1
|
Li N, Zhang T, Wang R, Sun Y, Chu L, Lu X, Sun K. Homotypic targeted nanoplatform enable efficient chemoimmunotherapy and reduced DOX cardiotoxicity in chemoresistant cancer via TGF-β1 blockade. J Control Release 2023; 361:147-160. [PMID: 37536544 DOI: 10.1016/j.jconrel.2023.07.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Doxorubicin (DOX) with broad-spectrum antitumor activity has been reported to induce effective immunogenic cell death (ICD) effect. However, the serious cardiotoxicity and chemoresistance severely restrict the widely clinical application of DOX. Herein, for the first time, a bio-inspired nanoplatform via co-assembly of DOX-conjugated polyethyleneimine (PEI-DOX), cancer cell membrane (CCM) and TGF-β1 siRNA (siTGF-β1) was rationally designed, which can not only overcome the drawbacks of DOX but also display high capability to modulate the tumor microenvironment and prevent the tumor progressing and metastasis. Experimental studies confirmed the pH-sensitivity of PEI-DOX and the homotypic-targeting and immuno-escapable ability of CCM, resulting an enhanced accumulation of DOX and siTGF-β1 in tumor sites. In addition to this, the bio-inspired nanoplatform could also improve the stability and facilitate the endosomal escape of siTGF-β1. All these effects ensured the silence efficiency of siTGF-β1 in tumor sites, which could further modulate the chemoresistant and immunosuppressive tumor microenvironment, resulting a synergistic effect with DOX to prevent tumor progressing and metastasis. Additionally, even trapped in cardiac tissues, siTGF-β1 could inhibit the production of TGF-β1 and ROS induced by DOX, resulting a reduced myocardial damage. Therefore, our newly designed bio-inspired nano-delivery system may be a promising nanoplatform with efficient chemoimmunotherapy to ameliorate DOX-induced cardiotoxicity and combat tumor growth and metastasis in chemoresistant cancer.
Collapse
Affiliation(s)
- Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China.
| |
Collapse
|
2
|
Butt AM, Abdullah N, Rani NNIM, Ahmad N, Amin MCIM. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles. Pharm Res 2022; 39:1047-1064. [PMID: 35619043 DOI: 10.1007/s11095-022-03296-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Cytoplasmic delivery of bioactives requires the use of strategies such as active transport, electroporation, or the use of nanocarriers such as polymeric nanoparticles, liposomes, micelles, and dendrimers. It is essential to deliver bioactive molecules in the cytoplasm to achieve targeted effects by enabling organelle targeting. One of the biggest bottlenecks in the successful cytoplasmic delivery of bioactives through nanocarriers is their sequestration in the endosomes that leads to the degradation of drugs by progressing to lysosomes. In this review, we discussed mechanisms by which nanocarriers are endocytosed, the mechanisms of endosomal escape, and more importantly, the strategies that can be and have been employed for their escape from the endosomes are summarized. Like other nanocarriers, polymeric micelles can be designed for endosomal escape, however, a careful control is needed in their design to balance between the possible toxicity and endosomal escape efficiency. Keeping this in view, polyion complex micelles, and polymers that have the ability to escape the endosome, are fully discussed. Finally, we provided some perspectives for designing the polymeric micelles for efficient cytoplasmic delivery of bioactive agents through endosomal escape.
Collapse
Affiliation(s)
- Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Nabiha Abdullah
- Department of Pharmacy, Quaid-i-Azam University, 45320, Islamabad, Pakistan.,Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450, Ipoh, Perak, Malaysia.,Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
4
|
Wu P, Zhang H, Yin Y, Sun M, Mao S, Chen H, Deng Y, Chen S, Li S, Sun B. Engineered EGCG-Containing Biomimetic Nanoassemblies as Effective Delivery Platform for Enhanced Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105894. [PMID: 35486032 PMCID: PMC9131592 DOI: 10.1002/advs.202105894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/06/2022] [Indexed: 06/07/2023]
Abstract
Nano-based immunotherapy of therapeutic biomolecules is attractive but tremendously hampered by the poor delivery efficiency. This study reports a novel delivery system of fluorinated-coordinative-epigallocatechin gallate (EGCG), referring as FEGCG/Zn, through the integration of fluorination and zinc ions (Zn2+ ) into EGCG. The robust therapeutics of FEGCG/Zn are measured in terms of the regulating effect on programmed cell death ligand 1 (PD-L1), the effective delivery of diverse biomolecules, and the hitchhiking ability using living cells. Taking small interfering RNA of PD-L1 (siPD-L1) and erythrocytes as an example, the fabricated biomimetic system achieves excellent siPD-L1 delivery and further improves siPD-L1 accumulation in tumors. Finally, the combination of FEGCG/Zn and siPD-L1 promotes antitumor immunotherapy through alleviation of T cells exhaustion by regulating PD-L1 expression in tumor cells. The results demonstrate that FEGCG/Zn substantially regulates PD-L1 expression and improves immune-biomolecule delivery by forming biomimetic nanoassemblies, offering a versatile platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Pengkai Wu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Haitian Zhang
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Yin Yin
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Meiling Sun
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Shuai Mao
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Huihui Chen
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Yexuan Deng
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease StudyDepartment of EndocrinologyNanjing Drum Tower Hospitaland Model Animal Research CenterSchool of MedicineNanjing UniversityNanjing210008P. R. China
| | - Shuo Li
- Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu Province210029P. R. China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| |
Collapse
|
5
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
6
|
Qi Y, Pan Y, Gu F, Wei S, Fei C, Han J. Construction and characterization of folate-functionalized curdlan-trilysine siRNA delivery platform for in vivo hepatic carcinoma treatment. Colloids Surf B Biointerfaces 2020; 198:111491. [PMID: 33302149 DOI: 10.1016/j.colsurfb.2020.111491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
RNA interference technology is a powerful tool with substantially clinical prospects for carcinoma therapy, in which efficiency and specificity of delivery of dsRNA remains a critical issue. Herein, aiming at delivery of dsRNA in efficient and safe way, we constructed targeting delivery platform (CTL-PEG-FA) by grafting curdlan with trilysine through click reaction, then modifying with PEG linked folic acid. The CTL-PEG-FA vector exhibited excellent gene binding capacity to condense siRNA and dramatically reduced cytotoxicity. Increased cell uptake of CTL-PEG-FA/Bcl-2 siRNA was achieved by the synergism of folate mediated endocytosis and charge interaction, and further causing severe HepG2 cells injury through apoptosis mechanism after down-regulation of Bcl-2 protein. In vivo experiments, CTL-PEG-FA/Bcl-2 siRNA complex distinctly accumulated in tumor site and significantly inhibited the growth of tumor, while no obvious toxicity was observed. Therefore, well-performed CTL-PEG-FA with excellent biocompatibility, has the potential to be the candidate of gene therapy for clinical applications.
Collapse
Affiliation(s)
- Yuxuan Qi
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia, 010020, PR China
| | - Yiwen Pan
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia, 010020, PR China
| | - Feng Gu
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia, 010020, PR China
| | - Shuai Wei
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia, 010020, PR China
| | - Chenglong Fei
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia, 010020, PR China
| | - Jingfen Han
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia, 010020, PR China.
| |
Collapse
|
7
|
Abstract
Advances in switchable microlasers have emerged as a building block with immense potential in controlling light-matter interactions and integrated photonics. Compared to artificially designed interfaces, a stimuli-responsive biointerface enables a higher level of functionalities and versatile ways of tailoring optical responses at the nanoscale. However, switching laser emission with biological recognition has yet to be addressed, particularly with reversibility and wavelength tunability over a broad spectral range. Here we demonstrate a self-switchable laser exploiting the biointerface between label-free DNA molecules and dye-doped liquid crystal matrix in a Fabry-Perot microcavity. Laser emission switching among different wavelengths was achieved by utilizing DNA conformation changes as the switching power, which alters the orientation of the liquid crystals. Our findings demonstrate that different concentrations of single-stranded DNA lead to different temporal switching of lasing wavelengths and intensities. The lasing wavelength could be reverted upon binding with the complementary sequence through DNA hybridization process. Both experimental and theoretical studies revealed that absorption strength is the key mechanism accounting for the laser shifting behavior. This study represents a milestone in achieving a biologically controlled laser, shedding light on the development of programmable photonic devices at the sub-nanoscale by exploiting the complexity and self-recognition of biomolecules.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xuerui Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wenjie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
8
|
Ma LL, Tang Q, Liu MX, Liu XY, Liu JY, Lu ZL, Gao YG, Wang R. [12]aneN 3-Based Gemini-Type Amphiphiles with Two-Photon Absorption Properties for Enhanced Nonviral Gene Delivery and Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40094-40107. [PMID: 32805811 DOI: 10.1021/acsami.0c10718] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although a plethora of nonviral gene vectors have been developed for potential gene therapy, imageable gemini surfactants with stimuli-responsiveness and high transfection efficiency are still scarce for gene delivery. Herein, three gemini amphiphiles (DEDPP-4/8/12) consisting of an aggregation-induced emission (AIE) central fluorophore: 5,6-diphenylpyrazine-2,3-diester (DEDPP), decorated with triazole-[12]aneN3 as the hydrophilic moiety and alkyl chains of various lengths as the hydrophobic moiety, were designed and synthesized for trackable gene delivery via optical imaging. All three amphiphiles exhibited ultralow critical micelle concentrations (CMCs) (up to 3.40 × 10-6 M), prominent two-photon absorption properties, and solvatochromic fluorescence. Gel electrophoresis assays demonstrated that the migration of plasmid DNA was completely retarded after condensation with these gemini amphiphiles at low concentrations (up to 10 μM). In addition, the ester bond in these amphiphiles may facilitate vector degradation and DNA release, in response to esterase and the acidic environment inside cells. Upon self-assembly with DOPE to form liposomes, DEDPP-8/DOPE achieved the best transfection efficiency in four cell lines, and the transfection efficiency of DEDPP-8/DOPE in HeLa cell lines was 23.5-fold higher than that of Lipo2000, which is unusually high for small organic molecule-based nonviral vectors. Furthermore, excellent transfection efficiency of DEDPP-8/DOPE was obtained in the presence of serum, and the red fluorescence protein (RFP) gene was successfully transfected in zebrafish embryos. Both one- and two-photon fluorescence imaging clearly demonstrated the delivery process of plasmid DNA. This study demonstrated that gemini-type amphiphiles composed of a two-photon fluorophore core conjugated with triazole-[12]aneN3 via an ester bond afforded an unprecedentedly high transfection efficiency with excellent biocompatibility, which may provide new insights for the design and development of multifunctional nonviral gene vectors for imageable gene delivery.
Collapse
Affiliation(s)
- Le-Le Ma
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Quan Tang
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming-Xuan Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Yu Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 9990078, China
| |
Collapse
|
9
|
Muripiti V, Gondru R, Patri SV. Review of Zinc(II) Scaffolds: Efficient Role in Gene Delivery. ChemistrySelect 2020. [DOI: 10.1002/slct.202001557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Venkanna Muripiti
- Department of Chemistry National Institute of Technology Warangal Warangal 506004 Telangana India
| | - Ramesh Gondru
- Environmental Monitoring & Exposure Assessment (Air) Laboratory ICMR-National Institute for Research in Environmental Health (NIREH) Bhopal 462030 Madhya Pradesh India
| | - Srilakshmi V. Patri
- Department of Chemistry National Institute of Technology Warangal Warangal 506004 Telangana India
| |
Collapse
|
10
|
Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020; 21:2966-2982. [DOI: 10.1021/acs.biomac.0c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
11
|
Kamra M, Moitra P, Ponnalagu D, Karande AA, Bhattacharya S. New Water-Soluble Oxyamino Chitosans as Biocompatible Vectors for Efficacious Anticancer Therapy via Co-Delivery of Gene and Drug. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37442-37460. [PMID: 31434476 DOI: 10.1021/acsami.9b09485] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the many nonviral gene delivery vectors, chitosan, being a polysaccharide of natural origin, has gained special importance. In this report, chitosan (CS) has been solubilized in water by preparing its O-carboxymethyl derivative, CS(CH2COOH), with an optimum degree of carboxymethylation. This has been further derivatized to get the pyridine-substituted product (py)CS(CH2COOH), where the degree of pyridine substitution (47%) was optimized based on zeta potential measurements. The optimized formulation showed a high gene binding ability, forming nanosized positively charged polyelectrolyte complexes with DNA. These polyplexes were stable to DNase and physiological polyanions such as heparin. They also exhibited minimal toxicity in vitro and showed transfection levels comparable to the commercial standard Lipofectamine 2000 and much higher than polyethylenimine (MW, 25 kDa). Additionally, in this study, a hitherto unknown oxyamine derivative of chitosan has been prepared by phthaloyl protection, tosylation, and Gabriel's phthalimide synthesis. Nearly 40% of the primary alcohols were successfully converted to oxyamino functionality, which was used for forming oxime with the anticancer drug doxorubicin. The pH sensitivity of the oxime ether linkage and stability under biologically relevant conditions were then used to establish the compound as a versatile drug delivery vector. Co-delivery of functional gene (p53) and drug (doxorubicin) was accomplished in vitro and in vivo with the chitosan-pyridine imine vector (py)CS(CH2COOH) and the newly synthesized doxorubicin oxime ether CS(Dox). Complete tumor regression with no tumor recurrence and appreciable survivability point to the in vivo effectiveness and biocompatibility of the designed composite formulation. Overall, the pH sensitivity of the oxime linkage aiding slow and steady drug release, together with the sustained gene expression by pyridine-tethered carboxymethyl chitosan, allows us to generate a nanobiocomposite with significantly high anticancer therapeutic potential.
Collapse
|