1
|
Di A, Wang C, Wang Y, He H, Deng W, Stiernet P, Bergström L, Yuan J, Zhang M. MXene-based solvent-responsive actuators with a polymer-intercalated gradient structure. Chem Sci 2025; 16:2191-2201. [PMID: 39664811 PMCID: PMC11629778 DOI: 10.1039/d4sc04935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Actuators based on electrically conductive and hydrophilic two-dimensional (2D) Ti3C2T X MXene are of interest for fast and specific responses in demanding environments, such as chemical production. Herein, Ti3C2T X -based solvent-responsive bilayer actuators were developed, featuring a gradient polymer-intercalation structure in the active layer. These actuators were assembled using negatively charged pristine Ti3C2T X nanosheets as the passive layer and positively charged polymer-tethered Ti3C2T X as the active layer. 2D wide-angle X-ray scattering and simulations related the gradient polymer intercalated microstructure in the polymer/MXene composite active layer to the counterintuitive actuation behavior. The bending of the bilayer films in solvent vapor is triggered by the gradient polymer-intercalation and the differing diffusion rate of solvent molecules through the MX and MX-polymer layers of the bilayer actuator. With their ease of fabrication, remote light-control capabilities, and excellent actuation performance, the Ti3C2T X -based bilayer actuators reported here may find applications in areas such as sensors for monitoring chemical production, infrared camouflage, smart switches, and excavators in toxic solvent environments.
Collapse
Affiliation(s)
- Andi Di
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 114 18 Sweden
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Pierre Stiernet
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 114 18 Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 114 18 Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 114 18 Sweden
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 114 18 Sweden
| |
Collapse
|
2
|
Yang Z, An Y, He Y, Lian X, Wang Y. A Programmable Actuator as Synthetic Earthworm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303805. [PMID: 37226690 DOI: 10.1002/adma.202303805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Natural earthworm with the ability to loosen soils that favors sustainable agriculture has inspired worldwide interest in the design of intelligent actuators. Given the inability to carry heavy loads and uncontrolled deformation, the vast majority of actuators can only perform simple tasks by bending, contraction, or elongation. Herein, a degradable actuator with the ability to deform in desired ways is presented, which successfully mimics the burrowing activities of earthworms to loosen soils with increased soil porosity by digging, grabbing, and lifting the soil when it receives rains. Such a scarifying actuator is made of degradable cellulose acetate and uncrosslinked polyacrylamide via the swelling-photopolymerizing method. The water absorption of polyacrylamide in moisture conditions causes rapid and remarkable bending. Such mechanical bending can be controlled in specific areas of the cellulose acetate film if polyacrylamide is polymerized in a patterned way, so as to generate complicated deformations of the whole cellulose acetate. Patterning polyacrylamide within cellulose acetate is achieved based on reversible surface protection by means of pen writing, rather than the traditional masking techniques. The water-induced deformation of programmable cellulose-based actuators is well preserved in soil, which is appropriate for promoting rain diffusion as well as root breath.
Collapse
Affiliation(s)
- Zhaoxiang Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yao An
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
3
|
Sun M, Wang P, Zheng G, Dai K, Liu C, Shen C. Multi-stimuli-responsive actuator based on bilayered thermoplastic film. SOFT MATTER 2022; 18:5052-5059. [PMID: 35758137 DOI: 10.1039/d2sm00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, soft actuators have attracted considerable interest owing to their biomimetic performance. Unfortunately, it remains a great challenge to fabricate multi-stimuli-responsive soft actuators by a facile but low-cost method. Herein, a thermoplastic film with bilayered architecture was designed and fabricated by a one-step method. This bilayered thermoplastic film can act as a soft actuator, demonstrating versatile shape-programmable performance in response to acetone vapor exposure and temperature change. Interestingly, diverse biomimetic devices including a worm-like self-walker, crawler-type robot and soft gripper can be realized, which highlights its promising applications in biomimetic robots, artificial muscles and automatic devices. Considering the one-step preparation process and the low-cost raw materials, this approach can be cost-effectively scaled up for practical production.
Collapse
Affiliation(s)
- Mengdi Sun
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Panlong Wang
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Guoqiang Zheng
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Kun Dai
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Chuntai Liu
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Changyu Shen
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Yan Q, Mao L, Feng B, Zhang L, Wu Y, Huang W. Reversible Patterning Cross-Linked, Humidity-Responsive Polymer Films with Programmatically and Accurately Controlled Deformation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7608-7616. [PMID: 33555181 DOI: 10.1021/acsami.0c22023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of novel humidity-responsive and photosensitive polymer films (PCA-PAA-PEG) are prepared. These films can be patterning cross-linked by the photodimerization of coumarin pendant groups. The humidity-induced deformation can be well controlled by the pattern because of the different modulus and hydrophilicity between cross-linked and un-cross-linked segments. In addition, the pattern can be erased and the deformation direction can be changed programmatically by the de-cross-linking-re-cross-linking approach due to the reversible photodimerization of coumarin groups. The cross-linking degree also affects the humidity responsiveness of the film. The deformation of the gradient patterning cross-linked film can be more accurately controlled. Moreover, the length and width ratio (L/Ws/Wh) of the un-cross-linked segment to the cross-linked segment affects the deformation of the films as well. When L/Ws/Wh is 5/2/1 or 5/3/1, the deformation is controllable, and when L/Ws/Wh is 5/1/1 or 5/4/1, the deformation is random at the initial stage, but the whole film will bend along the short axis in the end.
Collapse
Affiliation(s)
- Qiwen Yan
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Lina Mao
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Bang Feng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Lidong Zhang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Yiqian Wu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Wei Huang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
5
|
Wang X, Yang Y, Huang H, Zhang K. Temperature-Responsive, Manipulable Cavitary Hydrogel Containers by Macroscopic Spatial Surface-Interior Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1573-1580. [PMID: 33347760 DOI: 10.1021/acsami.0c19448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic macroscopic materials transforming from bulk solid or semisolid to a closed structure with inner cavities and distinct outer and inner microstructures are rarely reported. Here, we report an in situ method for directing spatial surface-interior separation from bulk dynamic hydrogels to closed three-dimensional (3D) hydrogel containers with inner cavities via constructing a competitively cross-linking gradient within dynamic hydrogels. The initial cross-linking of phenylboronic acid/catechol complexes is disrupted by stronger ferric ions/catechol associations, generating gradually weakened cross-linking from the outside to the inside. Both stronger cross-linking in the outer shells and sequentially weaker cross-linked interior generated during swelling closed the hydrogel container with a tunable dense outer shell, fluffy inner layer, and cavities in the core. Cellulose nanocrystals could be used to significantly improve the spatial distinction of gradient cross-linking within hydrogels, leading to an even denser outer shell with tunable shell thickness. Moreover, cavitary hydrogel containers with diverse shapes can be programmed by designing the initial shapes of dynamic hydrogels and macroscopic assembly of individual dynamic hydrogels based on their self-healing capability after subsequent surface-interior separation. These cavitary hydrogel containers demonstrate thermal-responsive gate systems with unique sustained release at higher temperature and potential reaction containers for oxygen generation on demand. This facile spatial surface-interior separation strategy for fabricating closed cavity systems has great potential for various applications.
Collapse
Affiliation(s)
- Xiaojie Wang
- Wood Technology and Wood Chemistry, Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Yang Yang
- Wood Technology and Wood Chemistry, Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, P. R. China
| | - Heqin Huang
- Wood Technology and Wood Chemistry, Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany
| |
Collapse
|
6
|
Qiu X, Liang S, Huang X, Zhang L. Pre-patterning and post-oxidation-crosslinking of Fe(0) particles for a humidity-sensing actuator. Chem Commun (Camb) 2019; 55:15049-15052. [DOI: 10.1039/c9cc07855j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The combination of physical pre-patterning and chemical post-crosslinking strategies enables a humidity-sensing actuator with differential mechanical tensors for controlled interfacial sensitivity.
Collapse
Affiliation(s)
- Xiaxin Qiu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Shumin Liang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Xinhua Huang
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- People's Republic of China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| |
Collapse
|