1
|
Lin XW, Gajula P, Luo XS, Zhao M, Zhao XB, Fan Y. Piezoelectric properties improvement in soft membrane with wet-spinning prepared barium titanate/polyvinylidenefluoride composites fiber. Sci Rep 2025; 15:12887. [PMID: 40234571 PMCID: PMC12000348 DOI: 10.1038/s41598-025-96516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Piezoelectric composite materials have demonstrated significant potential for developing high-performance wearable sensors. However, optimizing the piezoelectric output performance in polymer-based devices remains challenging due to the suboptimal synergy between the piezoelectric reinforcement phase and substrate materials. Moreover, the instability of response signals further hampers the sensor's practical utility. In this investigation, wet-spinning technology was applied to fabricate a novel Barium Titanate (BaTiO3)/Polyvinylidene fluoride (PVDF) composite fiber. Through this approach, we enhanced the piezoelectric properties of the material. Notably, our electron diffraction analysis revealed compelling lattice deformations in the ceramic particle-polymer interface, yielding significant enhancements in the piezoelectric characteristics. Remarkably, incorporating just 1.5 wt% of BaTiO3 in PVDF led to a piezoelectric output of 0.88 V during dynamic cycle tests at 1 Hz. Encouragingly, the output signal exhibited a robust linear correlation (R2 = 0.996) with applied compression force.
Collapse
Affiliation(s)
- Xiong-Wei Lin
- School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen, 518000, China.
- Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Prasad Gajula
- Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Yongin, 17104, Gyeonggi-do, South Korea.
| | - Xiao-Shan Luo
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, China
| | - Mingrui Zhao
- Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Bo Zhao
- Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ye Fan
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, Melbourne, 3216, Australia.
| |
Collapse
|
2
|
Cheng P, Hong J, Zhu X, Cheng B, Song L, Zhou X, Wen P. Electric-Ray-Inspired Universal Island-Bridge Structure for Transforming Nonpyroelectric Substrates into Pyroelectric Sensors. ACS Sens 2025; 10:1123-1134. [PMID: 39937156 DOI: 10.1021/acssensors.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Large-area, flexible pyroelectric sensors have received increasing attention in a range of applications including electronic skin, robotics, and military. However, existing flexible pyroelectric sensors struggle to achieve both high pyroelectric performance and excellent mechanical properties simultaneously. Here, we propose a universal island-bridge percolation structure inspired by the electric organ of the electric ray that can enable flexible nonpyroelectric substrates with excellent mechanical properties to generate a pyroelectric effect. The island-bridge percolation network structure made of pyroelectric particles (island) and carboxyl-functionalized multiwalled carbon nanotubes (bridge) achieved the transmission and superposition of the pyroelectric effect through the film polarization and percolation effect. The pyroelectric sensor based on the island-bridge percolation network structure not only inherits the pyroelectric properties of the pyroelectric particles but also inherits the excellent mechanical properties of the nonpyroelectric substrates. The flexible pyroelectric sensors fabricated from polydimethylsiloxane (PDMS) substrates exhibit a good pyroelectric effect and excellent mechanical reliability even under 30% tensile rate and 5,000 tensile-retraction cycles, and those made from polyimide (PI) substrates can serve as electronic skin for robots to detect heat sources and possess infrared sensing properties with a maximum distance of 8 cm. This study provides ideas to fabricate flexible pyroelectric sensors with highly flexible and high-performance properties.
Collapse
Affiliation(s)
- Peng Cheng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Jinhua Hong
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Xiaohui Zhu
- Wuhan Huaweike Intelligent Technology Co., Ltd., Wuhan 430000, China
| | - Bao Cheng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Lei Song
- Contemporary Amperex Technology Co., Limited, Ningde 352000, China
| | - Xu Zhou
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Peng Wen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Bai Y, Tang G, Xie L, Lian H, Wang S, Liu C, Yu Q, Ji J, Ren K, Cao X, Li C, Zhou L, Shan Y, Meng H, Li Z. Bonding Optimization Strategies for Flexibly Preparing Multi-Component Piezoelectric Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411589. [PMID: 39629531 DOI: 10.1002/adma.202411589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/31/2024] [Indexed: 01/30/2025]
Abstract
Flexible films with optimal piezoelectric performance and water-triggered dissolution behavior are fabricated using the co-dissolution-evaporation method by mixing trimethylchloromethyl ammonium chloride (TMCM-Cl), CdCl2, and polyethylene oxide (PEO, a water-soluble polymer). The resultant TMCM trichlorocadmium (TMCM-CdCl3) crystal/PEO film exhibited the highest piezoelectric coefficient (d33) compared to the films employing other polymers because PEO lacks electrophilic or nucleophilic side-chain groups and therefore exhibits relatively weaker and fewer bonding interactions with the crystal components. Furthermore, upon slightly increasing the amount of one precursor of TMCM-CdCl3 during co-dissolution, this component gained an advantage in the competition against PEO for bonding with the other precursor. This in turn improved the co-crystallization yield of TMCM-CdCl3 and further enhanced d33 to ≈71 pC/N, exceeding that of polyvinylidene fluoride (a commercial flexible piezoelectric) and most other molecular ferroelectric crystal-based flexible films. This study presents an important innovation and progress in the methodology and theory for maintaining a high piezoelectric performance during the preparation of flexible multi-component piezoelectric crystal films.
Collapse
Affiliation(s)
- Yuan Bai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - He Lian
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shihao Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chaopeng Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qiao Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jianying Ji
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kailiang Ren
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Cong Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lili Zhou
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyu Meng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Divya P, Arjunan KP, Nair M, Rappai JP, Sandeep K. Analytical detection of the bioactive molecules dopamine, thyroxine, hydrogen peroxide, and glucose using CsPbBr 3 perovskite nanocrystals. RSC Adv 2024; 14:32648-32654. [PMID: 39411255 PMCID: PMC11475663 DOI: 10.1039/d4ra06576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Qualitative and quantitative detection of biologically important molecules such as dopamine, thyroxine, hydrogen peroxide, and glucose, using newer and cheaper technology is of paramount importance in biology and medicine. Anion exchange in lead halide perovskites, on account of its good emission yield, facilitates the sensing of these molecules by the naked eye using ultraviolet light. Simple chemistry is used to generate chloride ions from analyte molecules. Dopamine and thyroxine have an amine functional group, which forms an adduct with an equivalent amount of volatile hydrochloric acid to yield chloride ions in solution. The reducing nature of hydrogen peroxide and glucose is used to generate chloride ions through a reaction with sodium hypochlorite in stoichiometric amounts. The emission of CsPbBr3-coated paper/glass substrates shifts to the blue region in the presence of chloride ions. This helps in the detection of the above biologically important molecules up to parts per million (ppm) levels by employing fundamental chemistry aspects and well-known anion exchange in perovskite nanocrystals. The preparation of better and more efficient sensors, which are predominantly important in science and technology, can thus be achieved by developing the above novel, cost-effective alternative sensing method.
Collapse
Affiliation(s)
- Puthanveedu Divya
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| | - Kodompatta P Arjunan
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| | - Maya Nair
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| | - John P Rappai
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
- Government Arts and Science College Ollu r Thrissur 680306 India
| | - Kulangara Sandeep
- Government Victoria College, Research Centre Under University of Calicut Palakkad 678001 India
| |
Collapse
|
5
|
Chai Z, Lin H, Bai H, Huang Y, Guan Z, Liu F, Wei J. Application of Metal Halide Perovskite in Internet of Things. MICROMACHINES 2024; 15:1152. [PMID: 39337812 PMCID: PMC11433748 DOI: 10.3390/mi15091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The Internet of Things (IoT) technology connects the real and network worlds by integrating sensors and internet technology, which has greatly changed people's lifestyles, showing its broad application prospects. However, traditional materials for the sensors and power components used in the IoT limit its development for high-precision detection, long-term endurance, and multi-scenario applications. Metal halide perovskite, with unique advantages such as excellent photoelectric properties, an adjustable bandgap, flexibility, and a mild process, exhibits enormous potential to meet the requirements for IoT development. This paper provides a comprehensive review of metal halide perovskite's application in sensors and energy supply modules within IoT systems. Advances in perovskite-based sensors, such as for gas, humidity, photoelectric, and optical sensors, are discussed. The application of indoor photovoltaics based on perovskite in IoT systems is also discussed. Lastly, the application prospects and challenges of perovskite-based devices in the IoT are summarized.
Collapse
Affiliation(s)
- Zhihao Chai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Hui Lin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Hang Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Yixiang Huang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Zhen Guan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Fangze Liu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Zhuhai 519088, China;
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| |
Collapse
|
6
|
Saini D, Sengupta D, Mondal B, Mishra HK, Ghosh R, Vishwakarma PN, Ram S, Mandal D. A Spin-Charge-Regulated Self-Powered Nanogenerator for Simultaneous Pyro-Magneto-Electric Energy Harvesting. ACS NANO 2024; 18:11964-11977. [PMID: 38656962 DOI: 10.1021/acsnano.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In view of the depletion of natural energy resources, harvesting energy from waste is a revolution to simultaneously capture, unite, and recycle various types of waste energies in flexible devices. Thus, in this work, a spin-charge-regulated pyro-magneto-electric nanogenerator is devised at a well-known ferroelectric P(VDF-TrFE) copolymer. It promptly stores thermal-magnetic energies in a "capacitor" that generates electricity at room temperature. The ferroelectric domains are regulated to slip at the interfaces (also twins) of duly promoting polarization and other properties. An excellent pyroelectric coefficient p ∼ 615 nC·m-2·K-1 is obtained, with duly enhanced stimuli of a thermal sensitivity ∼1.05 V·K-1, a magnetoelectric coefficient αme ∼8.8 mV·cm-1·Oe-1 at 180 Hz (resonance frequency), and a magnetosensitivity ∼473 V/T. It is noteworthy that a strategy of further improving p (up to 41.2 μC·m-2·K-1) and αme (up to 23.6 mV·cm-1·Oe-1) is realized in the electrically poled dipoles. In a model hybrid structure, the spins lead to switch up the electric dipoles parallel at the polymer chains in a cohesive charged layer. It is an innovative approach for efficiently scavenging waste energies from electric vehicles, homes, and industries, where abundant thermal and magnetic energies are accessible. This sustainable strategy could be useful in next-generation self-powered electronics.
Collapse
Affiliation(s)
- Dalip Saini
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dipanjan Sengupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Bidya Mondal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Hari Krishna Mishra
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rubina Ghosh
- Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008, India
| | | | - Shanker Ram
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
7
|
Guo X, Sun Y, Sun X, Li J, Wu J, Shi Y, Pan L. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromol Rapid Commun 2024; 45:e2300246. [PMID: 37534567 DOI: 10.1002/marc.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Physical sensors have emerged as a promising technology for real-time healthcare monitoring, which tracks various physical signals from the human body. Accurate acquisition of these physical signals from biological tissue requires excellent electrical conductivity and long-term durability of the sensors under complex mechanical deformation. Conductive polymers, combining the advantages of conventional polymers and organic conductors, are considered ideal conductive materials for healthcare physical sensors due to their intrinsic conductive network, tunable mechanical properties, and easy processing. Doping engineering has been proposed as an effective approach to enhance the sensitivity, lower the detection limit, and widen the operational range of sensors based on conductive polymers. This approach enables the introduction of dopants into conductive polymers to adjust and control the microstructure and energy levels of conductive polymers, thereby optimizing their mechanical and conductivity properties. This review article provides a comprehensive overview of doping engineering methods to improve the physical properties of conductive polymers and highlights their applications in the field of healthcare physical sensors, including temperature sensors, strain sensors, stress sensors, and electrophysiological sensing. Additionally, the challenges and opportunities associated with conductive polymer-based physical sensors in healthcare monitoring are discussed.
Collapse
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
8
|
Shen M, Liu K, Zhang G, Li Q, Zhang G, Zhang Q, Zhang H, Jiang S, Chen Y, Yao K. Thermoelectric coupling effect in BNT-BZT-xGaN pyroelectric ceramics for low-grade temperature-driven energy harvesting. Nat Commun 2023; 14:7907. [PMID: 38036536 PMCID: PMC10689474 DOI: 10.1038/s41467-023-43692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Pyroelectric energy harvesting has received increasing attention due to its ability to convert low-grade waste heat into electricity. However, the low output energy density driven by low-grade temperature limits its practical applications. Here, we show a high-performance hybrid BNT-BZT-xGaN thermal energy harvesting system with environmentally friendly lead-free BNT-BZT pyroelectric matrix and high thermal conductivity GaN as dopant. The theoretical analysis of BNT-BZT and BNT-BZT-xGaN with x = 0.1 wt% suggests that the introduction of GaN facilitates the resonance vibration between Ga and Ti, O atoms, which not only contributes to the enhancement of the lattice heat conduction, but also improves the vibration of TiO6 octahedra, resulting in simultaneous improvement of thermal conductivity and pyroelectric coefficient. Therefore, a thermoelectric coupling enhanced energy harvesting density of 80 μJ cm-3 has been achieved in BNT-BZT-xGaN ceramics with x = 0.1 wt% driven by a temperature variation of 2 oC, at the optical load resistance of 600 MΩ.
Collapse
Affiliation(s)
- Meng Shen
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Microelectronics, Hubei University, Wuhan, 430062, China.
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), Singapore, 138634, Singapore.
| | - Kun Liu
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Microelectronics, Hubei University, Wuhan, 430062, China
| | - Guanghui Zhang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Microelectronics, Hubei University, Wuhan, 430062, China
| | - Qifan Li
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Microelectronics, Hubei University, Wuhan, 430062, China
| | - Guangzu Zhang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qingfeng Zhang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Microelectronics, Hubei University, Wuhan, 430062, China.
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Haibo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shenglin Jiang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yong Chen
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Microelectronics, Hubei University, Wuhan, 430062, China.
| | - Kui Yao
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), Singapore, 138634, Singapore.
| |
Collapse
|
9
|
Wu Y, Huang LB, Pan C. Halide perovskite-based tribovoltaic effects for self-powered sensors. Sci Bull (Beijing) 2023; 68:1849-1852. [PMID: 37563032 DOI: 10.1016/j.scib.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Yinghui Wu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; Guangdong Provincial Key Laboratory of Durability for Ocean Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory for Low-carbon Construction Material and Technology, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Long-Biao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory for Low-carbon Construction Material and Technology, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Caofeng Pan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| |
Collapse
|
10
|
Li B, Cai C, Liu Y, Wang F, Yang B, Li Q, Zhang P, Deng B, Hou P, Liu W. Ultrasensitive mechanical/thermal response of a P(VDF-TrFE) sensor with a tailored network interconnection interface. Nat Commun 2023; 14:4000. [PMID: 37414757 DOI: 10.1038/s41467-023-39476-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Ferroelectric polymers have great potential applications in mechanical/thermal sensing, but their sensitivity and detection limit are still not outstanding. We propose interface engineering to improve the charge collection in a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer (P(VDF-TrFE)) thin film via cross-linking with poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) layer. The as-fabricated P(VDF-TrFE)/PEDOT:PSS composite film exhibits an ultrasensitive and linear mechanical/thermal response, showing sensitivities of 2.2 V kPa-1 in the pressure range of 0.025-100 kPa and 6.4 V K-1 in the temperature change range of 0.05-10 K. A corresponding piezoelectric coefficient of -86 pC N-1 and a pyroelectric coefficient of 95 μC m-2 K-1 are achieved because more charge is collected by the network interconnection interface between PEDOT:PSS and P(VDF-TrFE), related to the increase in the dielectric properties. Our work shines a light on a device-level technique route for boosting the sensitivity of ferroelectric polymer sensors through electrode interface engineering.
Collapse
Affiliation(s)
- Bo Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Chuanyang Cai
- School of Materials Science and Engineering, Xiangtan University, Hunan, Xiangtan, 411105, China
| | - Yang Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Fang Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Bin Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qikai Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pengxiang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Biao Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pengfei Hou
- School of Materials Science and Engineering, Xiangtan University, Hunan, Xiangtan, 411105, China.
| | - Weishu Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
11
|
Kumar A, Mandal D. Multifunctional poly(vinylidene fluoride–co‐hexafluoropropylene) ‐ zinc stannate nanocomposite for high energy density capacitors and piezo‐phototronic switching. J Appl Polym Sci 2023. [DOI: 10.1002/app.53652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ajay Kumar
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| |
Collapse
|
12
|
Markina DI, Anoshkin SS, Masharin MA, Khubezhov SA, Tzibizov I, Dolgintsev D, Terterov IN, Makarov SV, Pushkarev AP. Perovskite Nanowire Laser for Hydrogen Chloride Gas Sensing. ACS NANO 2023; 17:1570-1582. [PMID: 36594418 DOI: 10.1021/acsnano.2c11013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest. Herein, we demonstrate the optical detection of hydrogen chloride gas with solution-processed halide perovskite nanowire lasers grown on a nanostructured alumina substrate. An anion exchange reaction between a CsPbBr3 nanowire and vaporized HCl molecules results in the formation of a structure consisting of a bromide core and thin mixed-halide CsPb(Cl,Br)3 shell. The shell has a lower refractive index than the core does. Therefore, the formation and further expansion of the shell reduce the field confinement for experimentally observed laser modes and provokes an increase in their frequency. This phenomenon is confirmed by the coherency of the data derived from XPS spectroscopy, EDX analysis, in situ XRD experiments, HRTEM images, and fluorescent microspectroscopy, as well as numerical modeling for Cl- ion diffusion and the shell-thickness-dependent spectral position of eigenmodes in a core-shell perovskite nanowire. The revealed optical response allows the detection of HCl molecules in the 5-500 ppm range. The observed spectral tunability of the perovskite nanowire lasers can be employed not only for sensing but also for their precise spectral tuning.
Collapse
Affiliation(s)
- Daria I Markina
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Sergey S Anoshkin
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Mikhail A Masharin
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Soslan A Khubezhov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
- North Ossetian State University, Vatutina str. 46, 362025Vladikavkaz, Russia
| | - Ivan Tzibizov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Dmitriy Dolgintsev
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Ivan N Terterov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Sergey V Makarov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, People's Republic of China
| | - Anatoly P Pushkarev
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| |
Collapse
|
13
|
Baptista RMF, Moreira G, Silva B, Oliveira J, Almeida B, Castro C, Rodrigues PV, Machado A, Belsley M, de Matos Gomes E. Lead-Free MDABCO-NH 4I 3 Perovskite Crystals Embedded in Electrospun Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238397. [PMID: 36499895 PMCID: PMC9739599 DOI: 10.3390/ma15238397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
In this work, we introduce lead-free organic ferroelectric perovskite N-methyl-N'-diazabicyclo[2.2.2]octonium)-ammonium triiodide (MDABCO-NH4I3) nanocrystals embedded in three different polymer fibers fabricated by the electrospinning technique, as mechanical energy harvesters. Molecular ferroelectrics offer the advantage of structural diversity and tunability, easy fabrication, and mechanical flexibility. Organic-inorganic hybrid materials are new low-symmetry emerging materials that may be used as energy harvesters because of their piezoelectric or ferroelectric properties. Among these, ferroelectric metal-free perovskites are a class of recently discovered multifunctional materials. The doped nanofibers, which are very flexible and have a high Young modulus, behave as active piezoelectric energy harvesting sources that produce a piezoelectric voltage coefficient up to geff = 3.6 VmN-1 and show a blue intense luminescence band at 325 nm. In this work, the pyroelectric coefficient is reported for the MDABCO-NH4I3 perovskite inserted in electrospun fibers. At the ferroelectric-paraelectric phase transition, the embedded nanocrystals display a pyroelectric coefficient as high as 194 × 10-6 Cm-2k-1, within the same order of magnitude as that reported for the state-of-the-art bulk ferroelectric triglycine sulfate (TGS). The perovskite nanocrystals embedded into the polymer fibers remain stable in their piezoelectric output response, and no degradation is caused by oxidation, making the piezoelectric perovskite nanofibers suitable to be used as flexible energy harvesters.
Collapse
Affiliation(s)
- Rosa M. F. Baptista
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Gonçalo Moreira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Bruna Silva
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - João Oliveira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Bernardo Almeida
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Cidália Castro
- Institute for Polymers and Composites, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Pedro V. Rodrigues
- Institute for Polymers and Composites, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Ana Machado
- Institute for Polymers and Composites, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Michael Belsley
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Etelvina de Matos Gomes
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
14
|
Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P. Flexible Piezoelectric and Pyroelectric Nanogenerators Based on PAN/TMAB Nanocomposite Fiber Mats for Self-Power Multifunctional Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46789-46800. [PMID: 36194663 DOI: 10.1021/acsami.2c10951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Self-powered wearable electronics to convert mechanical and thermal energy into electrical energy are important for biomedical monitoring, which highly require good flexibility, comfortability, signal sensitivity, and accuracy. In this work, composite nanofiber mats of polyacrylonitrile (PAN) and trimethylamine borane (TMAB) were prepared by electrospinning, which exhibited excellent piezoelectric and pyroelectric abilities in harvesting mechanical and thermal energy. The PAN/TMAB-4 nanofiber mats not only generated a high voltage of up to 2.56 V and a high power of 0.19 μW upon shape deformation but also exhibited linear voltage response to thermal gradient. The hybrid piezoelectric and pyroelectric output signals were successfully integrated together and have been applied to precisely monitor human vital signs, including elbow bending angles, foot posture, and breathing status, in real time by attaching the flexible sensors to proper human body parts. Overall, good flexibility, bifunctional sensing ability, and self-power make PAN-/TMAB-type sensors very attractive in fabricating high-performance electronics for detecting motion, monitoring health, and making portable microelectronics.
Collapse
Affiliation(s)
- Xuran Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Yinhui Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Yong Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Jianqiang Tan
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Jin Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi030032, China
| | - Hulin Zhang
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Jianguo Liang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Tingyu Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| | - Yaodong Liu
- National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, China
| | - Huabei Jiang
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, Florida33620, United States
| | - Pengwei Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi030024, China
| |
Collapse
|
15
|
Jiang F, Lee PS. Performance optimization strategies of halide perovskite-based mechanical energy harvesters. NANOSCALE HORIZONS 2022; 7:1029-1046. [PMID: 35775970 DOI: 10.1039/d2nh00229a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halide perovskites, possessing unique electronic and photovoltaic properties, have been intensively investigated over the past decade. The excellent polarization, piezoelectricity, dielectricity and photoelectricity of halide perovskites provide new opportunities for the applications of mechanical energy harvesting. Although various studies have been conducted to develop halide perovskite-based triboelectric and piezoelectric nanogenerators, strategies for their electrical performance optimization are rarely mentioned. In this review, we systematically introduce the recent research progress of halide perovskite-based mechanical energy harvesters and summarize the different optimization strategies for improving both the piezoelectric and triboelectric output of the devices, bringing some inspiration to guide future material and structure design for halide perovskite-based energy devices. A summary of the current challenges and future perspectives is also presented, offering some possible directions for development in this emerging field.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
16
|
Guo H, Li L, Wang F, Kim SW, Sun H. Mitigating the Negative Piezoelectricity in Organic/Inorganic Hybrid Materials for High-performance Piezoelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34733-34741. [PMID: 35867959 DOI: 10.1021/acsami.2c08162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conversion of ecofriendly waste energy into useable electrical energy is of significant interest for energy harvesting technologies. Piezoelectric nanogenerators based on organic/inorganic hybrid materials are a key promising technology for harvesting mechanical energy due to their high piezoelectric coefficient and good mechanical flexibility. However, the negative piezoelectric effect of the polymer component in composite devices severely undermines its overall piezoelectricity, compromising the output performance of PVDF-based piezoelectric hybrid nanogenerators. Here, to conquer this, we report a two-step poling schedule to orient the dipoles of organic and inorganic components in the same direction. The optimized nanogenerator delivers a combination of high piezoelectric coefficient, great output performance, and remarkable stability. The isotropic piezoelectricity in the composite device collaborates to output a maximum voltage of 110 V and a power density of 7.8 μW cm-2. This strategy is also applied to elevate the piezoelectricity of other organic/inorganic-hybrid-based nanogenerators, substantiating its universal applicability for composite piezoelectric nanogenerators. This study presents a feasible strategy for enhancing the effective output capability of composite nanogenerator technologies.
Collapse
Affiliation(s)
- Huiling Guo
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Liang Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fang Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Huajun Sun
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, China
| |
Collapse
|
17
|
Moerke C, Wolff A, Ince H, Ortak J, Öner A. New strategies for energy supply of cardiac implantable devices. Herzschrittmacherther Elektrophysiol 2022; 33:224-231. [PMID: 35377021 PMCID: PMC9177465 DOI: 10.1007/s00399-022-00852-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Heart disease and atrial fibrillation are the leading causes of death worldwide. Patient morbidity and mortality associated with cardiovascular disease can be reduced by more accurate and continuous diagnostic and therapeutic tools provided by cardiovascular implantable electronic devices (CIEDs). OBJECTIVES Long-term operation of CIEDs continues to be a challenge due to limited battery life and the associated risk of device failure. To overcome this issue, new approaches for autonomous battery supply are being investigated. RESULTS Here, the state of the art in CIED power supply is presented and an overview of current strategies for autonomous power supply in the cardiovascular field is given, using the body as a sustainable energy source. Finally, future challenges and potentials as well as advanced features for CIEDs are discussed. CONCLUSION CIEDs need to fulfil more requirements for diagnostic and telemetric functions, which leads to higher energy requirements. Ongoing miniaturization and improved sensor technologies will help in the development of new devices.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Anne Wolff
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Jasmin Ortak
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
18
|
Zhang Y, Fan Z, Wen N, Yang S, Li C, Huang H, Cong T, Zhang H, Pan L. Novel Wearable Pyrothermoelectric Hybrid Generator for Solar Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17330-17339. [PMID: 35384670 DOI: 10.1021/acsami.2c00874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recently, wearable energy harvesting systems have been attracting great attention. As thermal energy is abundant in nature, developing wearable energy harvesters based on thermal energy conversion processes has been of particular interest. By integration of a high-efficient solar absorber, a pyroelectric film, and thermoelectric yarns, herein, we design a novel wearable solar-energy-driven pyrothermoelectric hybrid generator (PTEG). In contrast to those wearable pyroelectric generators and thermoelectric generators reported in previous works, our PTEG can enable effective energy harvesting from both dynamic temperature fluctuations and static temperature gradients. Under an illumination intensity of 1500 W/m2 (1.5 sun), the PTEG successfully charges two commercial capacitors to a sum voltage of 3.7 V in only 800 s, and the total energy is able to light up 73 LED light bulbs. The volumetric energy density over the two capacitors is calculated to be 67.8 μJ/cm3. The practical energy harvesting performance of the PTEG is further evaluated in the outdoor environment. The PTEG reported in this work not only demonstrates a rational structural design of high-efficient wearable energy harvesters but also paves a new pathway to integrate multiple energy conversion technologies for solar energy collection.
Collapse
Affiliation(s)
- Yaoyun Zhang
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zeng Fan
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Ningxuan Wen
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shuaitao Yang
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chengwei Li
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hui Huang
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tianze Cong
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hao Zhang
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
19
|
Jiang F, Zhou X, Lv J, Chen J, Chen J, Kongcharoen H, Zhang Y, Lee PS. Stretchable, Breathable, and Stable Lead-Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200042. [PMID: 35231951 DOI: 10.1002/adma.202200042] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Indexed: 05/02/2023]
Abstract
Halide-perovskite-based mechanical energy harvesters display excellent electrical output due to their unique ferroelectricity and dielectricity. However, their high toxicity and moisture sensitivity impede their practical applications. Herein, a stretchable, breathable, and stable nanofiber composite (LPPS-NFC) is fabricated through electrospinning of lead-free perovskite/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and styrene-ethylene-butylene-styrene (SEBS). The Cs3 Bi2 Br9 perovskites serve as efficient electron acceptors and local nucleating agents for the crystallization of polymer chains, thereby enhancing the electron-trapping capacity and polar crystalline phase in LPPS-NFC. The excellent energy level matching between Cs3 Bi2 Br9 and PVDF-HFP boosts the electron transfer efficiency and reduces the charge loss, thereby promoting the electron-trapping process. Consequently, this LPPS-NFC-based energy harvester displays an excellent electrical output (400 V, 1.63 µA cm-2 , and 2.34 W m-2 ), setting a record of the output voltage among halide-perovskite-based nanogenerators. The LPPS-NFC also exhibits excellent stretchability, waterproofness, and breathability, enabling the fabrication of robust wearable devices that convert mechanical energy from different biomechanical motions into electrical power to drive common electronic devices. The LPPS-NFC-based energy harvesters also endure extreme mechanical deformations (washing, folding, and crumpling) without performance degradation, and maintain stable electrical output up to 5 months, demonstrating their promising potential for use as smart textiles and wearable power sources.
Collapse
Affiliation(s)
- Feng Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Flexible Electronics Technology of Tsinghua, Zhejiang, Jiaxing, 314000, China
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Juntong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haruethai Kongcharoen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Hsieh GW, Shih LC, Chen PY. Porous Polydimethylsiloxane Elastomer Hybrid with Zinc Oxide Nanowire for Wearable, Wide-Range, and Low Detection Limit Capacitive Pressure Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:256. [PMID: 35055273 PMCID: PMC8779111 DOI: 10.3390/nano12020256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023]
Abstract
We propose a flexible capacitive pressure sensor that utilizes porous polydimethylsiloxane elastomer with zinc oxide nanowire as nanocomposite dielectric layer via a simple porogen-assisted process. With the incorporation of nanowires into the porous elastomer, our capacitive pressure sensor is not only highly responsive to subtle stimuli but vigorously so to gentle touch and verbal stimulation from 0 to 50 kPa. The fabricated zinc oxide nanowire-porous polydimethylsiloxane sensor exhibits superior sensitivity of 0.717 kPa-1, 0.360 kPa-1, and 0.200 kPa-1 at the pressure regimes of 0-50 Pa, 50-1000 Pa, and 1000-3000 Pa, respectively, presenting an approximate enhancement by 21-100 times when compared to that of a flat polydimethylsiloxane device. The nanocomposite dielectric layer also reveals an ultralow detection limit of 1.0 Pa, good stability, and durability after 4000 loading-unloading cycles, making it capable of perception of various human motions, such as finger bending, calligraphy writing, throat vibration, and airflow blowing. A proof-of-concept trial in hydrostatic water pressure sensing has been demonstrated with the proposed sensors, which can detect tiny changes in water pressure and may be helpful for underwater sensing research. This work brings out the efficacy of constructing wearable capacitive pressure sensors based on a porous dielectric hybrid with stress-sensitive nanostructures, providing wide prospective applications in wearable electronics, health monitoring, and smart artificial robotics/prosthetics.
Collapse
Affiliation(s)
- Gen-Wen Hsieh
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301, Section 2, Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan
| | - Liang-Cheng Shih
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan; (L.-C.S.); (P.-Y.C.)
| | - Pei-Yuan Chen
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301, Gaofa 3rd Road, Section 2, Guiren District, Tainan 71150, Taiwan; (L.-C.S.); (P.-Y.C.)
| |
Collapse
|
21
|
Liguori A, Pandini S, Rinoldi C, Zaccheroni N, Pierini F, Focarete ML, Gualandi C. Thermo-active Smart Electrospun Nanofibers. Macromol Rapid Commun 2021; 43:e2100694. [PMID: 34962002 DOI: 10.1002/marc.202100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nano-structuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermo-active electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermo-responsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, have been described and critically discussed. The difference in active species and outputs of the aforementioned categories has been highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermo-active materials has been pointed out, revealing how their development could take to utmost interesting achievements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Stefano Pandini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Chiara Rinoldi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Filippo Pierini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
22
|
Pyroelectric Nanogenerator Based on an SbSI-TiO 2 Nanocomposite. SENSORS 2021; 22:s22010069. [PMID: 35009611 PMCID: PMC8747714 DOI: 10.3390/s22010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
For the first time, a composite of ferroelectric antimony sulfoiodide (SbSI) nanowires and non-ferroelectric titanium dioxide (TiO2) nanoparticles was applied as a pyroelectric nanogenerator. SbSI nanowires were fabricated under ultrasonic treatment. Sonochemical synthesis was performed in the presence of TiO2 nanoparticles. The mean lateral dimension da = 68(2) nm and the length La = 2.52(7) µm of the SbSI nanowires were determined. TiO2 nanoparticles served as binders in the synthesized nanocomposite, which allowed for the preparation of dense films via the simple drop-casting method. The SbSI–TiO2 nanocomposite film was sandwiched between gold and indium tin oxide (ITO) electrodes. The Curie temperature of TC = 294(2) K was evaluated and confirmed to be consistent with the data reported in the literature for ferroelectric SbSI. The SbSI–TiO2 device was subjected to periodic thermal fluctuations. The measured pyroelectric signals were highly correlated with the temperature change waveforms. The magnitude of the pyroelectric current was found to be a linear function of the temperature change rate. The high value of the pyroelectric coefficient p = 264(7) nC/(cm2·K) was determined for the SbSI–TiO2 nanocomposite. When the rate of temperature change was equal dT/dt = 62.5 mK/s, the maximum and average surface power densities of the SbSI–TiO2 nanogenerator reached 8.39(2) and 2.57(2) µW/m2, respectively.
Collapse
|
23
|
Zhang D, Wu H, Bowen CR, Yang Y. Recent Advances in Pyroelectric Materials and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103960. [PMID: 34672078 DOI: 10.1002/smll.202103960] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Indexed: 06/13/2023]
Abstract
As one important subclass of piezoelectric materials, pyroelectric materials have caused increasing attention owing to the unique pyroelectric effect induced by spontaneous polarization, showing broad promising application prospects due to various electrical responses induced by time-dependent temperature variation. This review systematically introduces the pyroelectric effect and evaluation of pyroelectric materials and follows by analyzing and concluding the novel properties corresponding to four kinds of main pyroelectric materials. The emphasis of this review focuses on several significant and practical applications of pyroelectric materials in thermal energy harvesting from the external environment, pyroelectric sensing, and imaging, even some electrochemical applications including hydrogen generation, wastewater treatment, sterilization, and disinfection. Finally, the development direction of pyroelectric materials, potential challenges and opportunities in the future are all discussed and proposed. Through systematical conclusion and analysis of the latest research progress in the recent two decades, this review may provide significant guide and inspiration in the development of pyroelectric materials.
Collapse
Affiliation(s)
- Ding Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heting Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Somerset, BA2 7AK, UK
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
24
|
Yang TC, Jiang YP, Lin TH, Chen SH, Ho CM, Wu MC, Wang JC. N-butylamine-modified graphite nanoflakes blended in ferroelectric P(VDF-TrFE) copolymers for piezoelectric nanogenerators with high power generation efficiency. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Huang Z, Hao J, Blackburn JL, Beard MC. Pyroelectricity of Lead Sulfide (PbS) Quantum Dot Films Induced by Janus-Ligand Shells. ACS NANO 2021; 15:14965-14971. [PMID: 34402613 DOI: 10.1021/acsnano.1c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Asymmetry is an essential property to control. To do that in nanocrystalline systems we have developed methods to produce Janus-ligand shells on otherwise symmetric PbS quantum dots (QDs). Here, we demonstrate that control by constructing a system that exhibits pyroelectricity built from spherical PbS QDs. We observed a pyroelectric current in two different configurations. In one configuration, the QDs are self-assembled into close-packed arrays while in the second configuration, the QDs are dispersed into an electro-inactive polymer, polydimethylsiloxane. Both exhibit a pyroelectric response. In the first configuration we estimate a lower limit of the pyroelectric coefficient to be 1.97 × 10-7 C/m2·K, which is likely limited by the degree of QD alignment during film formation but is already on par with common pyroelectric systems. Compared with inorganic ceramic-like and polymeric pyroelectric materials, pyroelectric films self-assembled from polar QDs are easier to prepare, responsive to light with different energies based on QD exciton energy, and the polarization of each QD could be easily tuned by constructing different Janus-ligand shells.
Collapse
Affiliation(s)
- Zhiyuan Huang
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ji Hao
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jeffrey L Blackburn
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew C Beard
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
26
|
Ghosh SK, Park J, Na S, Kim MP, Ko H. A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2005010. [PMID: 34258158 PMCID: PMC8261503 DOI: 10.1002/advs.202005010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/15/2021] [Indexed: 06/13/2023]
Abstract
High-performance biodegradable electronic devices are being investigated to address the global electronic waste problem. In this work, a fully biodegradable ferroelectric nanogenerator-driven skin sensor with ultrasensitive bimodal sensing capability based on edible porcine skin gelatine is demonstrated. The microstructure and molecular engineering of gelatine induces polarization confinement that gives rise the ferroelectric properties, resulting in a piezoelectric coefficient (d33) of ≈24 pC N-1 and pyroelectric coefficient of ≈13 µC m-2K-1, which are 6 and 11.8 times higher, respectively, than those of the conventional planar gelatine. The ferroelectric gelatine skin sensor has exceptionally high pressure sensitivity (≈41 mV Pa-1) and the lowest detection limit of pressure (≈0.005 Pa) and temperature (≈0.04 K) ever reported for ferroelectric sensors. In proof-of-concept tests, this device is able to sense the spatially resolved pressure, temperature, and surface texture of an unknown object, demonstrating potential for robotic skins and wearable electronics with zero waste footprint.
Collapse
Affiliation(s)
- Sujoy Kumar Ghosh
- School of Energy and Chemical EngineeringDepartment of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan City44919Republic of Korea
| | - Jonghwa Park
- School of Energy and Chemical EngineeringDepartment of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan City44919Republic of Korea
| | - Sangyun Na
- School of Energy and Chemical EngineeringDepartment of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan City44919Republic of Korea
| | - Minsoo P. Kim
- School of Energy and Chemical EngineeringDepartment of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan City44919Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical EngineeringDepartment of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan Metropolitan City44919Republic of Korea
| |
Collapse
|
27
|
Roy K, Jana S, Mallick Z, Ghosh SK, Dutta B, Sarkar S, Sinha C, Mandal D. Two-Dimensional MOF Modulated Fiber Nanogenerator for Effective Acoustoelectric Conversion and Human Motion Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7107-7117. [PMID: 34061539 DOI: 10.1021/acs.langmuir.1c00700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The real-time application of piezoelectric nanogenerators (PNGs) under a harsh environment remains a challenge due to lower output performance and poor durability. Thus, the development of flexible, sensitive, and stable PNGs became a topic of interest to capture different human motions including gesture monitoring to speech recognition. Herein, a scalable approach is adapted where naphthylamine bridging a [Cd(II)-μ-I4] two-dimensional (2D) metal-organic framework (MOF)-reinforced poly(vinylidene fluoride) (PVDF) composite nanofibers mat is prepared to fabricate a flexible and sensitive composite piezoelectric nanogenerator (C-PNG). The needle-shaped MOF was successfully synthesized by the layering and diffusion of two different solutions. The incorporation of single-crystalline 2D MOF ensures a large content of electroactive phases (98%) with a resultant high-magnitude piezoelectric coefficient of 41 pC/N in a composite nanofibers mat due to the interfacial specific interaction with -CH2-/-CF2- dipoles of PVDF. As an outcome, C-PNG generates high electrical output (open-circuit voltage of 22 V and maximum power density of 24 μW/cm2) with a very fast response time (tr ≈ 5 ms) under periodic pressure imparting stimuli. Benefiting from bending and twisting functionality, C-PNG is capable of scavenging biomechanical energy by mimicking complex musculoskeletal motions that broaden its application in wearable electronics and fabric integrated medical devices. In addition, C-PNG also demonstrates an efficient acoustic vibration to electric energy conversion capability with an improved power density and acoustic sensitivity of 6.25 μW and 0.95 V/Pa, respectively. The overall energy conversion efficiency is sufficient to operate several consumer electronics without any energy storage unit. This acoustic observation is further validated by the finite element method-based theoretical simulation. Overall, the 2D MOF-based device design strategy opens up a new possibility to develop a human-motion compatible energy generator and a self-powered acoustic sensor to power up electronic gadgets as well as low-frequency noise detection.
Collapse
Affiliation(s)
| | | | - Zinnia Mallick
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | | | | | | | | | - Dipankar Mandal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
28
|
Si SK, Paria S, Karan SK, Ojha S, Das AK, Maitra A, Bera A, Halder L, De A, Khatua BB. In situ-grown organo-lead bromide perovskite-induced electroactive γ-phase in aerogel PVDF films: an efficient photoactive material for piezoelectric energy harvesting and photodetector applications. NANOSCALE 2020; 12:7214-7230. [PMID: 32195528 DOI: 10.1039/d0nr00090f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The unique combination of piezoelectric energy harvesters and light detectors progressively strengthens their application in the development of modern electronics. Here, for the first time, we fabricated a polyvinylidene fluoride (PVDF) and formamidinium lead bromide nanoparticle (FAPbBr3 NP)-based composite aerogel film (FAPbBr3/PVDF) for harvesting electrical energy and photodetector applications. The uniform distribution of FAPbBr3 NPs in FAPbBr3/PVDF was achieved via the in situ synthesis of FAPbBr3 NPs in the PVDF matrix, which led to the stabilization of the γ-phase. The freeze-drying process induced an interconnected porous architecture in the composite film, making it more sensitive to small mechanical stimuli. Owing to this unique fabrication technique, the constructed aerogel film-based nanogenerator (FPNG) exhibited an output voltage and current of ∼26.2 V and ∼2.1 μA, respectively, which were 5-fold higher than that of the nanogenerator with the pure PVDF film. Also, the sensitivity of FPNG upon the irradiation of light was demonstrated by the output voltage reduction of ∼38%, indicating its capability as a light sensing device. Furthermore, the prepared FAPbBr3/PVDF composite was found to be an efficient candidate for light detection applications. A simple planar photodetector was fabricated with the 8.0 wt% FAPbBr3 NP-loaded PVDF composite, which displayed very high responsivity (8 A/W) and response speed of 2.6 s. Thus, this exclusive combination of synthesis and fabrication for the preparation of electro-active films opens a new horizon in the piezoelectric community for effective energy harvesting and light detector applications.
Collapse
Affiliation(s)
- Suman Kumar Si
- Materials Science Centre, Indian Institute of Technology, Kharagpur - 721302, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|