1
|
Li X, Zhang C, Geng J, Zong S, Wang P. Photo(electro)catalytic Water Splitting for Hydrogen Production: Mechanism, Design, Optimization, and Economy. Molecules 2025; 30:630. [PMID: 39942735 PMCID: PMC11820911 DOI: 10.3390/molecules30030630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
As an energy carrier characterized by its high energy density and eco-friendliness, hydrogen holds a pivotal position in energy transition. This paper elaborates on the scientific foundations and recent progress of photo- and electro-catalytic water splitting, including the corresponding mechanism, material design and optimization, and the economy of hydrogen production. It systematically reviews the research progress in photo(electro)catalytic materials, including oxides, sulfides, nitrides, noble metals, non-noble metal, and some novel photocatalysts and provides an in-depth analysis of strategies for optimizing these materials through material design, component adjustment, and surface modification. In particular, it is pointed out that nanostructure regulation, dimensional engineering, defect introduction, doping, alloying, and surface functionalization can remarkably improve the catalyst performance. The importance of adjusting reaction conditions, such as pH and the addition of sacrificial agents, to boost catalytic efficiency is also discussed, along with a comparison of the cost-effectiveness of different hydrogen production technologies. Despite the significant scientific advancements made in photo(electro)catalytic water splitting technology, this paper also highlights the challenges faced by this field, including the development of more efficient and stable photo(electro)catalysts, the improvement of system energy conversion efficiency, cost reduction, the promotion of technology industrialization, and addressing environmental issues.
Collapse
Affiliation(s)
- Xingpeng Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China; (X.L.); (C.Z.); (J.G.)
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710064, China
| | - Chenxi Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China; (X.L.); (C.Z.); (J.G.)
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710064, China
| | - Jiafeng Geng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China; (X.L.); (C.Z.); (J.G.)
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710064, China
| | - Shichao Zong
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China; (X.L.); (C.Z.); (J.G.)
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710064, China
| | - Pengqian Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China; (X.L.); (C.Z.); (J.G.)
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710064, China
| |
Collapse
|
2
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Perović K, Morović S, Jukić A, Košutić K. Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6319. [PMID: 37763596 PMCID: PMC10534479 DOI: 10.3390/ma16186319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents promising technology for the generation of high-purity hydrogen using electricity generated from renewable energy sources (solar and wind). Currently, benchmark catalysts for hydrogen evolution reactions in PEMWE are highly dispersed carbon-supported Pt-based materials. In order for this technology to be used on a large scale and be market competitive, it is highly desirable to better understand its performance and reduce the production costs associated with the use of expensive noble metal cathodes. The development of non-noble metal cathodes poses a major challenge for scientists, as their electrocatalytic activity still does not exceed the performance of the benchmark carbon-supported Pt. Therefore, many published works deal with the use of platinum group materials, but in reduced quantities (below 0.5 mg cm-2). These Pd-, Ru-, and Rh-based electrodes are highly efficient in hydrogen production and have the potential for large-scale application. Nevertheless, great progress is needed in the field of water electrolysis to improve the activity and stability of the developed catalysts, especially in the context of industrial applications. Therefore, the aim of this review is to present all the process features related to the hydrogen evolution mechanism in water electrolysis, with a focus on PEMWE, and to provide an outlook on recently developed novel electrocatalysts that could be used as cathode materials in PEMWE in the future. Non-noble metal options consisting of transition metal sulfides, phosphides, and carbides, as well as alternatives with reduced noble metals content, will be presented in detail. In addition, the paper provides a brief overview of the application of PEMWE systems at the European level and related initiatives that promote green hydrogen production.
Collapse
Affiliation(s)
- Klara Perović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (S.M.); (A.J.)
| | | | | | - Krešimir Košutić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (S.M.); (A.J.)
| |
Collapse
|
4
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
5
|
Ding L, Wang W, Xie Z, Li K, Yu S, Capuano CB, Keane A, Ayers K, Zhang FY. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24284-24295. [PMID: 37167124 DOI: 10.1021/acsami.2c23304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm2 and a high mass activity of 4.16 A/mgIr at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm2, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm2 in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Kathy Ayers
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
6
|
Chu Y, Peng R, Chen Z, Li L, Zhao F, Zhu Y, Tong S, Zheng H. Modulating Dominant Facets of Pt through Multistep Selective Anchored on WC for Enhanced Hydrogen Evolution Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9263-9272. [PMID: 36780581 DOI: 10.1021/acsami.2c19879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Facilitating the exposure of the active crystal facets on the surfaces of composite catalysts is a representative route to promote catalytic activity. Based on a tailored galvanic replacement reaction, herein, a self-assembly route is reported to prepare Pt-WC/CNT with Pt (200) preferential orientation and well-dispersed structure, which are capable of substantially boosting electrocatalysis in hydrogen evolution reaction (HER). Formation mechanism reveals that the (200)-dominated Pt-based catalysts form in galvanic replacement reaction through selective anchored on WC, and the multistep galvanic replacement process plays a critical role to realize the Pt (200)-dominated growth in higher Pt loading catalyst. These unique structural features endow the Pt-WC/CNT with a high turnover frequency of 94.18 H2·s-1 at 100 mV overpotential, 7-fold higher than that of commercial Pt/C (13.55 H2·s-1), ranking it among the most active catalysts. In addition, this method, which combines with gas-solid reaction and galvanic replacement reaction, paves the way to scalable synthesis as Pt facets-controllable composite catalysts to challenge commercial Pt/C.
Collapse
Affiliation(s)
- Youqun Chu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Ronggui Peng
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Zhaoyang Chen
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Lingtong Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Fengming Zhao
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Yinghong Zhu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Shaoping Tong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| | - Huajun Zheng
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou City, Zhejiang 310014, China
| |
Collapse
|
7
|
Zhang W, Liu M, Gu X, Shi Y, Deng Z, Cai N. Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers. Chem Rev 2023. [PMID: 36749705 DOI: 10.1021/acs.chemrev.2c00573] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since severe global warming and related climate issues have been caused by the extensive utilization of fossil fuels, the vigorous development of renewable resources is needed, and transformation into stable chemical energy is required to overcome the detriment of their fluctuations as energy sources. As an environmentally friendly and efficient energy carrier, hydrogen can be employed in various industries and produced directly by renewable energy (called green hydrogen). Nevertheless, large-scale green hydrogen production by water electrolysis is prohibited by its uncompetitive cost caused by a high specific energy demand and electricity expenses, which can be overcome by enhancing the corresponding thermodynamics and kinetics at elevated working temperatures. In the present review, the effects of temperature variation are primarily introduced from the perspective of electrolysis cells. Following an increasing order of working temperature, multidimensional evaluations considering materials and structures, performance, degradation mechanisms and mitigation strategies as well as electrolysis in stacks and systems are presented based on elevated temperature alkaline electrolysis cells and polymer electrolyte membrane electrolysis cells (ET-AECs and ET-PEMECs), elevated temperature ionic conductors (ET-ICs), protonic ceramic electrolysis cells (PCECs) and solid oxide electrolysis cells (SOECs).
Collapse
Affiliation(s)
- Weizhe Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Menghua Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Xin Gu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yixiang Shi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Zhanfeng Deng
- Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Ningsheng Cai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
8
|
Chen Z, Xu Y, Ding D, Song G, Gan X, Li H, Wei W, Chen J, Li Z, Gong Z, Dong X, Zhu C, Yang N, Ma J, Gao R, Luo D, Cong S, Wang L, Zhao Z, Cui Y. Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat Commun 2022; 13:763. [PMID: 35140218 PMCID: PMC8828749 DOI: 10.1038/s41467-022-28413-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
Tungsten carbides, featured by their Pt-like electronic structure, have long been advocated as potential replacements for the benchmark Pt-group catalysts in hydrogen evolution reaction. However, tungsten-carbide catalysts usually exhibit poor alkaline HER performance because of the sluggish hydrogen desorption behavior and possible corrosion problem of tungsten atoms by the produced hydroxyl intermediates. Herein, we report the synthesis of tungsten atomic clusters anchored on P-doped carbon materials via a thermal-migration strategy using tungsten single atoms as the parent material, which is evidenced to have the most favorable Pt-like electronic structure by in-situ variable-temperature near ambient pressure X-ray photoelectron spectroscopy measurements. Accordingly, tungsten atomic clusters show markedly enhanced alkaline HER activity with an ultralow overpotential of 53 mV at 10 mA/cm2 and a Tafel slope as low as 38 mV/dec. These findings may provide a feasible route towards the rational design of atomic-cluster catalysts with high alkaline hydrogen evolution activity.
Collapse
Affiliation(s)
- Zhigang Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yafeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ding Ding
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xingxing Gan
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hao Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhiyun Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoming Dong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chengfeng Zhu
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Nana Yang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Suzhou, 201204, China
| | - Rui Gao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Shan Cong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhigang Zhao
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
9
|
Chattopadhyay J, Pathak TS, Pak D. Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts. Molecules 2022; 27:670. [PMID: 35163935 PMCID: PMC8838211 DOI: 10.3390/molecules27030670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, heteroatom-incorporated specially structured metal-free carbon nanomaterials have drawn huge attention among researchers. In comparison to the undoped carbon nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapacitors and dye-sensitized solar cells. This review puts special emphasis on the most popular synthetic strategies of heteroatom-doped and co-doped metal-free carbon nanomaterials, viz., chemical vapor deposition, pyrolysis, solvothermal process, etc., utilized in last two decades. These specially structured nanomaterials' extensive applications as potential electrocatalysts are taken into consideration in this article. Their comparative enhancement of electrocatalytic performance with incorporation of heteroatoms has also been discussed.
Collapse
Affiliation(s)
| | - Tara Sankar Pathak
- Department of Science and Humanities, Surendra Institute of Engineering and Management, Siliguri, Darjeeling 734009, India;
| | - Daewon Pak
- Department of Environmental Engineering, Seoul National University of Science and Technology, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
10
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
11
|
Li Y, Sha J, Sui S, Salvatierra RV, Ma L, Shi C, Liu E, He C, Zhao N. W Clusters In Situ Assisted Synthesis of Layered Carbon Nanotube Arrays on Graphene Achieving High-Rate Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19117-19127. [PMID: 33851817 DOI: 10.1021/acsami.1c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
W atoms/clusters are employed to in situ assist the development of layered vertically aligned carbon nanotube arrays (VACNTs) through hot-filament-assisted chemical vapor deposition (HFCVD) with liquid binary Fe3O4/AlOx catalysts. The hot W filament was utilized to in situ evaporate atomic W and form W clusters on Fe catalysts, which have a strong impact on the growth of layered VACNT arrays. The migration and Ostwald ripening of Fe catalysts are found to be suppressed immediately with more W clusters deposition during CNT growth. Through controlling the deposition of W clusters, the electrochemical energy storage performance of as-prepared layered VACNT arrays is also tunable as electrodes of ion-based supercapacitors. The layered VACNT arrays can achieve a high capacity of 83.1 mF cm-2 and possess desirable rate performance due to the suitable hot filament condition (55 W for 90 s). This work provides a new perspective to in-depth understand the behavior of W filament during HFCVD and the significant role of the in situ generated W clusters on the growth of CNTs by maintaining the catalytic activity and structure of catalysts.
Collapse
Affiliation(s)
- Yue Li
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Junwei Sha
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Simi Sui
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Rodrigo V Salvatierra
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Liying Ma
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Chunsheng Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Enzuo Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
12
|
Wu S, Lu X, Chen X, Gao H, Gao J, Li G. Structure-controlled tungsten carbide nanoplates for enhanced hydrogen evolution reaction. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf2ad] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Developing a low-cost and durable non-noble metal eletrocatalyst for hydrogen evolution reaction (HER) is critical in efficient hydrogen production. Herein, tungsten carbide nanoplates (WC NPs) with typical mesoporous structure were prepared by a controlled hydrothermal reaction followed by a gas-solid carburization process. The crystal phases, microstructure and chemical components of the nanoplates were characterized, and their electrochemical properties were measured. The results show that the as-prepared WC NPs expose active sites upmost, and exhibit enhanced conductivity and superior HER performance in acid solution in terms of a small η
10 (overpotential to obtain a current density of 10 mA cm−2) of 120 mV, a Tafel slope of 58 mV dec−1 and outstanding long-term cycling stability. These indicate that the HER properties of WC NPs are dramatically enhanced compared to that of all phase pure WC materials reported in recent years. This enhancement can be attributed to their unique structural and electronic properties, which can be exploited to improve the electrochemical properties of traditional non-noble metal material.
Collapse
|
13
|
Ezhil Vilian AT, Umapathi R, Hwang SK, Lee MJ, Huh YS, Han YK. Simple synthesis of a clew-like tungsten carbide nanocomposite decorated with gold nanoparticles for the ultrasensitive detection of tert-butylhydroquinone. Food Chem 2020; 348:128936. [PMID: 33508604 DOI: 10.1016/j.foodchem.2020.128936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
The excessive use of food additives in manufactured food products negatively affects their quality and potentially impacts human health. In the present study, a composite consisting of gold nanoparticles decorated on tungsten carbide (AuNP-WC) was successfully fabricated using a facile and cost-effective ultrasonication technique. Compared to a bare glassy carbon electrode (GCE), AuNP-GCE, and WC-GCE, the AuNP-WC-GCE demonstrated excellent sensing performance for tert-butylhydroquinone (TBHQ) when used as an electrocatalyst in 0.05 M phosphate buffer solution (PBS), with a low working potential and a high peak current. In particular, the composite was able to detect the oxidation of TBHQ within a linear concentration range of 5 to 75 nM, with an extremely low detection limit of 0.20 nM. The practicability of the sensor was also assessed in the analysis of TBHQ in real samples of soybean oil, blended oil, and red wine, with satisfactory recovery rates obtained.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Reddicherla Umapathi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Kyu Hwang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Min Ji Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| |
Collapse
|
14
|
Sun X, Gong Q, Liang Y, Wu M, Xu N, Gong P, Sun S, Qiao J. Exploiting a High-Performance "Double-Carbon" Structure Co 9S 8/GN Bifunctional Catalysts for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38202-38210. [PMID: 32805974 DOI: 10.1021/acsami.0c10734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational synthesis of bifunctional electrocatalysts with high performance and strong durability is highly demanded rechargeable metal-air battery. In this work, ZIF-derived Co9S8/C coated with conductive graphene nanosheet (Co9S8/GN) was synthesized by a simple solvothermal method and formed a stable double-carbon structure. As expected, the prepared Co9S8/GN catalyst exhibits a high catalytic activity (ΔE: 0.88 V) and long-term durability toward both oxygen reduction reaction and oxygen evolution reaction (ORR and OER), which is even superior to the Pt/C + Ir/C mixture (0.91 V). In addition, the Zn-air battery with the Co9S8/GN catalyst showed higher power density (186 mW cm-2) and more stable charge-discharge cycling performances (2000 cycles) than the Pt/C + Ir/C (118 mW cm-2). Based on these analysis results, the favorable catalytic performance of ORR/OER should be illustrated by the following reasons: (i) large specific surface area and unique mesoporous structure, providing abundant active sites; (ii) good conductivity, accelerating the electrons transfer; and (iii) the unique stable "double-carbon" structures (metal-S-C-C), preventing the agglomeration of metal sulfide, building new quick transfer pathway, and forming the strong electron coupling ability and synergistic effect.
Collapse
Affiliation(s)
- Xiaoling Sun
- College of Chemistry and Materials Science, Shanxi Normal University, 1 Gongyuan Street, Linfen 041000, China
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Qiaojuan Gong
- College of Chemistry and Materials Science, Shanxi Normal University, 1 Gongyuan Street, Linfen 041000, China
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Yunxia Liang
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Mingjie Wu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Nengneng Xu
- College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Pengni Gong
- Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Jinli Qiao
- College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| |
Collapse
|
15
|
Preparation of Robust Hydrogen Evolution Reaction Electrocatalyst WC/C by Molten Salt. NANOMATERIALS 2020; 10:nano10091621. [PMID: 32824897 PMCID: PMC7559515 DOI: 10.3390/nano10091621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Tungsten carbide (WC) is an alternative to the costly and resource-constrained Pt-based catalysts for hydrogen evolution reaction (HER). In this work, a one-step facile and easily scalable approach is reported, to synthesize ultrafine WC by molten salt. Benefiting from the ideal synergistic catalytic effect between the highly active WC nanoparticles and the conductive graphitic carbon, and strong charge transfer ability, the unique WC/C hybrids demonstrated excellent HER performance in both acid and alkaline medias with overpotentials of 112 and 122 mV, at a current density of 10 mA cm−2 and Tafel slopes of 54.4 and 68.8 mV dec−1, in acid and alkaline media, and remarkable stability. With the simplicity and low-cost of the synthetic approach, the strategy presented here can be extendable to the preparation of other transition metal-based/carbon hybrids for versatile applications.
Collapse
|
16
|
Yin X, Yang L, Gao Q. Core-shell nanostructured electrocatalysts for water splitting. NANOSCALE 2020; 12:15944-15969. [PMID: 32761000 DOI: 10.1039/d0nr03719b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the cornerstone of the hydrogen economy, water electrolysis consisting of the hydrogen and oxygen evolution reactions (HER and OER) greatly needs cost-efficient electrocatalysts that can decrease the dynamic overpotential and save on energy consumption. Over past years, observable progress has been made by constructing core-shell structures free from or with few noble-metals. They afford particular merits, e.g., a highly-exposed active surface, modulated electronic configurations, strain effects, interfacial synergy, or reinforced stability, to promote the kinetics and electrocatalytic performance of the HER, OER and overall water splitting. So far, a large variety of inorganics (carbon and transition-metal related components) have been introduced into core-shell electrocatalysts. Herein, representative efforts and progress are summarized with a clear classification of core and shell components, to access comprehensive insights into electrochemical processes that proceed on surfaces or interfaces. Finally, a perspective on the future development of core-shell electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials for energy conversion and storage.
Collapse
Affiliation(s)
- Xing Yin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | | | | |
Collapse
|
17
|
Feng Q, Zou J, Wang Y, Zhao Z, Williams MC, Li H, Wang H. Influence of Surface Oxygen Vacancies and Ruthenium Valence State on the Catalysis of Pyrochlore Oxides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4520-4530. [PMID: 31895533 DOI: 10.1021/acsami.9b19352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is a promising energy storage solution by electrochemically splitting water into hydrogen fuel and oxygen. However, the sluggish kinetics, high operating potential, and corrosive acidic environment during the oxygen evolution reaction (OER) require the use of scarce and costly Ir-based oxides, tremendously hampering its large-scale commercialization. Hence, developing active and stable anode catalysts with reduced precious-metal usage is desperately essential. For the first time, we report a group of Y2-xBaxRu2O7 pyrochlore oxides and employ them in acid OER and PEM electrolyzers. We reveal the mechanism for the promoted OER performance of Ba-doped Y2Ru2O7 in which partially replacing Y3+ by Ba2+ in Y2Ru2O7 greatly facilitates the hole-doping effect, which generates massive oxygen vacancy and multivalence of Ru5+/Ru4+, thus boosting the OER performance of Y2-xBaxRu2O7. This work provides an effective method and paradigm for improving the electrocatalytic property of pyrochlore oxides.
Collapse
Affiliation(s)
- Qi Feng
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy , Southern University of Science and Technology , Shenzhen 518055 , Guangdong , China
| | - Jiexin Zou
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yajun Wang
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Zhiliang Zhao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy , Southern University of Science and Technology , Shenzhen 518055 , Guangdong , China
| | - Mark C Williams
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Hui Li
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy , Southern University of Science and Technology , Shenzhen 518055 , Guangdong , China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power , Shenzhen 518055 , China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power , Shenzhen 518055 , China
| |
Collapse
|