tumor cells, but also play roles in presenting tumor-specific antigen to initiate adaptive immunity. However, the tumor-associated macrophages (TAMs) usually display tumor-supportive M2 phenotype rather than anti-tumor M1 phenotype. They can support tumor cells to escape immunological surveillance, aggravate tumor progression, and impede tumor-specific T cell immunity. Although many TAMs-modulating agents have shown great success in therapy of multiple tumors, they face enormous challenges including poor tumor accumulation and off-target side effects. An alternative solution is the use of advanced nanostructures, which not only can deliver TAMs-modulating agents to augment therapeutic efficacy, but also can directly serve as modulators of TAMs. Another important strategy is the exploitation of macrophages and macrophage-derived components as tumor-targeting delivery vehicles. Herein, we summarize the recent advances in targeting and engineering macrophages for tumor immunotherapy, including (1) direct and indirect effects of macrophages on the augmentation of immunotherapy and (2) strategies for engineering macrophage-based drug carriers. The existing perspectives and challenges of macrophage-based tumor immunotherapies are also highlighted.
Collapse
Affiliation(s)
- Yanhui Zheng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| |
Collapse
|
40
|
Ma Y, Xiao F, Lu C, Wen L. Multifunctional Nanosystems Powered Photodynamic Immunotherapy. Front Pharmacol 2022; 13:905078. [PMID: 35645842 PMCID: PMC9130658 DOI: 10.3389/fphar.2022.905078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic Therapy (PDT) with the intrinsic advantages including non-invasiveness, spatiotemporal selectivity, low side-effects, and immune activation ability has been clinically approved for the treatment of head and neck cancer, esophageal cancer, pancreatic cancer, prostate cancer, and esophageal squamous cell carcinoma. Nevertheless, the PDT is only a strategy for local control of primary tumor, that it is hard to remove the residual tumor cells and inhibit the tumor metastasis. Recently, various smart nanomedicine-based strategies are developed to overcome the barriers of traditional PDT including the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death and tumor resistance to the therapy. More notably, a growing number of studies have focused on improving the therapeutic efficiency by eliciting host immune system with versatile nanoplatforms, which heralds a broader clinical application prospect of PDT in the future. Herein, the pathways of PDT induced-tumor destruction, especially the host immune response is summarized, and focusing on the recent progress of nanosystems-enhanced PDT through eliciting innate immunity and adaptive immunity. We expect it will provide some insights for conquering the drawbacks current PDT and expand the range of clinical application through this review.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, China
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Fengfeng Xiao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| | - Liewei Wen
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| |
Collapse
|
41
|
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022; 282:121433. [DOI: 10.1016/j.biomaterials.2022.121433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
42
|
Chen M, Yang J, Zhou L, Hu X, Wang C, Chai K, Li R, Feng L, Sun Y, Dong C, Shi S. Dual-Responsive and ROS-Augmented Nanoplatform for Chemo/Photodynamic/Chemodynamic Combination Therapy of Triple Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57-68. [PMID: 34935343 DOI: 10.1021/acsami.1c14135] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Integrating chemodynamic therapy (CDT) and photodynamic therapy (PDT) into one nanoplatform can produce much more reactive oxygen species (ROS) for tumor therapy. Nevertheless, it is still a great challenge to selectively generate sufficient ROS in tumor regions. Meanwhile, CDT and PDT are restricted by insufficient H2O2 content in the tumor as well as by the limited tumor tissue penetration of the light source. In this study, a smart pH/ROS-responsive nanoplatform, Fe2+@UCM-BBD, is rationally designed for tumor combination therapy. The acidic microenvironment can induce the pH-responsive release of doxorubicin (DOX), which can induce tumor apoptosis through DNA damage. Beyond that, DOX can promote the production of H2O2, providing sufficient materials for CDT. Of note, upconversion nanoparticles at the core can convert the 980 nm light to red and green light, which are used to activate Ce6 to produce singlet oxygen (1O2) and achieve upconversion luminescence imaging, respectively. Then, the ROS-responsive linker bis-(alkylthio)alkene is cleaved by 1O2, resulting in the release of Fenton reagent (Fe2+) to realize CDT. Taken together, Fe2+@UCM-BBD exhibits on-demand therapeutic reagent release capability, excellent biocompatibility, and remarkable tumor inhibition ability via synergistic chemo/photodynamic/chemodynamic combination therapy.
Collapse
Affiliation(s)
- Mengyao Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jingxian Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Lulu Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Chunhui Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Keke Chai
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Ruihao Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Lei Feng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Yanting Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
43
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Liu Y, Zhou S, Xiang D, Ju L, Shen D, Wang X, Wang Y. Friend or Foe? The Roles of Antioxidants in Acute Lung Injury. Antioxidants (Basel) 2021; 10:1956. [PMID: 34943059 PMCID: PMC8750496 DOI: 10.3390/antiox10121956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extra-pulmonary injury factors. The oxidative stress caused by excessive reactive oxygen species (ROS) produced in the lungs plays an important role in the pathogenesis of ALI. ROS is a "double-edged sword", which is widely involved in signal transduction and the life process of cells at a physiological concentration. However, excessive ROS can cause mitochondrial oxidative stress, leading to the occurrence of various diseases. It is well-known that antioxidants can alleviate ALI by scavenging ROS. Nevertheless, more and more studies found that antioxidants have no significant effect on severe organ injury, and may even aggravate organ injury and reduce the survival rate of patients. Our study introduces the application of antioxidants in ALI, and explore the mechanisms of antioxidants failure in various diseases including it.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| |
Collapse
|
45
|
Xu Q, Zhang H, Liu H, Han Y, Qiu W, Li Z. Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials 2021; 280:121287. [PMID: 34864449 DOI: 10.1016/j.biomaterials.2021.121287] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
Radio-resistance of glioblastoma (GBM) remains a leading cause of radiotherapy failure because of the protective autophagy induced by X-Ray irradiation and tumor cells' strong capability of repairing damaged DNA. It is of great importance to overcome the radio-resistance for improving the efficacy of radiotherapy. Herein, we report the novel mechanism of core-shell copper selenide coated gold nanoparticles (Au@Cu2-xSe NPs) inhibiting the protective autophagy and DNA repair of tumor cells to drastically boost the radiotherapy efficacy of glioblastoma. We reveal that the core-shell Au@Cu2-xSe NPs can inhibit the autophagy flux by effectively alkalizing lysosomes. They can increase the SQSTM1/p62 protein levels of tumor cells without influencing their mRNA. We also reveal that Au@Cu2-xSe NPs can increase the ubiquitination of DNA repair protein Rad51, and promote the degradation of Rad51 by proteasomes to prevent the DNA repair. The simultaneous inhibition of protective autophagy and DNA repair significantly suppress the growth of orthotopic GBM by using radiotherapy and our novel Au@Cu2-xSe NPs. Our work provides a new insight and paradigm to significantly improve the efficacy of radiotherapy by rationally designing theranostic nano-agents to simultaneously inhibit protective autophagy and DNA repair of tumor cells.
Collapse
Affiliation(s)
- Qi Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China.
| |
Collapse
|
46
|
Cao Z, Zhang L, Liu J, Wang D, Liang K, Chen Y, Gu Z. A dual enzyme-mimicking radical generator for enhanced photodynamic therapy via series-parallel catalysis. NANOSCALE 2021; 13:17386-17395. [PMID: 34611685 DOI: 10.1039/d1nr04104e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor hypoxia hampers the therapeutic efficacy of photodynamic therapy (PDT) by hardly supplying sufficient oxygen to produce cytotoxic compounds. Herein a dual enzyme-mimicking radical generator has been developed for the in situ generation of oxygen and abundant radical oxygen species to enhance PDT efficacy under photoacoustic imaging guidance. A manganese-incorporating and photosensitizer-loaded metal organic framework exhibited both catalase-like and peroxidase-like catalytic activities specifically at the tumor microenvironment, leading to simultaneous series catalysis and parallel catalysis pathways. As a result, the MOF-based radical generator nanoparticles can not only supply oxygen for PDT to produce singlet oxygen, but also generate hydroxyl radicals, thus further enhancing the anti-cancer effect of PDT. In vitro and in vivo evaluation of the radical generator nanoparticles demonstrated the relieved tumor hypoxia microenvironment, remarkably increased level of reactive oxygen species, and significantly improved anti-cancer effect with desirable PA imaging capacity. This work presents a "series-parallel catalysis" strategy enabled by a MOF nanozyme to enhance PDT efficiency and provides new insights into a highly efficient and low-toxic anti-cancer approach.
Collapse
Affiliation(s)
- Zhenbang Cao
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China.
| | - Jianxin Liu
- Ultrasound Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R.China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R.China.
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R.China
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Liu P, Peng Y, Ding J, Zhou W. Fenton Metal Nanomedicines for Imaging-guided Combinatorial Chemodynamic Therapy against Cancer. Asian J Pharm Sci 2021; 17:177-192. [PMID: 35582641 PMCID: PMC9091802 DOI: 10.1016/j.ajps.2021.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Chemodynamic therapy (CDT) is considered as a promising modality for selective cancer therapy, which is realized via Fenton reaction-mediated decomposition of endogenous H2O2 to produce toxic hydroxyl radical (•OH) for tumor ablation. While extensive efforts have been made to develop CDT-based therapeutics, their in vivo efficacy is usually unsatisfactory due to poor catalytic activity limited by tumor microenvironment, such as anti-oxidative systems, insufficient H2O2, and mild acidity. To mitigate these issues, we have witnessed a surge in the development of CDT-based combinatorial nanomedicines with complementary or synergistic mechanisms for enhanced tumor therapy. By virtue of their bio-imaging capabilities, Fenton metal nanomedicines (FMNs) are equipped with intrinsic properties of imaging-guided tumor therapies. In this critical review, we summarize recent progress of this field, focusing on FMNs for imaging-guided combinatorial tumor therapy. First, various Fenton metals with inherent catalytic performances and imaging properties, including Fe, Cu and Mn, were introduced to illustrate their possible applications for tumor theranostics. Then, CDT-based combinatorial systems were reviewed by incorporating many other treatment means, including chemotherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), starvation therapy and immunotherapy. Next, various imaging approaches based on Fenton metals were presented in detail. Finally, challenges are discussed, and future prospects are speculated in the field to pave way for future developments.
Collapse
|
48
|
Bai J, Peng C, Lv W, Liu J, Hei Y, Bo X. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39055-39065. [PMID: 34433248 DOI: 10.1021/acsami.1c09466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer photosensitizers (PPSs) with the distinctive properties of good light-harvesting capability, high photostability, and excellent tumor retention effects have aroused great research interest in photodynamic therapy (PDT). However, their potential translation into clinic was often constrained by the hypoxic nature of tumor microenvironment, the aggregation-caused reduced production of reactive oxygen species (ROS), and the tedious procedure of manufacture. As a powerful and versatile strategy, vacancy engineering possesses the unique capability to effectively improve the photogenerated electron efficiency of nanomaterials for high-performance O2 and ROS production. Herein, by introducing vacancy engineering into the design of PPSs for PDT for the first time, we synthesized a novel PPS of Au-decorated polythionine (PTh) nanoconstructs (PTh@Au NCs) with the unique integrated features of distinguished O2 self-evolving function and highly efficient ROS generation for achieving the greatly enhanced PDT efficacy toward hypoxic tumor both in vitro and in vivo. The incorporation of Au into PTh leads to the special PTh-Au heterostructure-induced sulfur vacancies in PTh@Au NCs, which results in an efficient electron-hole separation performance and also plays a key role in a long lifetime of free electrons and holes. Accordingly, an ∼2- to 3-fold ROS generation and an ∼1.5-fold increase of O2 self-supply than the pure PTh nanoparticles (NPs) were obtained even under hypoxic conditions upon exposure to 650 nm light. By combining such superior ROS generation and O2 self-supply performances with the outstanding cellular internalization and tumor accumulation capacities, an advanced antitumor effect with the achievement of almost complete hypoxic tumor elimination in vivo or 88% cell destruction in vitro was acquired by the PTh@Au NCs. In addition, the distinctive facile one-step redox strategy for PTh@Au NCs synthesis compared to the reported PPSs for PDT also makes it beneficial for potential practical application. The first introduction of vacancy engineering concept into PPSs in the field of PDT proposed in this work offers a new strategy for the development and design highly efficient PPSs for PDT applications.
Collapse
Affiliation(s)
- Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Chengjia Peng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wenjia Lv
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jingju Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yashuang Hei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiangjie Bo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
49
|
Yang S, Sun IC, Hwang HS, Shim MK, Yoon HY, Kim K. Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J Mater Chem B 2021; 9:3983-4001. [PMID: 33909000 DOI: 10.1039/d1tb00397f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunogenic cell death (ICD) occurring by chemical and physical stimuli has shown the potential to activate an adaptive immune response in the immune-competent living body through the release of danger-associated molecular patterns (DAMPs) into the tumor microenvironment (TME). However, limitations to the long-term immune responses and systemic toxicity of conventional ICD inducers have led to unsatisfactory therapeutic efficacy in ICD-based cancer immunotherapy. Until now, various nanoparticle-based ICD-inducers have been developed to induce an antitumor immune response without severe toxicity, and to efficiently elicit an anticancer immune response against target cancer cells. In this review, we introduce a recent advance in the designs and applications of nanoparticle-based therapeutics to elicit ICD for effective cancer immunotherapy. In particular, combination strategies of nanoparticle-based ICD inducers with typical theranostic modalities are introduced intensively. Subsequently, we discuss the expected challenges and future direction of nanoparticle-based ICD inducers to provide strategies for boosting ICD in cancer immunotherapy. These versatile designs and applications of nanoparticle-based therapeutics for ICD can provide advantages to improve the therapeutic efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
50
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|